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The quantum wetting transition in the one-dimensional transverse-field Ising model with random bonds is
studied. Opposite boundary fields are applied at the two ends of the Ising chain. The interface between two
domains with oppositely oriented magnetization is localized near the boundary or in the middle of the chain.
The wetting transition refers to the phase transition of localization and delocalization of the interface. The tuning
parameter hL is the boundary field at one end, e.g., the left end. At the transition point hL = hw , the wetting
transition occurs. First, we study the wetting transition with one defect bond. It is a first-order transition, and the
interface jumps from the left end of the chain to the defect bond at the transition point. Second, we study the
wetting transition with two defect bonds and find that the weaker defect bond dominates the phase transition.
The wetting transition is still first order, and the interface is localized at the left end of the chain or at the weaker
defect bond. Lastly, the random bond case is studied. The random bonds have a rectangular distribution. The
wetting transition is still first order. The finite-size effects are studied. The statistics of the transition points and
the energy gaps are obtained. We study lattices with sizes N = 100, 150, 200, 250, 300, and 350. The deviation of
the phase transition points hw does not decrease as the lattice size increases. It is argued that the transition point is
sample dependent, i.e., the variation in the transition point hw does not approach zero, even at the thermodynamic
limit.
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I. INTRODUCTION

The influence of quenched disorder on the phase transition
has been an interesting topic in theoretical and experimental
physics [1]. The quantum phase transition has become an
important topic in recent years due to the discovery of many
new materials and the development of cold atom technol-
ogy [2–5]. In this paper we study a quantum phase transition
with disorder, the wetting transition, in the one-dimensional
transverse-field Ising model with random bonds.

The one-dimensional transverse-field Ising model with ran-
dom bonds is famous for its Griffiths-McCoy singularity,
where several thermodynamic observables, including the av-
erage susceptibility, actually diverge in a finite region of the
disordered phase rather than only at the critical point [6–10].
The Griffiths-McCoy singularity was first discovered in the
McCoy-Wu model, which is the classical counterpart of the
transverse-field Ising model with random bonds [11–13].
Some quantum spin models in the d dimension can be mapped
to classical spin models in the d + 1 dimension [14]. The
wetting transition in the McCoy-Wu model has been studied
recently [15]. It is found that the phase transition is still first
order, although disorder is present. Generally, disorder can
alter the order of the phase transition. It is shown rigorously
that the quenched randomness suppresses the first-order phase
transitions in the two-dimensional random-field Ising model,
random-bond Potts model, and spin glasses [16]. Therefore,

*wuxt@bnu.edu.cn

the first-order phase transition in disordered systems is an
interesting topic.

Wetting phenomena have attracted enormous theoretical
and experimental attention [17,18]. Such phenomena occur,
e.g., in binary liquid mixtures below the consolution point,
where one phase is generally adsorbed on the container wall
and may wet its surface when phases coexist. The wetting
transition can be viewed as delocalization of the interface
between the adsorbed phase and the bulk phase of the mixture.
Far from the bulk critical temperature Tc, the interface is
localized near the wall, but at some finite temperature less
than Tc, the thickness of the wetting layer diverges. Due to the
well-known correspondence between Ising ferromagnets and
lattice-gas models of gas-fluid systems, the wetting transition
can be studied using Ising models with surface fields [19]. In
the ordered state a continuous wetting transition is observed
in the two-dimensional Ising model [20–24]. For an Ising fer-
romagnet with positive magnetization in the bulk, at zero bulk
field, a negative boundary field H1 at the wall may stabilize a
domain with oppositely oriented magnetization at the surface.

For the one-dimensional transverse-field Ising model, one
can realize the quantum wetting transition by applying op-
posite surface fields on the two open ends [15]. The two
boundary fields are in opposite directions, so there is an
interface between the two domains with oppositely oriented
magnetization. The interface is localized either at one bound-
ary or in the middle. The wetting transition is the transition of
the interface. Tuning the surface fields, the interface’s position
changes drastically at the phase transition point. In the clean
system, i.e., with uniform bonds, first-order and second-order
wetting transitions are shown [15].
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In this paper we study the wetting transition in the one-
dimensional transverse-field Ising model with random bonds.
To understand the phase transition mechanism, we first stud-
ied the phase transition with one bond defect and two bond
defects. Then we studied the random bond case, where the
random bonds have a rectangular distribution. The second-
order transition in the clean system is absent due to the
disorder of the lattice. Instead, the phase transition is first
order. The finite-size effects are studied. This model shows
interesting finite-size effects. For a finite-size sample, e.g., a
200-site-long Ising chain, there may be no singular behav-
ior, but adding another 200 sites to it may lead to singular
behaviors. Alternatively, a 200-site-long Ising chain shows
a first-order phase transition at a specific surface field, and
adding another 200 sites leads to a first-order phase transition
at a different surface field, replacing the original phase tran-
sition. In other words, when the systems are lengthened, the
phase transition point may move.

The statistical properties of the energy gap and transition
point for N = 100, 150, 200, 250, 300, 350 samples are also
obtained. For each size, 20 000 samples are calculated. It is
found that the distribution width of the surface field at the
transition point does not decrease with the size.

In our numerical calculations, the lattice length is finite,
the “phase transition” refers to pseudosingularity in finite-
size systems since the phase transition occurs at the limit of
the thermodynamic limit where the system size approaches
infinitely large.

By extrapolating the results on the finite-size lattices, we
conclude that the wetting transition point is sample dependent
in the limit of an infinitely large lattice, i.e., the surface field
at the transition point depends on the sample, even at the
thermodynamic limit. To our knowledge, in all previously
studied disordered systems, the phase transition temperatures
converge to a limit as the system size approaches infinity (see
examples in Refs. [25–27]). We discuss the reason for this
unusual effect in the summary.

This paper is arranged as follows. In Sec. II we present
the model and the solving method. In Sec. III we analytically
solve the phase transition with one defect. In Sec. IV we
numerically solve the phase transition with two defects. In
Sec. V we show the finite-size effects in random-bond sys-
tems. In Sec. VI we present the results of the phase transition
with random bonds. Section VII includes a summary.

II. THE MODEL AND THE SOLVING METHOD

We consider the one-dimensional transverse-field Ising
chain with boundary fields:

H = H0 − hLσ
(1)
1 − hRσ

(1)
N , (1)

where

H0 = −
i=N−1∑

i=1

Kiσ
(1)
i σ

(1)
i+1 − g

i=N∑
i=1

σ
(3)
i , (2)

σ
(1)
i and σ

(3)
i are Pauli matrices, and hL and hR are the

left and right boundary longitudinal fields, respectively. The
interaction Ki is an independent random variable with distri-
bution P(K ). The lattice size is N . Following the well-known

theories [28–31], we transform the diagonalization problem
to an effective Hamiltonian by appending one additional spin
to the left and right sides. The corresponding Hamiltonian is
given by

He = H0 − |hL|σ (1)
0 σ

(1)
1 − |hR|σ (1)

N σ
(1)
N+1. (3)

Because σ
(1)
0 , σ

(1)
N+1 are free from the transverse field, both σ

(1)
0

and σ
(1)
N+1 commute with the Hamiltonian. Hence, they can be

diagonalized simultaneously. The Hilbert space can be divided
into four sectors, which we label (1, 1), (1,−1), (−1, 1), and
(−1,−1), where (s0, sN+1) are eigenvalues of σ

(1)
0 and σ

(1)
N+1.

The restriction of He to the four sectors gives rise to the Hamil-
tonian H with four cases of different signs of hL, hR [28]. For
example, the restriction of He to sector (1,−1) gives rise to
the Hamiltonian H with hL > 0, hR < 0. The first-order and
second-order phase transitions occur in the region hLhR <

0. Therefore, we investigate case of hL > 0, hR < 0 and the
sector (1,−1). The case hL < 0, hR > 0 can be obtained
with symmetry. To compute the spectrum of the Hamiltonian
Eq. (3), we perform the Jordan-Wigner transformation and
define fermionic operators

c†
i = (−1)i

i−1∏
j=0

σ
(3)
j σ+

i , (4)

where σ± = (σ (1) ± iσ (2) )/2 (i is the imaginary unit). The
Hamiltonian becomes

He = −gN +
N+1∑
i, j=0

(
c†

i Ai jc j + 1

2
c†

i Bi jc
†
j − 1

2
ciBi jc j

)
, (5)

where A and B are symmetric and antisymmetric matrices,
respectively. For clarity, here, we write the matrix elements
explicitly for N = 3 in the following:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −|hL| 0 0 0

−|hL| −2g −K1 0 0

0 −K1 −2g −K2 0

0 0 −K2 −2g −|hR|
0 0 0 −|hR| 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −|hL| 0 0 0

|hL| 0 −K1 0 0

0 K1 0 −K2 0

0 0 K2 0 −|hR|
0 0 0 |hR| 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

We perform a Bogoliubov transformation by introducing
new canonical fermionic variables [32]

ηk = gk,ici + hk,ic
†
i . (8)

By using these variables, the Hamiltonian can be diago-
nalized. The coefficients gk,i and hk,i satisfy the following
equations:

gki = φk,i + ψk,i

2
, hki = φk,i − ψk,i

2
, (9)

where ψk is the eigenvector of the matrix

C ≡ (A + B)(A − B), Cψk = ε2
kψk, (10)
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and

φk = (A − B)ψk/εk . (11)

In the above equation, εk �= 0. For the convenience of the read-
ers, we write the matrix C’s elements explicitly for N = 3:

C = 4

⎛
⎜⎜⎜⎜⎜⎜⎝

h2
L g|hL| 0 0 0

g|hL| K2
1 + g2 gK1 0 0

0 gK1 K2
2 + g2 gK2 0

0 0 gK2 |hR|2 + g2 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(12)
It is clear that there is a zero eigenvalue ε0 = 0 for C. This
mode is treated in Ref. [28]. The spectrum is doubly degener-
ate due to this zero mode. This degeneracy is the consequence
of the Z2 global symmetry of the Hamiltonian He. The zero
mode is not related to the spectrum of the Hamilton H . Only
the nonzero modes are relevant. There are N + 1 nonzero
modes that we label by k = 1, 2, . . . , N + 1. Here 0 = ε0 <

ε1 < ε2 · · · .
The two degenerate ground states for the Hamiltonian He

belong to the sectors (−1,−1) and (1,1) [28]. Here we con-
sider the ground state of He belonging to the sector (−1,−1),
as described by

σ
(1)
0 |�0〉 = σ

(1)
N+1|�0〉 = −|�0〉. (13)

It is shown in Ref. [28] that for the Hamiltonian H with hL > 0
and hR < 0, the ground state and first excited state are the first
and second excited states of He, respectively. They belong to
sector (1,−1) and are given by

|�1〉 = η
†
1|�0〉, |�2〉 = η

†
2|�0〉. (14)

The energy gap is given by the difference between the energies
of these two states:

� = ε2 − ε1. (15)

For hL > 0 and hR < 0, the boundary magnetization of σ1

for the ground state is given by (see Appendix B)

m1 = 〈�1|σ1|�1〉

= 1

2|hL|s0

[
−ε1ψ

2
1,0 +

N+1∑
k=2

εkψ
2
k,0

]
. (16)

Generally, the couplings Ki can be arbitrary. If Ki are ran-
dom, it is just the model with random bonds.

Because we discuss the order states, the parameter g are
always g < 1. In our previous work we have studied the
quantum wetting transition on a clean lattice with uniform
interaction, i.e., Ki = K for all sites [33]. For hLhR < 0 and
|hR|, |hL| <

√
1 − g, there is a first-order phase transition at

hL = −hR. In this phase transition, the competition between
the two boundaries is the cause of the phase transition. For
|hR| >

√
1 − g, there a second-order phase transition at |hL| =√

1 − g provided that hLhR < 0. Or vice versa.
Throughout the paper we set hR = −1 to keep the magneti-

zation negative at the right side of the Ising chain and avoid the
phase transition caused by the competition between the two
boundaries (mentioned above), in which the random bonds in

the lattice play no role. We set hL > 0 to study the quantum
wetting transition.

A classical critical wetting transition is said to occur if at
h = 0− the thickness of the layer with positive magnetization
diverges continuously as the temperature T (or, equivalently,
surface field h) approaches some wetting temperature Tw

(surface field hw) from below [21]. In the quantum wetting
transition, both g and hL can control the transition since the
transition point depends on both g and hL [see Eq. (25) in the
next section]. To be simple, we fix g and change hL. Of course
one can fix hL and change g. The results are qualitatively the
same.

III. PHASE TRANSITION WITH ONE DEFECT

First, we solve the solution with one defect. Consider an
infinitely long Ising chain with couplings KN1 = ζ , Ki = 1 for
i �= N1. The defect bond lies between sites N1 and N1 + 1.

There are two types of eigenvectors for the matrix C: ex-
tended states and localized states. Both types of eigenvectors
can be generally given by aeik j + be−ik j for site j away from
the boundaries and the defect. The corresponding eigenvalue
is given by ε2(k) = 4[1 + g2 − g(eik + e−ik )]. For real k, the
eigenvectors are extended. For imaginary k = ik1, the eigen-
vectors are localized. Usually we let x = ek1 in the localized
state eigenvectors. We only consider the localized state eigen-
vectors of the matrix C. These eigenvectors are given by

ψk,0 = (−1)N1 (αu + βvx−N1 )/hL,

ψk, j = (−1)N1− j (αux− j + βvx j−N1 ), 1 � j � N1,

ψk, j = (−1) j−N1−1bxN1+1− j, j > N1, (17)

where k = 1, 2 label the possible eigenvectors. Additionally,
we consider the infinitely long chain to simplify the solution.
If the Ising chain is finite, there should be a reflected wave
from the right end for j > N1 in the above equation [34].
Since the chain is infinitely long, the reflected wave vanishes.
Obviously it should have x > 1 to guarantee that the state is
localized at the left end or the defect. Otherwise, the eigenvec-
tor ψk, j = (−1) j−N1−1bxN1+1− j, j > N1 goes to infinity for
j → ∞. The parameters α and β are defined by

α =
hL

√
x2

L − 1
√

xL(xL − g)
, β =

√
x2+ − 1√
x2+ + ζ 2

, (18)

where

xL = 1 − h2
L

g
(19)

and

x± = 1

2g
[1 − ζ 2 ±

√
(1 − ζ 2)2 + 4g2ζ 2]. (20)

The eigenvalues of these eigenvectors satisfy

ε2(x) = 4[1 + g2 − g(x + x−1)]. (21)

It should be pointed out that the localized states has lower
energies than any extended state since their eigenvalues are
given by ε2 = 4[1 + g2 − 2gcos q], where q are the wave
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vectors of the extended states, considering x + x−1 > 2 for
x > 1.

By substituting into Eq. (10), we obtain

(x − xL )u + δ1v = 0, δ2u + (x − x+)v = 0, (22)

where

δ1 = xh2
L(x − x−1)β

(g − x)α
x−N1 , (23)

δ2 = (1 − ζ 2)(g − x)α

g(x+ − x−)β
x−N1 . (24)

For N1 → ∞, it has δ1 = δ2 = 0. Then Eq. (22) has two
solutions: x = x+ or x = xL. The former solution is localized
at the defect and the latter one at the left boundary.

Since the solution is localized, it requires x+, xL > 1. We
get hL <

√
1 − g and ζ < 1 by considering Eqs. (19) and (20).

In addition, wetting transition requires that 0 < hL, and the
ferromagnetic Ising model which we consider means 0 < ζ .
Putting them together, we get the parameter domain 0 < hL <√

1 − g and 0 < ζ < 1.
The phase transition occurs at xL = x+ where the two roots

in the above equations are degenerate. Thus, the surface field
at the transition point is given by

hw = {
1
2 [(1 + ζ 2) −

√
(1 − ζ 2)2 + 4g2ζ 2]

}1/2
. (25)

For a chain with size N1 	 1 in the scaling region |hL −
hw| 
 1, in Eq. (22), we have

δ1 ≈ δ2 ≈ δ =
hL

√(
x2

L − 1
)
(1 − ζ 2)

√
g(x+ − x−)

x−N1
L . (26)

In Appendix A it is proved that δ1 = δ2 at hL = hw.
Since xL > 1, δ decays exponentially with the system size

N1. In the case of δ 
 1, Eq. (22) yields two real roots:

x1,2 = 1
2 [(xL + x+) ∓

√
(xL − x+)2 + 4δ2]. (27)

Substituting them into Eq. (21) yields the energies ε1 and ε2

of the two lowest states:

ε1,2 = 2
√

1 + g2 − g
(
x1,2 + x−1

1,2

)
. (28)

It should have x1 < x2 to get ε1 < ε2.
Here we discuss the physical picture of this first-order

phase transition simply. In the limit of N1 → ∞, it has
δ1 = δ2 = 0. Then we have x1 = xL, x2 = x+ and ε1 =
min[ε(x1), ε(x2)], ε2 = max[ε(x1), ε(x2)], where ε(x) is de-
fined in Eq. (21). For hL < hw, it has ε1 = ε(xL ), ε2 = ε(x+);
while for hL > hw, it has ε1 = ε(x+), ε2 = ε(xL ). This cross-
ing is the general feature of the first-order quantum phase
transition. As the surface field hL increases from hL < hw to
hL > hw, the ground state changes from that localized at the
left end to that at the defect. It should be noted that the eigen-
value of the state localized at the defect ε(x+) is independent
of the surface field hL while ε(xL ), which is the eigenvalue of
the state localized at the left end, depends on hL.

From � = ε2 − ε1 we obtain the scaling relation for the
energy gap:

� = �0

√
1 + κ2, (29)

FIG. 1. Energy gaps around the first-order phase transition with
ξ = 0.6, 0.7, 0.8. The transverse field is set to be g = 0.8. The defect
position is set to be N1 = N/2. The parameter κ is defined in Eq. (30).

where

�0 = 4g(1 − x−2
+ )δ

εw

, κ = (hL − hw )

δh
. (30)

κ is the scaling variable and

εw = 2
√

1 + g2 − g(x+ + x−1
+ ), δh = gδ/hw. (31)

We test this scaling relation with the numerical solution
of eigenvalues. Figures 1(a)–1(c) show the energy gaps ver-
sus hL with various lattice sizes for ζ = 0.6, 0.7, 0.8. In the
numerical solutions, we cannot let the lattice be infinity.
Instead, we carry out the calculation on lattices with N =
120, 200, 320, 420 and set N1 = N/2. The right boundary
must cause some effects not predicted in the above exact
solution on an infinitely long lattice. We expect that the dis-
tance from the defect to the right boundary is far enough so
that the effects of the right boundary can be neglected. Our
numerical results on large size lattices indeed agree with the
exact solution on the infinitely long lattice.

From Eq. (25) one can obtain hw =
0.32111025 . . . , 0.36010398 . . . , 0.39391521 . . . for
ζ = 0.6, 0.7, 0.8. The minimum of the gaps are just at
these positions. The data collapse on the above scaling
relation (29) for ζ = 0.8 is shown in Fig. 1(d). The scaled
data for N = 120 obviously deviate from the scaling relation
due to the finite-size effect, while for N = 200, 320, 420, the
data collapse on the scaling relation (29) very well.

The scaling relation (29) is in agreement with the two
lowest energy states ansatz for the first-order quantum phase
transition proposed by Campostrini et al. [35]. Moreover, it is
solved exactly in this model.

There is a jump at the transition point for the surface
magnetization, as shown in Figs. 2(a)–2(c). To study the jump
of the boundary magnetization, as shown in Figs. 2(a)–2(c),
we define the singular boundary magnetization:

m1s = m1(hL ) − m10, (32)
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FIG. 2. Surface magnetization m1 around the first-order phase
transition with ξ = 0.6, 0.7, 0.8. The transverse field is set to be
g = 0.8. The parameter κ is defined in Eq. (30).

where m10 is the boundary magnetization at the transition
point, i.e.,

m10 = m1(hL )|hL=hw
. (33)

The transition point hL = hw is the midpoint of the jump, as
shown in Fig. 2(c). In the scaling region in which the jump
occurs approaches zero in the limit of N → ∞, the variations
in the extended state eigenvectors approach zero. Then, the
contribution from the extended states can be ignored so that
the singular boundary magnetization is given by

m1s ≈ 1

2hLs0

( − ε1ψ
2
1,0 + ε2ψ

2
2,0

) = �m1
κ√

1 + κ2
, (34)

where the boundary magnetization jump amplitude is given
by

�m1 = εw(x2
+ − 1)

2hw

(
x2+ + h2

w − 1
) . (35)

Figure 2(d) shows the FSS of the singular boundary magne-
tization for ζ = 0.8. For N = 160, the scaling data deviate
from the scaling relation (34), while for n = 200, 320, 420,
the scaled data collapse on the scaling relation (34) very well.

The magnetization profiles can provide more information
about the phase transition. In Fig. 3 we show four typical mag-
netization profiles for ζ = 0.6 and N = 200, and the defect is
at the middle of the chain.

As shown in Fig. 3, the interface across which the magne-
tization sign changes is localized at the left end of the chain
for hL < hw, while the interface is localized at the defect. The
inset shows the interface position vs the surface field hL. At
the transition point hL = hw, the interface jumps from the left
end of the chain to the middle of the chain, where the defect
is located. This is additional evidence that the phase transition
is of first order.

FIG. 3. Magnetization profiles below and above the transition
point hw = 0.32111 . . . . The transverse field is set to be g = 0.8. The
inset shows the interface position vs the surface field.

IV. PHASE TRANSITION WITH TWO DEFECTS

If two defects exist in the Ising chain, what happens to the
phase transition? We solve the model numerically with the
method we developed previously [34].

We consider two cases with N = 200. In the first case we
set J80 = ζ1 = 0.6, J120 = ζ2 = 0.7, with one defect bond be-
tween the 80th and 81th sites and another defect bond between
the 120th and 121th sites. In the second case we swap the po-
sitions of the two defect bonds and set J80 = 0.7, J120 = 0.6.

From the plots of the energy gap vs surface field hL in
Fig. 4(a), we can see that the phase transition occurs at

FIG. 4. (a) The energy gap around the first-order phase transition
with two defects. The transverse field is set to be g = 0.8. (b) Typical
magnetization profiles above and below the wetting transition point
hw .
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approximately h = 0.321 for the two cases. This transition
point is just hw = 0.32112025 . . . for ζ = 0.6 in the one-
defect case. Therefore, we can guess that the phase transition
is determined by the defect of J = 0.6 rather than that of
J = 0.7. This conjecture is further proven by the magnetiza-
tion profiles for the cases with two defects shown in Fig. 4(b).
For surface field below the transition point hL < hw = 0.3211,
the interfaces are localized at the left end of the chain. Above
the transition point hL > hw, the interface jumps to the defect
with J = 0.6, which is located at n = 80 for the first case
and n = 120 for the second case. The phase transition is
dominated by the weaker defect because the mode localized
at the weaker bond has lower energy.

Enlightened by the phase transition with one defect in the
above section, the effects of two defects can be understood
in general. Assume the two defect bonds with J = ζ1, ζ2 are
far away from each other and also far away from the left end,
there should be three states localized at the left end and the two
defects, respectively. Their eigenvalues are given by ε(xL ),
ε(x1+), and ε(x2+), respectively, where xL = (1 − h2

L )/g

and x1+,2+ = [(1 − ζ 2
1,2 +

√
(1 − ζ 2

1,2)2 + 4g2ζ 2
1,2]/(2g) [see

Eq. (20)]. Obviously ε(x1+) and ε(x2+) are independent of hL.
The eigenvalue ε(xL ) increases with hL. The phase transition
takes place at ε(xL ) = min[ε(x1+), ε(x2+)] from which we
can get the transition point hw. Since x+ increases with ζ ,
the weaker bond with smaller J leads to a localized state
with smaller eigenvalue. Approximately for hL < hw the state
localized at the left end is the ground state and for hL > hw

the state localized at the defect with smaller eigenvalue is the
ground state. Therefore the defect with weaker bond domi-
nates the phase transition.

V. FINITE-SIZE EFFECTS IN RANDOM BOND CASES

We consider the iteration in the following form:

Ki = 1 + δKi (36)

and δKi has the rectangular distribution

P(δK ) =
{

1/w, −w/2 < δK < w/2,

0, otherwise.
(37)

Anderson’s localization theory tells us that all the wave
functions in the one-dimensional disordered system are local-
ized [36,37]. In the present model, the eigenstate of matrice
C defined in Eq. (10) with the lowest energy determines the
phase. All the eigenstate of matrice C should be localized
due to the random bonds as long as the lattice length is much
longer than the localization length. We study the distribution
with w = 0.2 as a typical case. In the numerical calculations,
we set g = 0.8,w = 0.2 and investigate the samples with
lattice size from N = 100 to N = 350. The strength of the
disorder is strong enough to cause the localization length to
be much shorter than the lattice size. It is expected that the
distribution of the disorder will not affect the qualitative prop-
erties of the phase transition as long as the disorder strength is
strong enough and the lattice sizes are large enough.

Before discussing the statistical properties of the phase
transition, we investigate the finite-size effects from some
typical samples. In Fig. 5 we show the plots of the energy

FIG. 5. (a) The energy gap for a typical sample and its length-
ened version. (b) Magnetization vs surface field for these two
samples. (c) Magnetization profiles at low and high surface fields for
these two samples. (d) Interface positions vs surface field for these
two samples.

gap, surface magnetization, and the interface position vs the
surface field for two samples, which we call S0 and S0′.
The size of sample S0 is N = 200, the size of sample S0′ is
N = 400, and the bonds Ji for 0 < i < 200 are the same for
the two cases. In other words, sample S0′ is sample S0 added
to another chain with 200 random bonds.

In Fig. 5(a) one can see that there is no gap closing for
sample S0, while there is an obvious gap closing for sam-
ple S0′. This indicates that there is no wetting transition for
sample S0, whereas there is for S0′. In Fig. 5(b) the surface
magnetization shows this point further. There is no jump in
the surface magnetization for sample S0, while there is a
jump at hL = 0.437 for sample S0′. In Fig. 5(c) we show the
magnetization profiles at two surface fields hL = 0.1, 0.5 for
samples S0 and S0′. In Fig. 5(d) the plot of interface position
vs surface field shows that the interface changes continuously
for sample S0 and discontinuously for S0′.

This is the first finite-size effect of this model: For a small
lattice, there may be no wetting transition. For a lengthened
lattice, a wetting transition appears.

As the lattice is lengthened in this way, are there other
ways to change the wetting transition? There are three ways
in addition to that discussed above.

We present three groups of samples: S1 and S1′; S2 and
S2′; and S3 and S3′. The relation between S1, S2, S3, and S1′,
S2′, S3′ is the same as that between S0 and S0′. The size of
samples S1, S2, and S3 is N = 200; the size of samples S1′,
S2′, and S3′ is N = 400; and the bonds Ji for 0 < i < 200 are
the same for these three groups. In other words, sample S1′
is sample S1 added to another chain with 200 random bonds,
and so on. In Figs. 6, 7, and 8 we compare these three groups
of samples.

The first way to change the wetting transition is that the
phase transition occurs at a new point. Samples S1 and S1′
belong to this case. The transition point is hw = 0.3341569 for
sample S1 and hw = 0.3268872 for sample S1′. The energy
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FIG. 6. (a) Energy gap vs surface field hL for samples S1, S2, and
S3. (b) The energy gap rescaled by Eq. (29) for samples S1, S2, and
S3. (c) Energy gap vs surface field hL for samples S1′, S2′, and S3′.
(b) The energy gap rescaled by Eq. (29) for samples S1′, S2′, and
S3′. The parameter κ is defined in Eq. (30).

gaps are much different also. The minimal energy gap is
�0 = 2.16 × 10−7 for sample S1 and �0 = 5.32 × 10−11 for
sample S1′. The parameter δh = 2.71 × 01−7, 6.49 × 10−11

for samples S1 and S1′m respectively.
The second way is that the phase transition point and

energy gap vary little. Samples S2 and S2′ belong to this
type. The transition point is hw = 0.4366918 for sample
S2 and hw = 0.4347999 for sample S2′. The energy gap
is �0 = 5.08 × 10−6 and �0 = 3.69 × 10−6. The parame-
ter δh = 2.00 × 01−5, 1.42 × 10−5 for samples S2 and S2′,
respectively.

FIG. 7. (a) The surface magnetization vs surface field hL for
samples S1, S2, and S3. (b) The surface magnetization rescaled by
Eq. (34) for samples S1, S2, and S3. (c) The surface magnetization
vs surface field hL for samples S1′, S2′, and S3′. (b) The surface
magnetization rescaled by Eq. (34) for samples S1′, S2′, and S3′.
The parameter κ is defined in Eq. (30).

FIG. 8. (a)–(c) The magnetization profiles for three groups of
samples below and above the transition point. (d) Interface position
vs surface field for the three groups of samples.

The last way is that the phase transition is not remarkable
for the short chain, and a remarkable phase transition appears
in the lengthened chain. Samples S3 and S3′ belong to this
case. The transition point is hw = 0.3642699 for sample S3
and hw = 0.3456786 for sample S3′. The minimal energy gap
is �0 = 2.13 × 10−3 for sample S3 and �0 = 1.06 × 10−7

for sample S3′. The parameter δh = 2.13 × 01−3, 1.06 × 10−7

for samples S3 and S3′, respectively.
We rescaled the data with scaling relation Eq. (29), where

the parameters �0 and δh are fitted from the data. The rescaled
data for samples S1, S2, and S3 are shown in Fig. 6(b). The
data collapse on the scaling relation Eq. (29) for samples
S1 and S2 but not for S3. Therefore, it can be said that the
phase transition for sample S3 is not obvious. The rescaled
data for samples S1′, S2′, and S3′ all collapse on the scaling
relation Eq. (29), which is the scaling relation of the first-order
quantum phase transition [34].

In Fig. 7 we show the surface magnetization for the three
groups of samples. More features of the phase transition can
be seen in this figure. Figure 7(a) shows samples S1, S2,
and S3. The surface magnetization has a remarkable jump
for samples S1 and S2. In contrast, the jump is not obvious
for sample S3. Moreover, we rescaled the data with scaling
relation Eq. (34), where the parameters �m1 and δh are fitted
from the data. In Fig. 7(b) we found that the data can collapse
for samples S1 and S2 but not for S3. Figure 7(c) shows the
lengthened samples S1′, S2′, and S3′. The jump in the surface
magnetization is obvious for the three samples. We rescaled
the data with scaling relation Eq. (34) similarly in Fig. 7(d)
and found that the data can collapse for all the samples S1′,
S2′, and S3′.

A physical picture of these three ways of changing as the
chain is lengthened can be seen by comparing the magneti-
zation profiles. In Fig. 8 we show the magnetization profiles
above and below the phase transition point for the three groups
of samples.

From the magnetization profile we can obtain the position
x∗ of the interface (or domain wall, where the magnetization
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is zero). If mj > 0 and mj+1 < 0, the magnetization changes
sign, we obtain x∗ by a simple interpolation

x∗ = j + mj

mj − mj+1
. (38)

In Fig. 8(a) the magnetization profiles for samples S1 and
S1′ are compared. For sample S1, at hL = 0.335, which is
above the transition point hw = 0.3341569, the interface is
localized at x∗ ≈ 180. For sample S1′, at hL = 0.327, which
is above the transition point hw = 0.3268872, the interface is
localized at x∗ ≈ 349. This infers that as the chain is length-
ened, the bonds around x∗ ≈ 349 are weaker than the bonds
around x∗ ≈ 180.

In Fig. 8(b) the interface position changes slightly. Above
the transition point, the interface position is x∗ ≈ 131 for sam-
ple S2 and x∗ ≈ 159 for sample S2′. This change should be
regarded as a finite size effect since the interface is localized
in the original first 200 sites rather than the lengthened part.
As mentioned above, the changes in the minimal energy gaps
and surface magnetization are not remarkable.

In Fig. 8(c) the interface positions above the transition
point are x∗ ≈ 110 for sample S3 and x∗ ≈ 295 sample S3′.
For sample S3 the surface magnetization does have an obvious
jump at the transition point, as shown in Fig. 7(a), while it has
an obvious jump for sample S3′, as shown in Fig. 7(c).

Figure 8(d) shows the interface position vs the surface field
for the three groups of samples. The feature of the first-order
phase transition is remarkable. At the transition point, the
interface jump from the left end of the chain to somewhere
in the middle of the chain.

We summarize the finite-size effects as follows:
(1) For a small lattice, there may not exist a “phase tran-

sition,” and the energy gap varies smoothly with the surface
field.

(2) As the lattices are lengthened, a phase transition may
appear, and the energy gap almost closes.

(3) As a lattice with a phase transition is lengthened, the
transition point may change to a new point. At the new tran-
sition point, the transition is more singular since the minimal
energy gap �0 is closer to zero, and the interface jump from
the left end to the farther position.

(4) The energy gap around the transition point satisfies the
scaling relations for the first-order phase transition.

VI. THE STATISTICAL PROPERTIES FOR THE RANDOM
BOND CASES

We study the distributions of transition point hw and the
minimum energy gap �0 for different sizes. The random bond
distribution is given by Eq. (36).

The procedure to get hw,�0 is as follows. At first, we
calculate the energy gap at hL = 0.01, 0.02, 0.03, . . . . If the
energy gap at a point is smaller than those of two neighbored
points, we take the two neighbored points as the lower and
upper bound of hL. The transition usually occurs in this range.
Between these two bounds we divide this interval into four
equal parts and get five points. Then compare the energy gaps
of the middle three points and pick out the one at which the
energy gap is minimal. Take this point as the central point
and the two neighbored points as the lower and upper bounds.

FIG. 9. (a) and (c) The energy gap and surface magnetization
for five invalid samples with δh > 10−2. (b) and (d) The energy gap
and surface magnetization for five valid samples with δh < 10−2. The
samples are labeled by their δh.

We divide this interval into four equal parts and compare the
energy gaps of the middle three points. After repeating this
procedure many times until the relative differences between
the energy gap at the cental point and those at the two neigh-
bored points are smaller 2%. In every step, the interval of hL

shrinks one half. Usually it takes 20–30 steps, so the accuracy
of hL is about 10−7–10−9. We take the last central point as the
phase transition point and get hw,�0.

Near the phase transition point, the energy gap satisfies the
scaling relation Eq. (29), from which one gets

δh = |hL − hw|√
(�/�0)2 − 1

. (39)

We calculate the width of the phase transition δh by substi-
tuting the data at a neighbored point as hL,� into the above
equation.

As mentioned above, there may be no phase transition on
certain lattices. We call these samples invalid. On the contrary,
the valid samples show obvious “sharp closing” of the energy
gap and “sharp jump” of the surface magnetization at the
transition point. The criteria for the “valid sample” is

δh < 10−2. (40)

Why the criteria is that? It is a conclusion of observing the
energy gap and the surface magnetization for some samples.
We show ten samples in Fig. 9, where five samples with
δh > 10−2 shown in Figs. 9(a) and 9(c) are invalid and five
samples with δh < 10−2 shown in Figs. 9(b) and 9(d) are valid.
The energy gap for the invalid samples does not have a sharp
cusp, while for the valid samples does. The corresponding
surface magnetization for the invalid samples does not have
a remarkable jump, while for the valid samples does.

We discard those invalid samples. Only the valid samples,
the lattices with a phase transition are taken into account.
For N = 100, 30 000 samples are calculated, and 14 478
samples are valid. For N = 150, 200, 250, 300, 350, 20 000
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FIG. 10. The distribution of the minimal gap �0. The inset shows
the average and variation of �0 for different sizes.

samples are calculated, and the number of valid samples is
13 855, 15 767, 16 503, 17 121, and 17 500, respectively.

We calculate the average of ln �0 with (ln �0)av =∑
i ln �i0/ns and the deviation of ln �0 with δ(ln �0) =∑
i[ln �i0 − (ln �0)av]2/ns. The average and variation in

ln �0 are shown in the inset in Fig. 10. Their absolute values
increase almost linearly with size.

We study the logarithmic distribution of �0 rather than
the distribution of �0 since the logarithmic of �0 can
show how singular the phase transition is. It is calculated
according to

P(ln �0) = n(x)/ns�x, (41)

where n(x) is the number of samples satisfying x < ln �i0 <

x + �x, and �i0 is the minimal energy gap for the ith valid
sample. In the numerical calculation we set �x = 0.5.

Based on the valid sample, we calculate the distribution of
the transition point hw, defined as

P(hw ) = n(hw )/ns�h, (42)

where ns is the number of valid samples, n(hw ) is the number
of samples, for which the transition surface field satisfies hw <

hiw < hw + �h, and hiw is the transition point for the ith valid
sample. In the numerical calculation we set �h = 0.01. As
shown in Fig. 11, the distribution of hw varies slightly with
the size.

We calculate the average of hw and its variation as usual.
The average is defined by h̄w = ∑

hiw/ns, and the varia-
tion of hw is defined as δhw = ∑

i(hiw − h̄w )2/ns, where
hiw is the transition point for the ith sample. For N =
100, 150, 200, 250, 300, 350, the average hw values are given
by h̄w = 0.3796, 0.3804, 0.3774, 0.3745, 0.3708, 0.3685, re-
spectively. This value decreases with size slowly. The
variations in hw are shown in the inset in Fig. 11, and δhw

seems to change little.
If one extrapolates this result to the limit of N → ∞,

the variation in hw should remains finite. This means that
the wetting transition point is sample dependent in the

FIG. 11. The distribution of the wetting transition point hw . The
inset shows the variation of hw for different sizes.

thermodynamic limit. This result is strange. We discuss its sig-
nificance in the last section. We first give an argument for this
result.

The discussion in the two-defect case tells us that the
wetting transition is determined by the weaker defect. In
the random-bond case, there should be many localized states
since Anderson’s localization theory tells us that all the wave
functions in the one-dimensional disordered system are lo-
calized [36,37]. The energies of these localized states are
not influenced by the surface field hL provided the localized
regions are far away from the left boundary. Among these
localized states, the one with lowest energy should dominate
the wetting transition. We denote this state “state II” and the
state localized at the left boundary “state I.”

We present the ε1, ε2, the energies of the ground state and
the first excited state for three samples in Fig. 12. The three
samples are labeled by their δh. In fact, these three samples

FIG. 12. The energies of the ground state and the first excited
state vs the surface field hL for three samples.
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FIG. 13. The probability distributions of the first excited state
eigenvalue ε2 at hL = 0.2 for different size lattices. The inset shows
the variations of ε2 at hL = 0.2 for different size lattices.

are the same as those in Figs. 9(b) and 9(d). In Fig. 12 one can
see that for hL < 0.3 the ground state energy ε1 increases with
hL, while the excited state energy ε2 keeps the same. In fact,
the ground state is just state I, which is localized at the left
boundary. The first excited state is state II, which is localized
in the middle of the lattice. State II is far away from the left
end, so its energy do not change as the left surface fields hL

increase.
The energy of state I, which is localized at the left end,

increases with hL. As it increases to be equal to that of
state II, which is localized in the middle of the lattice, the
wetting transition occurs. It is expected that the interface
jumps from the left boundary to the region where state II is
localized.

See the sample with δh = 0.0090 in Fig. 12. As the ener-
gies ε1, ε2 become equal, the phase transition occurs. As hL

increases further, state I becomes the excited state and state II
becomes the ground state. That is to say, ε2 does not change
with the surface field hL for hL < hw and ε1 does not for
hL > hw. So are the other samples.

The energy ε2 does not change with the surface field
hL for hL < hw. Obviously it depends on the sample,
so we also calculate its distributions for different lattice
sizes. Figure 13 shows the distributions of ε2 for N =
100, 150, 200, 250, 300, 350, where ε2 is obtained at hL =
0.2. From the distribution of hw in Fig. 11, one can see that
for almost all the samples hw > 0.2 is satisfied. One can see
that the distribution of ε2 becomes narrower and higher as the
lattice size increases. The inset shows that the deviation of ε2

decreases with the lattice size.
The interactions Ki distribute in a rectangular distribution

function 0.9 < K < 1.1. We may call the bond with K > 1
the strong bond and K < 1 the weak bond. Enlightened by
the discussion of one defect and two defect cases, we can
expect that there are states localized around the weak bonds.
The localized state with minimal energy should have many
adjacent weak bonds. In the McCoy-Wu model, the groups
with a large number of adjacent line defects are the so-called

rare regions [1]. Just the rare regions are responsible for the
Griffith-McCoy singularity. We may call the regions with
many adjacent weak bonds rare regions. As the system size
increases, the maximum of the number of the adjacent weak
bonds increases. Then the energy of state localized at the
group with most adjacent weaker bonds will converge to the
limit of infinite adjacent weakest bonds with K = 0.9. This
limit can be obtained by substituting Ki = 0.9 and g = 0.8
into Eq. (10). It is εlimit = 0.2. As shown in Fig. 13, the
distribution of ε2 shrinks to the small side. The average of
ε2 is 0.3786, 0.3724, 0.3700, 0.3668, 0.3648, 0.3633 for
N = 100, 150, 200, 250, 300, 350, respectively. The average
of ε2 decreases with the lattice size indeed although it is still
far from εlimit. The probability of a large number of adjacent
weak bonds is exponentially small. Therefore, only on the
exponentially large lattice, the average of ε2 can approach the
limit εlimit.

Consider an infinitely long lattice, the energy of state II
approaches εlimit. As the energy of state I grows with hL,
these two energies intersect at the transition point. As shown
in Fig. 12, the growing curves of ε1 are different for dif-
ferent samples due to the random bonds. Therefore, even
if state II has the same energy εlimit, the intersections with
the growing curves of ε1 are different. The energy of state
I is only related to hL and the bonds near the left boundary
since state I should be localized and the localization length is
finite. State I is localized even if the system is clean. From
Eq. (17), for a clean system, we see that the eigenvector of
state I is like ψ j ∼ x j

L, where j is the label of the site and
xL > 1. Its localization length is 1/ ln xL. From Eq. (19) we
know xL = (1 − h2

L )/g. Since the localization length should
be shorter if the random bonds are present, we can use 1/ ln xL

to estimate the localization length of state I. From Fig. 11
we can see that most probably the transition point hw < 0.4.
Letting hL = 0.4, g = 0.8 in xL = (1 − h2

L )/g, the estimated
localization length is about 20. That is to say, on average 20
bonds near the left boundary are related to state I. Therefore,
the eigenvalues of state I are fluctuating no matter how large
the lattices are. The fluctuation of the eigenvalues of state I
is determined by the fluctuation of the 20 bonds near the left
boundary.

In the thermodynamic limit N → ∞, on one hand, ε2

should approach the limit εlimit, on the other hand, ε1 are
fluctuating due to the fluctuation of the 20 bonds near the left
boundary with the same hL. Hence, the transition point hw,
where ε1 = ε2, should be fluctuating from sample to sample
even in the thermodynamic limit. The distribution width of hw

should be finite in the thermodynamic limit.
Figure 10 is easily understood now. As shown in Fig. 10,

the distribution of ln �0 becomes wider with size. As dis-
cussed in the one-defect case, the wetting transition is jumping
the interface from the left boundary to the defect. The longer
the lattice is, the region with more adjacent weak bonds may
exist. Such a region can be anywhere on the lattice, so the
distance from the left boundary to this region can be arbitrary.
Hence, the minimal energy gap is distributed over a wide
range, and the distribution range becomes increasingly wider
as the lattice size increases. The minimal energy gap decreases
exponentially with the distance from the left boundary to the
defect.
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VII. SUMMARY

As shown in Fig. 11, the variation of the transition point
hw changes little as the lattice size increases from N = 100 to
N = 350. For the usual phase transition in disordered systems,
the phase transition temperatures converge to a limit as the
system size goes to infinity.

One important reason is that the usual phase transition is
related to the whole system. As first argued by Brout [38], we
may divide the system into n large subsystems (much larger
than the correlation length). If we assume that the coupling
between neighboring subsystems is negligible, then the value
of any density of an extensive quantity over the whole sample
is equal to the average of the (independent) values of this
quantity over the subsystems. The pseudo-phase-transition
temperature fluctuates from sample to sample due to finite-
size effects. However, as the system size goes to infinity,
the pseudo-phase-transition temperatures should converge to
a limit TC (∞) [39].

In contrast, the present wetting transition is only related to
two local parts, the left end and the group of the most adjacent
defects, rather than the whole system. Moreover, the present
model cannot be divided into two similar subsystems. If the
left and right ends are separated, there is no wetting transition.
In the McCoy-Wu model, the groups with a large number of
adjacent line defects are the so-called rare regions [1]. Near
the critical point of the McCoy-Wu model, the rare regions
dominate the phase transition [6,7]. In this wetting transition,
the situation is more extreme. Only the largest rare region
matters.

Moreover, near the left end, the bonds are random, and the
effect of the surface field on the left end should be influenced
by the bonds near the left end, so the wetting transition point
fluctuates with these bonds. Even when the lattice size ap-
proaches infinity, this effect does not diminish. Therefore, the
wetting transition point should be dependent on the sample in
the thermodynamic limit.
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APPENDIX A: THE SURFACE MAGNETIZATION

We follow Ref. [34] to prove Eq. (16). The surface mag-
netization m1 for the ground state is obtained from Eq. (26)
with σ

(1)
0 σ

(1)
1 = B0A1, where Ai, Bi are defined in Eqs. (22)

and (23) in [34]. Then σ1 is given by

m1 = 1

s0

(
ψ1,0φ1,1 −

N+1∑
k=2

ψk,0φk,1

)
. (A1)

From Eqs. (10) and (12) we get

4h2
Lψk,0 + 4g|hL|ψk,1 = ε2

k ψk,0. (A2)

Then we have

ψk,1 = 1

4g|hL|
(
ε2

k − 4h2
L

)
ψk,0. (A3)

From Eq. (11) we get

φk,1 = 2

εk
(|hL|ψk,0 − gψk,1). (A4)

Substituting Eq. (A3) into the above equation yields

φk,1 = − εk

2|hL|ψk,0. (A5)

Substituting it into Eq. (A1) yields Eq. (16)

APPENDIX B: THE EQUALITY OF δ1 AND δ2

AT THE TRANSITION POINT

We prove Eq. (26). At the transition point it has x = xL =
x+, so we let x = xL = x+ in Eqs. (23) and (24). Substituting
Eqs. (19) and (20) into Eqs. (23) and (24) we get

δ1

δ2
= gx2

+(x+ − x−1
+ )(x+ − x−)

(x+ − g)(1 − ζ 2)(x2+ + ζ 2)
. (B1)

From Eq. (20) we get

x+x− = −ζ 2, x+ + x− = 1 − ζ 2

g
. (B2)

Then we have

x2
+ + ζ 2 = x2

+ − x+x− = x+(x+ − x−) (B3)

and

1 − ζ 2 = g(x+ − ζ 2/x+). (B4)

Substituting the above equations into Eq. (B1) yields

δ1

δ2
= x2

+ − 1

(x2+ − gx+ − ζ 2 + gζ 2/x+)
. (B5)

From Eq. (B2) we get

−ζ 2 = g(x+ + x−) − 1, x− = −ζ 2/x+. (B6)

Using the above equations we get that at the transition point

δ1

δ2
= x2

+ − 1

(x2+ − 1 + gx− + gζ 2/x+)
= 1. (B7)
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