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The emergent concept of the magnetic charge quasiparticle provides a new realm to study the evolution
of magnetic properties in two-dimensional artificially frustrated magnets. We report on the exploration of
magnetic phases due to various magnetic charge correlation using the complementary numerical techniques
of micromagnetic and distorted-wave Born approximation simulations in artificial permalloy honeycomb lattice.
The honeycomb element length varies between 10 nm and 100 nm, while the width and thickness are kept within
the single domain limit. In addition to the charge ordered loop state, we observe disordered charge arrangement,
characterized by the random distribution of ±Q charges, in single domain size honeycomb lattice. As the length
of the honeycomb element increases, low multiplicity magnetic charges tend to form contiguous bands in thinner
lattice. Thin honeycomb lattice with 100 nm element length exhibits a perfect spin ice pattern, which remains
unaffected by the modest increase in the width of element size. We simulate scattering profiles under the pretext
of distorted-wave Born approximation formalism for the micromagnetic phases. The results are expected to
provide useful guidance in the experimental investigation of magnetic phases in an artificial honeycomb magnet.
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I. INTRODUCTION

The honeycomb lattice structure has generated significant
research interest in recent times—primarily motivated by
the unusual electronic and magnetic properties, as found in
graphene and nanostructured magnetic honeycomb lattice,
respectively [1–3]. Artificial magnetic honeycomb lattice is
a prominent research venue to explore novel magnetism in
reduced dimensionality. Originally conceived to explore the
magnetic analog of ice rule and associated Dirac’s effective
monopoles using standard experimental techniques [4],
such as magnetic force microscopy and the x-ray dichroism
method, it has become a subject of extensive investigation
to find new properties of geometrically frustrated magnets
[2]. In recent years, artificially created magnetic honeycomb
lattice is demonstrated to exhibit a broad and tunable range
of novel magnetic phenomena that are difficult to achieve
in a naturally occurring magnet, such as the entropy-driven
magnetic charge-ordered state due to the spin chirality
[1,5]. At low enough temperature, the magnetic correlation
develops into a long range ordered spin solid state density,
which is manifested by the periodic arrangement of the vortex
loops of opposite chirality across the lattice [6,7]. One of the
underlying assumptions in the theoretical analysis of magnetic
properties in two-dimensional honeycomb lattice is based on
the proposition that a magnetic moment can be considered
as a pair of magnetic charges of opposite polarities, as if
it is a “dumbbell,” that interact via the magnetic Coulomb
interaction [4,8,9]. Consequently, honeycomb vertices are
occupied by two types of magnetic charges: ±3 and ±1 units
that are associated with the peculiar moment configurations
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where the magnetic moment, aligned along the length of the
element due to the shape anisotropy, either points to or away
from the vertex at the same time or two of them point to (or
away) from the vertex and one points away (or to) from the
vertex, respectively [10]. These moment arrangements are
also called “all in or all out” and “two in and one out” (or vice
versa) spin configurations.

Magnetic charges are represented by the Pauli matrices
quantum operator [5]. The quantum mechanical properties
of magnetic charge, also termed as quasi particle [1], en-
able the exploration of dynamic magnetic states in artificial
Kagome ice [11–13]. One of such states is the quantum disor-
dered magnetic ground state due to the competing energetics
between the nearest neighbor and the next nearest neigh-
bor exchange interactions (J1 and J2, respectively) [14,15].
However, the thermal tunability of lattice magnetization is
necessary to the realization of such a novel state, as it
facilitates magnetic charge dynamics to incite a massively
degenerate ground state at T → 0 K [16]. Experimental ev-
idence to this proposition was recently obtained in a magnetic
honeycomb lattice with thermally tunable characteristic, made
of single domain size connecting elements [17]. Besides the
emergent magnetic properties, magnetic charge quasiparti-
cles are also found to develop the magnetic analog of a
quintessential electronic state of the Wigner crystal in the
simultaneous applications of electric current and magnetic
field [18]. Magnetic charge’s versatility in the manifestation
of various ground state properties under different thermal,
electrical, and magnetic field tuning conditions have spurred a
plethora of new research. In this article, we report a systematic
study of the evolution of magnetic charge correlation as a
function of the geometrical tuning parameter, e.g., variation
in element size in artificial permalloy honeycomb lattice.
The honeycomb element length varies between 10 nm and
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FIG. 1. Micromagnetic simulation of permalloy honeycomb lattice, made of single domain element size. Top panel—magnetic hysteresis
loop generated by MM simulation for various element size honeycombs. Bottom panel—magnetic charge configuration after magnetic
transition near zero magnetic field (marked by asterisk). (a) Element size of 15 nm × 5 nm × 10 nm. The system tends to develop the
spin solid loop state in thin honeycomb lattice. Inset shows the color profile of magnetization direction. (b) Element size of 15 nm × 10 nm
× 10 nm. As the lattice elements become broader, disordered configuration of magnetic charges arise. (c) Element sizes of 15 nm × 10 nm ×
5 nm. Spin ice state is prominent in this case.

100 nm, while the width and the thickness vary between the
two limits of 5 nm and 10 nm. Since width and thickness
dimensions are always smaller than the typical domain size
in permalloy, ∼18 nm [19], the honeycomb elements in this
study are either single domain or constricted single domain in
at least two directions. Micromagnetic simulations reveal that
5 nm thick honeycomb with 100 nm long elements develops
a perfect spin ice state. As the element size decreases, the
system exhibits a variety of interesting charge configurations
that include the charge ordered loop state, extending to the
spin solid state, disordered phase, and a stripelike contiguous
band of ±Q charges in a 50 nm element size lattice. The
micromagnetic simulation study is complemented by the de-
tailed modeling of scattering profiles using the distorted-wave
Born approximation (DWBA) formalism for the theoretically
generated magnetic phases. The DWBA profiles can act as a
guide in the experimental investigation of theoretical phases
using macroscopic probes, such as neutron reflectometry.

There are several experimental methods to determine
the nature of magnetic charge correlations or infer about
the phase transition process in two-dimensional artificial
spin ice. Some of the notable techniques include magnetic
force microscopy, x-ray dichroism method, nonlinear sus-
ceptibility analysis, photoemission electron microscopy, and
polarized neutron reflectometry (PNR) [2,6,7,12,20]. While
some of these techniques are suitable for elucidating the local

magnetic correlation, statistical probes, such as the PNR
method, are by design the bulk experimental procedure to
deduce both the short range and the long range nature of cor-
relations [21]. For instance, the spin solid state manifests the
long range ordered arrangement of magnetic charges, There-
fore, it is desirable to probe such a characteristic in a sample
consisting of the macroscopic ensemble of honeycomb lattice
units using a scattering method, such as the PNR measure-
ment technique. However, unlike magnetic force microscopy,
neutron reflectometry measurement does not yield direct in-
formation regarding the magnetic correlation in real space.
It is typically inferred from the modeling of the off-specular
reflectometry profile using the established numerical approach
of the distorted-wave Born approximation (DWBA) formal-
ism [6,22]. Numerical modeling using the DWBA method is
nontrivial. In this article, we present DWBA simulations of
various charge correlated phases, as predicted by theoretical
calculations [1] and micromagnetic simulations, in artificial
magnetic (permalloy, Ni0.8Fe0.2) honeycomb lattice systems
of varying element sizes. Here is the outline of the article:
first, we describe the micromagnetic (MM) simulations in low
temperature limit T → 0 K regarding the magnetic charge
correlation on honeycomb vertices of varying element sizes.
Second, DWBA simulated reflectometry profiles for vari-
ous charge correlations are depicted using the contour maps
in reciprocal space. For this purpose, some of the relevant

134429-2



VARIOUS FACETS OF MAGNETIC CHARGE … PHYSICAL REVIEW B 104, 134429 (2021)

FIG. 2. MM simulation of permalloy honeycomb lattice with 50 nm element length. Top panel—magnetic hysteresis loop generated.
Bottom panel—magnetic charge configuration after magnetic transition (marked by asterisk). (a) Element size of 50 nm × 5 nm × 10 nm. The
system tends to develop the spin solid loop state as T → 0 K. (b) Element size of 50 nm × 5 nm × 5 nm. As the thickness of the honeycomb
lattice decreases, more loops are formed and tend to be close to each other and the system tends to develop a complete spin solid loop state.
(c) Element sizes of 50 nm × 10 nm × 10 nm. As the lattice becomes wider, the system tends to develop spin ice state as T → 0 K. (d) Element
sizes of 50 nm × 10 nm × 5 nm. Contiguous bands of ±Q magnetic charges, reminiscent of stripe-type order, develop in thin honeycomb
lattice with wider element.

parameters from the recently reported experimental results are
utilized [6,10,17]. Finally, we summarize the results with a
brief outlook for the future research.

II. MICROMAGNETIC SIMULATIONS

Micromagnetic simulations are carried out using the Object
Oriented MicroMagnetic Framework (OOMMF) [23]. Mag-

FIG. 3. MM simulation of 100 nm element length. (a) Element size of 100 nm × 5 nm × 10 nm. The system tends to develop the spin
solid loop state as T → 0 K. (b) Element size of 100 nm × 5 nm × 5 nm. Magnetic phase near zero field is primarily dominated by the spin
ice-type magnetic charge configuration. (c) Element size of 100 nm × 10 nm × 10 nm. As the lattice becomes wider, fewer loops are founded.
(d) Element size of 100 nm × 10 nm × 5 nm. Near zero field, the magnetic phase in thin honeycomb lattice with wider elements is also
primarily dominated by the spin ice-type magnetic charge configuration.

134429-3



G. YUMNAM, J. GUO, AND D. K. SINGH PHYSICAL REVIEW B 104, 134429 (2021)

FIG. 4. DWBA simulation of permalloy honeycomb lattice of 12 nm element length. (a)–(d) Top panel—magnetic charge configurations
of disordered, spin ice, magnetic charge ordered, and spin solid loop states. (e),(f),(m),(n) DWBA simulation of disordered magnetic charge
configuration [shown in (a)] in various element size lattices of 12 nm × 5 nm × 5 nm, 12 nm × 5 nm × 10 nm, 12 nm × 10 nm × 5 nm,
and 12 nm × 10 nm × 10 nm, respectively. (g),(h),(o),(p) DWBA simulation of spin ice configuration [shown in (b)] in various element size
lattices of 12 nm × 5 nm × 5 nm, 12 nm × 5 nm × 10 nm, 12 nm × 10 nm × 5 nm, and 12 nm × 10 nm × 10 nm, respectively. (i),(j),(q),(r)
DWBA simulation of magnetic charge ordered state [shown in (c)] in various element size lattices of 12 nm × 5 nm × 5 nm, 12 nm × 5 nm ×
10 nm, 12 nm × 10 nm × 5 nm, and 12 nm × 10 nm × 10 nm, respectively. (k),(l),(s),(t) DWBA simulation of spin solid state [shown in (d)]
in various element size lattices of 12 nm × 5 nm × 5 nm, 12 nm × 5 nm × 10 nm, 12 nm × 10 nm × 5 nm, and 12 nm × 10 nm × 10 nm,
respectively

netic field dependent magnetization evolution, together with
the flexible geometry specification, allows us to study the
response of the magnetization as a function of magnetic field,
applied in plane to the honeycomb thin film. The simulated
geometry is made of a honeycomb lattice with connected
topography where the permalloy (Ni0.8Fe0.2) element length
varies between 10 nm and 100 nm. For MM simulations, hon-
eycomb lattices are discretized into grids with the individual
mesh size of 2 × 2 × 1.25 nm3 (X , Y , and Z) and 2 × 2 ×
2.5 nm3 for thicknesses 5 nm and 10 nm, respectively. Nanos-
tructured magnetic materials were previously simulated with
similar grid and mesh sizes [24] The simulation utilizes the
Landau-Lifshitz-Gilbert equation of magnetization relaxation
in a damped medium. It is given by [25–27]

dm
dt

= −γ m × he f f + αm × dm
dt

, (1)

where γ is the gyromagnetic ratio and α is the damping con-
stant. The effective field is given by he f f (T = 0) = −δH/δm.
The Hamiltonian, H, of the system consists of four terms:
exchange energy, uniaxial anisotropic energy, magnetostatic
energy, and the Zeeman energy. For MM simulations, we
have used the typical values for permalloy material, e.g.,
exchange stiffness A = 1.0 × 10−11 J/m, saturation magne-
tization Ms = 1.0 × 106 A/m, uniaxial anisotropy strength
K1 = −5.0 × 103 J/m3, and damping constant α = 0.2. Neg-

ative value of K1 represents the diagonal directions 〈111〉
in a cubic structure that are at somewhat similar angles as
the direction of honeycomb elements with respect to the
rectangular coordinate system. During the simulation, the
magnetic field is applied along the Y direction, and is incre-
mented by varying step sizes in order to capture the transition
states.

The simulated hysteresis curves as a function of magnetic
field and associated magnetic profiles for various element
sizes are shown in Figs. 1–3. Qualitative differences between
the magnetic hysteresis curves for various element size lattices
are clearly noticeable. A multitude of magnetic phases tend to
emerge near the zero field as the element size changes. The
plot of M/Ms vs h, Ms and h being saturation magnetization
and magnetic field, respectively, depicts a sharp transition near
the zero field in the single domain size element case where the
geometrical parameters are smaller than the typical domain
size in permalloy, ∼18 nm [19]. The simulated magnetization
profile in this state is characterized by the vortex configura-
tion, which is the key element of the spin solid state. In this
case, the system exhibits a tendency to attend the spin solid
loop state or magnetic charge ordered state or a mixture of
both. At moderate thickness and width, t and w = 10 nm, the
density of the magnetic vortex loop decreases. Basically, the
magnetic charge profile manifests a disordered configuration.
The simulated pattern of the disordered state, consisting of
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FIG. 5. DWBA simulation of permalloy honeycomb lattice of 50 nm element length. (a)–(e) Top panel—magnetic charge configurations of
disordered, spin ice, magnetic charge ordered, spin solid, and low multiplicity magnetic charge stripe states. (f),(g),(p),(q) DWBA simulation
of disordered magnetic charge configuration [shown in (a)] in various element size lattices of 50 nm × 5 nm × 5 nm, 50 nm × 5 nm × 10 nm,
50 nm × 10 nm × 5 nm, and 50 nm × 10 nm × 10 nm, respectively. (h),(i),(r),(s) Spin ice configuration [shown in (b)] in various element size
lattices of 50 nm × 5 nm × 5 nm, 50 nm × 5 nm × 10 nm, 50 nm × 10 nm × 5 nm, and 50 nm × 10 nm × 10 nm, respectively. (j),(k),(t),(u)
Charge ordered configuration [shown in (c)] in 50 nm × 5 nm × 5 nm, 50 nm × 5 nm × 10 nm, 50 nm × 10 nm × 5 nm, and 50 nm × 10 nm
× 10 nm, respectively. (l),(m),(v),(w) Spin solid state [shown in (d)] in various element size lattices of 50 nm × 5 nm × 5 nm, 50 nm × 5 nm
× 10 nm, 50 nm × 10 nm × 5 nm, and 50 nm × 10 nm × 10 nm, respectively. (n),(o),(x),(y) Stripe state [shown in (e)] in various element
size lattices of 50 nm × 5 nm × 5 nm, 50 nm × 5 nm × 10 nm, 50 nm × 10 nm × 5 nm, and 50 nm × 10 nm × 10 nm, respectively.

only ±Q charges, differs from a recent experimental report
where both ±Q and ±3Q charges were found to randomly
occupy the honeycomb vertices [17]. The experimental ob-
servation was explained in terms of the competing energetics
between the nearest neighbor and the next nearest neigh-
bor exchange interactions. Micromagnetic simulations, on the
other hand, do not take into account the next nearest neighbor
exchange interaction. Perhaps, the inclusion of next nearest
exchange interaction is more appropriate in this case, as the
interelemental dipolar interaction energy is much smaller,
∼15 K. However, the nearest neighbor exchange term is still
the most dominant term in the Hamiltonian.

The development of the charge ordered or loop state also
seems to occur in the honeycomb lattice with element size
of 50 nm × 5 nm × 10 nm; see Fig. 2. The magnetic vor-
tex loops become prevalent as the lattice becomes thinner,
t = 5 nm, tending to develop the spin solid state. Increasing
the width and thickness of the honeycomb element seems to
drive the vortex loops to the edges of the lattice. An inter-
esting magnetic phase arises in the honeycomb lattice with
an element size of 50 nm × 10 nm × 5 nm. MM simula-
tions show that the contiguous bands of ±Q charges develop.
Clearly, this is not a disordered state. Rather, a peculiar type
of low multiplicity charge ordering takes place. An entirely
different scenario emerges in thin (5 nm) honeycomb lattice
with long element, e.g., 100 nm × 10 nm or100 nm × 5 nm.
Micromagnetic simulation suggests that the system exhibits a
well-ordered pattern of ±Q magnetic charges. As the lattice
becomes thicker, the charge ordered vortex loops are formed

across the plaquette. Perhaps, the simulation results can be
different for a different set of exchange stiffness and uniaxial
anisotropy strength parameters. However, for the same values
of A and K1, it is inferred that the ratio of the width and
the thickness of the honeycomb element play crucial roles in
magnetic charge correlation on honeycomb vertices.

Unlike the single domain element size lattice where the
honeycomb element behaves as a single magnetic unit, rel-
atively larger element length (50 nm or 100 nm) possibly
sets the stage for the dominance of Bloch wall dynamics. So,
even though the interelemental dipolar interaction energy is
expected to be comparable in a honeycomb lattice of fixed el-
ement length, say 50 nm, the remnant magnetization states are
drastically different for different w/t ratio. The direct experi-
mental observation of the stripe bands or the disordered state
of magnetic charges in a honeycomb lattice with constricted
single domain elements can be challenging. It is very difficult
to resolve 5–10 nm structure using the MFM technique. A
scattering method, such as polarized neutron reflectometry
(PNR) or soft x-ray scattering, can be quite suitable for the
experimental investigation of micromagnetic phases in these
systems. In the case of the PNR method, analysis of the off-
specular data using the distorted-wave Born approximation
formalism can reveal the underlying magnetic charge config-
uration. In the following section, we show pertinent DWBA
simulations of various magnetic charge states in an artificial
magnetic honeycomb lattice. The simulated results can be
compared with experimental observations to deduce magnetic
charge arrangement in a magnetic honeycomb lattice.
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FIG. 6. DWBA simulation of permalloy honeycomb lattice of 100 nm element length. (a)–(e) Top panel—magnetic charge configurations
of disordered, spin ice, magnetic charge ordered, spin solid, and low multiplicity magnetic charge stripe states. (f),(g),(p),(q) DWBA simulation
of disordered magnetic charge configuration [shown in (a)] in various element size lattices of 100 nm × 5 nm × 5 nm, 100 nm × 5 nm ×
10 nm, 100 nm × 10 nm × 5 nm, and 100 nm × 10 nm × 10 nm, respectively. (h),(i),(r),(s) Spin ice configuration [shown in (b)] in various
element size lattices of 100 nm × 5 nm × 5 nm, 100 nm × 5 nm × 10 nm, 100 nm × 10 nm × 5 nm, and 100 nm × 10 nm × 10 nm,
respectively. (j),(k),(t),(u) Charge ordered configuration [shown in (c)] in 100 nm × 5 nm × 5 nm, 100 nm × 5 nm × 10 nm, 100 nm × 10 nm
× 5 nm, and 100 nm × 10 nm × 10 nm, respectively. (l),(m),(v),(w) Spin solid state [shown in (d)] in various element size lattices of 100 nm
× 5 nm × 5 nm, 100 nm × 5 nm × 10 nm, 100 nm × 10 nm × 5 nm, and 100 nm × 10 nm × 10 nm, respectively. (n),(o),(x),(y) Stripe state
[shown in (e)] in various element size lattices of 100 nm × 5 nm × 5 nm, 100 nm × 5 nm × 10 nm, 100 nm × 10 nm × 5 nm, and 100 nm ×
10 nm × 10 nm, respectively.

III. DISTORTED-WAVE BORN APPROXIMATION
SIMULATIONS

The distorted-wave Born approximation method relies on
the discretization of experimental geometry into the scatter-
ing matrix. Basically, we define the honeycomb sample as a
multilayer specimen with two layers (l) of magnetic film and
silicon substrate. The scattering matrix elements for such a
system can be described by

〈ψi|δv|ψ f 〉 =
∑

l

∑
±i

∑
± f

〈ψ±
il |δv|ψ±

f l〉 ,

where δv is the first order perturbation expansion term of
scattering length density [v(r)] and ψi, ψ f denotes the in-
cident and final wave functions, respectively. The forward
or backward traveling wave function in real space is given
by ψ+ and ψ−, respectively. While the bottom layer con-
sists of nanostructured silicon with a honeycomb pattern,
the top layer is made of permalloy honeycomb lattice. We
introduce a layout of the honeycomb pattern of permal-
loy hexagons with cylinders cut out from the center with
a lattice spacing of a = 31 nm within the permalloy layer.
The form factor for the cylindrical unit is defined as F =
2πR2t sinc( qzt

2 ) exp( iqzt
2 ) J1(q||R)

q||R
, where q|| ≡

√
q2

x + q2
y and J1

is a Bessel function of the first kind. The other parameters
are radius R and height t that depend on the size of the
honeycomb element. The magnetic phases, as inferred from

the micromagnetic simulations, were constructed by using the
rectangular elements with fixed magnetization directed along
its length. The form factor of the rectangular element is de-
fined by F = lwt sinc( qxl

2 )sinc( qyw

2 )sinc( qzt
2 ) exp( iqzt

2 ), where
l , w, and t denote length, width, and height, respectively.
The magnetization elements in the hexagonal lattice develop
long-range correlations via the intercluster interference. Cor-
respondingly, the scattering matrix element can be written as

〈ψi|δv|ψ f 〉 =
∑

j

exp (iq||R j||)
∫

d2r|| exp (iq||r||)

×
∫

dz φ∗
i (z)F (r − R j||; T j )φ f (z),

where F (r − Ri j ; T j ) is the form factor for the jth element,
such that vp(r) = ∑

j F (r − R j||; T j ). The elastic scattering

cross section is given by dσ
d	

= | 〈ψi|δv|ψ f 〉 |2. To account for
the finite-size effect, we have used a 2D lattice interference
function with a large isotropic 2D-Cauchy decay function
with the lateral structural correlation lengths of λx,y = 1, 5,
and 10 μm for the case of l = 12, 50, and 100 nm, re-
spectively. The position correlation is given as ρSG(r) =∑

m,n δ(r − ma − nb) − δ(r), with lattice basis (a,b). We
have also introduced the effects of natural disorder in the sys-
tem by applying a small Debye-Waller factor corresponding to
a position variance of 〈x〉2 = 1 nm2. The interference function
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FIG. 7. MM simulation of a representative permalloy honeycomb lattice with element size of 50 nm × 10 nm × 10 nm. Top panel—
magnetic hysteresis loop generated for different values of K1. Bottom panel—magnetic charge configuration after magnetic transition (marked
by asterisk). (a) K1 = −5 × 103 J/m3. (b) K1 = −6 × 103 J/m3. (c) K1 = −7 × 103 J/m3. Varying the anisotropy constant K1 does not seem
to affect the overall charge configuration.

can be written as

S(q) = ρS

∑
qi∈�∗

2πλxλy(
1 + q2

xλ
2
x + q2

yλ
2
y

)3/2 .

The simulated off-specular reflectivity profile is generated
by using the DWBA modeling, implemented in the BornAgain
[28] software [6]. In Figs. 4–6, we show the simulated plots
of off-specular reflectivity for various magnetic charge states
of spin ice, magnetic charge ordered state, spin solid loop
state, disordered state, and the stripe phase in permalloy hon-
eycomb lattice. The spin solid state is modeled by arranging
the vortex loops of opposite chirality in an alternating order.
In all plots, the y axis represents the out-of-plane scattering
vector [Qz = 2π

λ
(sin αi + sin α f )], whereas the difference be-

tween the z components of the incident and the outgoing wave
vectors [pi − p f = 2π

λ
(sin αi − sin α f )] is drawn along the x

axis. Thus vertical and horizontal directions correspond to the
out-of-plane and in-plane correlations, respectively [22]. The
specular reflectivity lies along the x = 0 line.

As shown in the lower panel of Fig. 4, significant off-
specular scattering develops due to the spin-spin correlation
in honeycomb lattice of 12 nm element length. The simulated
patterns exhibit broad but distinct bands of diffuse scattering
along the x axis. In the theoretically predicted spin solid state,
the off-specular diffuse scattering is prevalent from Qz = 0.06
to 1 Å−1. Similar behavior was reported in the PNR mea-
surements on artificial permalloy honeycomb lattice of similar
ultrasmall element size (∼12 nm in length) [6]. Unlike the

spin solid or the magnetic charge ordered states, the off-
specular reflection is significantly broader in the case of the
disordered phase, consisting of both ±Q and ±3Q magnetic
charges. Additionally, the diffuse scattering intensity around
the specular line tends to develop the localized pattern along
the Z axis with the increasing thickness of the lattice, in-
dicating the onset of finite size correlation. The simulation
also reveals the constricted nature of diffuse scattering in both
the magnetic charge ordered and the spin solid states in the
thicker lattice with 10 nm element length, compared to the
thinner lattice. The 10 nm thick lattice with wider elements,
w = 10 nm, exhibits Qz dependence of diffuse scattering.

DWBA simulation results of 50 nm element size honey-
comb lattice, along with the magnetic charge configurations,
are shown in Fig. 5. Unlike in the case of 10 nm element
size honeycomb, the diffuse scattering tends to shrink along
the Qz direction in this case. Also, the qualitative difference
between the reflectometry profiles for the spin ice and the spin
solid phases becomes weaker as the lattice becomes thinner
(5 nm thickness). In 10 nm thick lattice, there is an observ-
able distinction between the three magnetic phases of spin
ice, charge ordered state, and the spin solid state. However,
once again, the disordered phase manifests stronger diffuse
scattering, compared to the theoretically predicted states. Mi-
cromagnetic simulations revealed that a 50 nm element size
honeycomb lattice tends to develop contiguous bands of ±Q
magnetic charges, resembling a stripelike pattern, in thinner
lattice. Simulated reflectometry profiles for this state for dif-
ferent lattice thicknesses are shown in Figs. 5(e) and 5(i).
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FIG. 8. MM simulation of a representative permalloy honeycomb lattice with element size of 50 nm × 10 nm × 10 nm. Top panel—
magnetic hysteresis loop generated for different values of α. Bottom panel—magnetic charge configuration after magnetic transition (marked
by asterisk). (a) α = 0.2. (b) α = 0.1. (c) α = 0.05. Varying the damping constant α does not seem to affect the overall charge configuration.

In this case, we observe the patches of distinct diffuse
scattering along the x axis, indicating q-dependent in-plane
correlation. As the honeycomb element becomes wider, w =
10 nm, the diffuse scattering assumes a more conical shape.
Finally, we show the DWBA simulated plots of 100 nm el-
ement length honeycomb lattice in Fig. 6. The width and
thickness of the honeycomb element are kept in the single do-
main limit. Therefore, a honeycomb element is multidomain
along the length, but exhibits the single domain characteris-
tic along width and thickness directions. We observe strong
qualitative difference between the simulated profiles for thin
(5 nm) and thick (10 nm) lattices. However, the distinction
between the theoretically predicted phases of spin ice and
spin solid or the disordered state is apparently very weak
for a given thickness of the lattice. Also, numerical results
do not seem to be much affected by a variation in width of
the honeycomb element (from 5 nm to 10 nm). Perhaps, the
simulated reflectometry profiles can exhibit distinct patterns
for larger thicknesses or broader elements of the lattice. We
have not explored the multidomain structure of honeycomb
elements in all three directions. In the latter case, domain wall
motion along different directions makes the micromagnetic
simulation analysis more cumbersome.

IV. DISCUSSION

Artificial magnetic honeycomb lattice is known to exhibit
a plethora of theoretically predicted emergent phases as func-
tions of temperature and magnetic field [1]. In this article, we
have presented numerical simulation results on a honeycomb

lattice made of permalloy (Ni0.81Fe0.19) elements with varying
geometrical sizes. Large shape anisotropy in permalloy makes
it feasible to create two-dimensional geometrically frustrated
lattice structures that are the subject of intense experimental
investigations presently. Additionally, the uniaxial anisotropy,
K1 term, ensures that the magnetic moment is aligned along
the length of the connecting element. Micromagnetic sim-
ulations on honeycomb lattice of relatively smaller element
sizes reveal additional magnetic phases of disordered charge
configuration and contiguous bands of ±Q charges (termed
as stripe-type phase) in the remnant state. While the disor-
dered state consists of a random distribution of ±Q and ±3Q
charges, the stripe phase is characterized by the coexisting
bands of ordered patterns of +Q and −Q charges. Experi-
mental confirmation to a disordered ground state was recently
reported in permalloy honeycomb lattice of single domain size
element [17]. A disordered ground state in honeycomb lattice
is theoretically argued to arise at low temperature where the
next nearest neighbor exchange interaction, J2, can play an
important role [14]. Despite the absence of the J2 term in the
Hamiltonian in the OOMMF platform, our MM simulation
predicts the development of a disordered ground state in hon-
eycomb lattice. It suggests that the nearest exchange term, J1,
is the most dominant term. Magnetic charges manifest highly
dynamic behavior to the lowest measurement temperature in
the disordered phase [16]. Experimental observation of the
stripe-type phase of low multiplicity magnetic charges can be
very exciting.

The occurrence of magnetic phases in honeycomb lattice
is determined by the energetic interplay of four energy terms:
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FIG. 9. MM simulation of a representative permalloy honeycomb lattice with element size of 50 nm × 10 nm × 10 nm for lower values
of K1. Top panel—magnetic hysteresis loop generated for different values of K1. Bottom panel—magnetic charge configuration after magnetic
transition (marked by asterisk). (a) K1 = −1 × 103 J/m3. (b) K1 = −2 × 103 J/m3. (c) K1 = −3 × 103 J/m3. Varying the anisotropy constant
K1 to lower values does not seem to affect the overall charge configuration.

exchange interaction, demagnetization energy, magnetostatic
(dipolar) energy, and Zeeman energy. The emergence of the
spin ice state, as depicted in the 100 nm element size lat-
tice, is dominated by the dipolar interaction. Large element
size is accompanied by large magnetic moment, which makes
the dipolar interaction a significant term in the Hamiltonian.
Spin solid order and the stripe phase, on the other hand,
are dominated by the exchange interaction, as manifested
by the ultrasmall (15 nm length) and the small (50 nm
length) element size lattices, respectively, in MM simulations.
Additionally, smaller element size has relatively smaller de-
magnetization factor, which facilitates the magnetic transition
process near zero field with negligible Zeeman energy. The
energetics involving dipolar and exchange energies depend
on the size of the honeycomb lattice elements. Thus micro-
magnetic simulation results provide a comparative overview
of magnetic phase development in the artificial permalloy
honeycomb lattice system.

Experimental investigation of magnetic states in artificial
honeycomb lattice, made of single domain size magnetic el-
ements, is a challenging task. Unlike the case of the large
element size magnetic honeycomb where the magnetic force
microscopy (MFM) has proved to be an effective probe, the di-
rect imaging of magnetic charges in such a small geometry is
not feasible. The spatial resolution (∼50 nm) of MFM is larger
than the geometrical dimension of an individual element in the
single domain limit. The scattering method, such as PNR, pro-
vides an appropriate platform to the experimental quest. The
neutron reflectometry method, as available on MagRef instru-
ment on BL-4A beam line at the Spallation Neutron Source
at the Oak Ridge National Laboratory, is a versatile probe to

study magnetic charge correlation in artificial magnetic lattice
of single domain size elements. While the specular reflection
provides information about the underlying magnetism and the
magnetic layer thickness, the off-specular data can be used
to infer the nature of planar correlation of magnetic charges
in the lattice. However, modeling of the off-specular data is
not trivial. The DWBA method is a commonly used numerical
technique to extract the intended information. The simulation
results, presented in this article, are expected to provide a
useful guide in this pursuit. Further theoretical research on un-
derstanding the development of a stripe charge ordered phase
in artificial magnetic honeycomb lattice is highly desirable.
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APPENDIX

We have performed additional micromagnetic simulations
to test the validity of the results for small variation in intrinsic
parameters, e.g., the uniaxial anisotropy constant K1 and the
damping constant α. As shown in Figs. 7 and 8, modest
variation up to 20% or 30% (limit of validity) in the value of
K1 does not seem to affect the overall outcome. For instance,
the development of vortex loop states at the boundary for
K1 = −5 × 103 J/m3 is reproducible at K1 = −6 × 103 J/m3

or K1 = −7 × 103 J/m3. Reducing the anisotropy constant K1

does not seem to affect the overall outcome either; see Fig. 9.
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Similarly, a small variation in the damping constant does not
affect the magnetic transition process, as shown in Fig. 8. Thus

our simulation results are robust against modest variation in
intrinsic parameter values.
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