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Paramagnetic spin Hall magnetoresistance
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We report the observation of the spin Hall magnetoresistance (SMR) in a paramagnetic insulator. By measuring
the transverse resistance in a Pt/Gd3Ga5O12 (GGG) system at low temperatures, paramagnetic SMR is found
to appear with an intensity that increases with the magnetic field aligning GGG’s spins. The observed effect is
well supported by a microscopic SMR theory, which provides the parameters governing the spin transport at the
interface. Our findings clarify the mechanism of spin exchange at a Pt/GGG interface, and demonstrate tunable
spin-transfer torque through the field-induced magnetization of GGG. In this regard, paramagnetic insulators
offer a key property for future spintronic devices.
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Spintronics [1,2] aims to add new functionalities to the
conventional electronics using interconversion of spin angular
momentum between different carriers in solids. Especially,
the spin exchange between conduction-electron spins in a
normal metal (NM) and magnetization, M, in a ferromagnet
(FM) is a central topic to the branch of spintronics trying to
manipulate M for developing new types of magnetic memory
devices [3,4]. When spin angular momentum is transferred
into a FM through a NM/FM interface [Fig. 1(a)], it modi-
fies the transverse dynamics of M by exerting two types of
torque, known as spin-transfer (dampinglike) torque [5,6] and
fieldlike torque [7], while it hardly couples to the longitudi-
nal component. This is because the magnetic susceptibility
in spin order, such as FM, is anisotropic due to the broken
rotational symmetry reflecting spontaneous M; the magnetic
susceptibility is large (small) along the transverse (longitudi-
nal) direction, resulting in anisotropy into the spin injection.

The efficiency of the transverse spin injection has been
characterized by the spin-mixing conductance G↑↓ [8,9]. Its
evaluation is of crucial importance in spintronics as G↑↓ gov-
erns the device performance [10]. To this end, the spin Hall
magnetoresistance (SMR) [11–21] can be a powerful tool.
SMR is a resistance modulation effect in a NM caused by a
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spin-current flow in a NM and spin injection across a NM/FM
interface. So far, SMR has been detected in NMs with various
ordered (ferri-, ferro-, and antiferro-) magnets [11–21], which
quantified G↑↓ in the magnets. SMR has also been reported
in some paramagnetic systems [22–25], but the mechanism of
the effects has not been elucidated.

In this paper, we demonstrate spin Hall magnetoresistance
in a paramagnetic insulator (PI) Gd3Ga5O12 (GGG), with
a NM (Pt) contact. Unlike ordered magnets, a paramagnet
has no spontaneous magnetization and shows huge longi-
tudinal susceptibility. At the interface, conduction-electron
spins in the NM couple not only to the transverse com-
ponent (spin-transfer and fieldlike torque) but also to the
longitudinal component of spins in PI through the interfacial
spin-flip process [Fig. 1(b)], whose efficiency is characterized
by the effective spin conductance (or spin-sink conductance)
Gs [9,26–29]; both G↑↓ and Gs are crucial for spin ex-
change at NM/PI interfaces. First, we show evidence of the
paramagnetic SMR in Pt/GGG through transverse resistivity
measurements. By combining experimental and theoretical
results, we then evaluate G↑↓ and Gs, and demonstrate that
these spin conductances are controllable with external mag-
netic fields B. Such controllability in paramagnets is distinct
from SMR in ordered magnets, highlighting the novelty of the
paramagnetic SMR.

The sample consists of a Pt Hall bar (thickness d = 5 nm,
width w = 100 μm, and length l = 800 μm) on a single-
crystalline GGG (111) slab. We measured longitudinal and
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FIG. 1. Sketches of (a) NM/FM and (b) NM/PI interface with spin exchange. The blue, red, and green arrows represent the directions of
angular momentum related to the spin-transfer torque, fieldlike torque, and spin-flip process, respectively. (c) M(T) of GGG. The inset shows
1/M (blue circles) and a linear fit (red solid line). (d) Sketch of SMR at the Pt/GGG interface. Js with σ is generated in Pt by SHE with the
application of Jc.

transverse resistivity ρL = wdRL/l and ρT = dRT, where
RL = VL/Jc (RT = VT/Jc,) is the Pt longitudinal (transverse)
resistance [15] (see Appendix A) by applying current Jc of
typical amplitude of 200 μA using a DC reversal method [30]
with applying B up to 9 T.

Figure 1(c) shows the temperature (T) dependence of M of
the GGG slab measured by a vibrating sample magnetometer.
The M(T ) curve follows the Curie-Weiss law down to 2 K
with a very low Curie-Weiss temperature �CW = −2 K. M
arises from Gd3+ spins (S = 7/2), which are coupled via
a weak exchange interaction [31] of 0.1 K. Because of the
half-filled 4 f shell in Gd3+, the orbital angular moment is
zero, leading to the very small magnetic anisotropy of 0.04 K
[31], which makes GGG an ideal paramagnetic system.

We have investigated paramagnetic SMR in a Pt/GGG
junction system shown in Fig. 1(d). SMR originates from a
combination of the direct and inverse spin Hall effects (SHE
and ISHE) [32–34]. When the charge current Jc is applied to
the Pt layer, SHE creates a conduction-electron spin current,
Js, with the spin polarization σ flowing along the σ × Jc
direction. When the spin current Js reaches the interface, it
is reflected back into the Pt layer and again converted into a
charge current via ISHE, causing the modulation of the Pt re-
sistivity ρPt. We can tune the reflected spin current and thereby
ρPt by the field-induced magnetization M ∼ 〈S‖〉 of GGG. At
the Pt/GGG interface, conduction-electron spins in Pt inter-
act with the paramagnetic spins S in GGG via the interface
exchange interaction, that exerts a torque on S. This torque
is maximal (minimal) when σ⊥〈S‖〉 (σ||〈S‖〉), where the in-
tensity of the reflected spin current and the resultant ISHE
are suppressed (enhanced). Therefore, ρPt becomes higher for
σ⊥〈S‖〉 than for σ||〈S‖〉. Besides, the effective magnetic field
due to the interface exchange interaction affects the motion of

conduction electrons in the Pt layer and gives an additional
Hall component, referred to as the spin Hall anomalous Hall
effect (SHAHE) [12,15,16].

SMR measurements at low temperatures have been very
difficult so far. This is because, at low T and high B, weak
antilocalization (WAL) effects appear in magnetoresistance
and mask SMR signals in a four-probe resistance method
[35]. Indeed, we observed a clear WAL signal at T = 2.5 K
in the longitudinal field-dependent magnetoresistance
(FDMR) �ρL(Bi ) = [ρL(Bi ) − ρL(Bi = 0)]/ρL(B = 0),
where i = x, y, z in Fig. 2(e) and discussed in Appendix B.
To overcome the problem, we measured transverse resistivity
of the Pt layer [see Fig. 2(d)], in which WAL does not
appear even under B; the setup allows us to investigate
magnetoresistance free from WAL at low T and high B.

Figure 2(b) shows the transverse FDMR �ρT(B) =
[ρT(B) − ρT(B = 0)]/ρL(B = 0) at 2 K with B at α = 45◦,
where the transverse SMR becomes the most prominent. The
B-rotation angle α is defined in Fig. 2(d). We observed a
clear magnetoresistance at α = 45◦, in sharp contrast with the
result at α = 0. The observed magnetoresistance increases for
|B| < 5 T, while it is saturated for |B| > 5 T. The B range
at which �ρT(B) is saturated is similar to that of M [see
Fig. 2(a)], suggesting the field-induced paramagnetism plays
a dominant role.

SMR can be discussed in terms of the α dependence,
which is phenomenologically given by cos(α)sin(α) for the
transverse component [11,12]. Figure 3(b) shows the angular-
dependent magnetoresistance (ADMR) of �ρT = [ρT(α) −
ρT(α = 0)]/ρT(B = 0) at 2 K by changing α at |B| = 3.5 T
[see Fig. 3(d)]. �ρT(α) shows a clear cos(α)sin(α) feature,
consistent with the transverse SMR scenario. Figure 3(f)
shows the ADMR results at several B values, which are
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FIG. 2. (a) M(B) of GGG at 2 K. (b) �ρT(B) at 2 K. The deep-blue (gray) curve shows �ρT with B at α = 45◦ (0°). The light-blue (gray)
curve in the inset shows �ρT with B at α = 135◦ (90°). (c) SSHAHE(B) with B||z at 2 K in Pt/GGG after subtracting the OHE component. The
inset shows the measurement setup for SHAHE. (d) Measurement setup for transverse SMR. (e) �ρL(Bi ) in Pt/GGG at 2.5 K. The inset shows
the measurement setup. (f) LHMR(B) at 300 K in Pt/GGG.
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FIG. 3. (a) B dependence of the SMR signals obtained from FDMR and ADMR measurements at 2 K. The solid curve represents SFDMR
SMR .

The purple (blue) circles show SADMR
SMR (LADMR

SMR ) obtained via the fitting using SADMR
SMR cos(α)sin(α) [LADMR

SMR cos2(α)]. (b) �ρT(α) and (c) �ρL(α)
at 2 K with rotating |B| = 3.5 T. The orange solid curves in (b) and (c) are a SADMR

SMR cos(α)sin(α) and LADMR
SMR cos2(α) fit, respectively. (d), (e)

Schematic illustrations of (d) the transverse and (e) longitudinal ADMR measurement setup. (f) �ρT(α) and (g) �ρL(α) at 2 K for various B.
The curves have been shifted vertically for clarity.
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SMR (T) at 3.5 T. The inset shows the M(T ) curve of GGG at the same
magnetic field.

well described by SADMR
SMR (B)cos(α)sin(α) (except for B =

0). SADMR
SMR (B) is plotted in Fig. 3(a) (purple circles), show-

ing good agreement with the FDMR result (blue solid
line), SFDMR

SMR = �ρT(45◦) − �ρT(135◦). The Hanle mag-
netoresistance (HMR) may cause a similar signal [36].
Figure 2(f) shows the B dependence of HMR, LHMR(B) =
[ρL(Bx ) − ρL(By)]/ρL(B = 0) at 300 K. We confirmed no
meaningful signal from HMR at 300 K in our sample. The
same claim can be made at 2 K because HMR weakly depends
on T [36,37] (see details in Appendix C). We thus conclude
that the observed FDMR and ADMR are the experimental
signatures of the paramagnetic SMR.

We found that the paramagnetic SMR manifests itself even
in longitudinal resistivity measurements. Figure 3(c) shows
the longitudinal ADMR �ρL(α) = [ρL(α) − ρL(90◦)]/
ρL(B = 0) at 2 K and |B| = 3.5 T [see Fig. 3(e)]. �ρL(α)
is described by LADMR

SMR cos2(α), consistent with the expected
behavior of SMR, i.e., the higher (lower) resistivity for Jc||B
(Jc⊥B). Except for B = 0, similar cos2(α) dependence was
confirmed at several B values [Fig. 3(g)], and LADMR

SMR (B)
matches SSMR(B) [Fig. 3(a)]. Therefore, even from the
longitudinal ADMR results, we successfully discerned the
paramagnetic SMR from the WAL background signals (see
Appendix D for further discussion).

We briefly argue the α, β, and γ dependence of �ρL in
Figs. 4(a) and 4(b). In contrast to �ρL(α), large WAL signals
appear in �ρL(β ) and �ρL(γ ), which deviate from a cos2

dependence. The phenomenology of SMR and WAL explains
the results as �ρL(α): SMR only, �ρL(β ): SMR + WAL, and
�ρL(γ ): WAL only. We indeed found �ρL(β ) − �ρL(γ ) ∼
�ρL(α). Therefore, all the ADMR results are ascribable to
WAL and the paramagnetic SMR.

Figure 4(c) shows SADMR
SMR (T) at |B| = 3.5 T. SSMR shows

the maximum value at 2 K and monotonically decreases
with increasing T, resembling M(T ) of GGG [the inset to
Fig. 4(c)]. The results again show the field-induced M is
important to generate SSMR, consistent with the paramagnetic
SMR scenario.

Figure 2(c) shows �ρT(B) measured with applying B||z
[sketch in the inset to Fig. 2(c)]. After subtracting the B-linear
ordinary Hall effect (OHE) component, we found a small
B-nonlinear signal SSHAHE for |B| < 5 T at 2 K. For positive
(negative) B, a positive (negative) signal appears; this B-odd
dependence is characteristic of SHAHE [12,15,16,18]. With
increasing B, SSHAHE increases and is saturated at around 5 T,
concomitant with the saturation of M in GGG [Fig. 2(a)]. We
confirmed the higher-order SHAHE [16] is negligible (see
Appendix E).

We apply a microscopic SMR theory [26] valid for
NM/PI with the B-dependent magnetization instead of the
phenomenological SMR theory [12] for NM/FM with the
spontaneous B-independent magnetization, leaving the B de-
pendence of SMR unexplained. We describe the spin current
Js at the NM/PI interface resulting from the interfacial ex-
change interaction by using the boundary condition [9,26,28]
written as

−eJs = Grn × (n × μs) + Gin× μs + Gsμs, (1)

where e is the elementary charge, n the unit vector of B, μs the
spin accumulation in the NM side, G↑↓ = Gr + iGi the spin-
mixing conductance, and Gs the effective spin conductance.
The first and second terms in the right-hand side of Eq. (1)
correspond to the spin-transfer and fieldlike torque, respec-
tively, and the third indicates the spin-flip (electron-magnon)
scattering, which accounts for the magnon-related unidirec-
tional SMR [38–40]. We calculate the spin conductances in
Eq. (1) for the NM/PI interface as

Gr (B) = A1

{
S(S+1)−

[
coth(ξ/2)+ ξ

4sinh2(ξ/2)

]
SBS (Sξ )

}
,

(2)

Gi(B) = A2SBS (Sξ ), (3)

Gs(B) = − A1
ξ

2sinh2(ξ/2)
SBS (Sξ ), (4)
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where BS (x) is a Brillouin function of spin S as a function
of x, ξ (B) = C1B[T/(T − �eff

CW)], �eff
CW the effective Curie-

Weiss temperature, which contains �CW, S = 7/2 the electron
spin of a Gd3+ ion, and C1 a numerical constant. A1,2 are
fitting parameters, which contain the interface spin density nPI

and dimensionless interfacial s− f exchange interaction Jint .
Finally, the magnetoresistance as a function of B is given by

SSMR(B) = D1{R(Gs) − Re[R(Gs − G↑↓)]}, (5)

SSHAHE(B) = D1Im[R(Gs − G↑↓)], (6)

where R(x) = (1 − D2x)/(1 − D3x), and D1,2,3 are known
numerical constants. We refer to Appendixes F to I for theo-
retical details. We obtained the best fits using Eqs. (5) and (6)
simultaneously as shown in Fig. 5(a) with the values of nPI =
6.94×1016 Gd atom/m2, �CW = −1.27 K, and Jint = −0.13.
Although a direct fit to SSMR(T ) is not possible by simply
considering M(T), our model fully explains SSMR(B, T ), in
which T dependences of the spin-transport parameters of the
Pt film and effects from a paramagnetic subsystem are also
taken into account (see Appendix J for further discussion).

Figure 5(b) shows Gr (B), Gi(B), and Gs(B) with the
estimated parameter values. At zero magnetic field, Gr

and Gi vanish, while |Gs| takes the maximum value of
8.7×1012 S/m2. By increasing B, both Gr and |Gi| mono-
tonically increase, but |Gi| increases more rapidly than
Gr , and Gr (|Gi|) approaches the value of 1.0×1013 S/m2

(7.4×1012 S/m2) at around 5 T (3 T). On the other hand, |Gs|
monotonically decreases with B and approaches zero.

The B-dependent spin transport at the interface is a unique
feature of paramagnets, in sharp contrast to FM where G↑↓
is almost independent of B. At the NM/PI interface, all the
torque is canceled out with the randomized spin (〈S‖〉 = 0) at
B = 0, resulting in Gr = Gi = 0. When the PI acquires a net
magnetization with applying B, a positive Gr and negative Gi

appear; the latter implies antiferromagnetic s− f interaction at
the interface. On the other hand, |Gs| decreases with B due to
the Zeeman gap (∝ gμBB, where g is the g-factor and μB the
Bohr magneton). At small B, the localized spin can be easily
flipped by spin and energy transfer between the conduction
electron and localized spin. By applying B, the degeneracy of
the paramagnetic spin is lifted to split into different energy
levels by the Zeeman effect. Because the energy scale of the

134428-5



KOICHI OYANAGI et al. PHYSICAL REVIEW B 104, 134428 (2021)

SHE-induced spin-flip scattering is governed by kBT , where
kB is the Boltzmann constant, at 2 K it can be suppressed by
increasing B (9 T for electrons corresponds to the energy scale
of 25 K), leading to the reduction of Gs.

Our results clarify the mechanism of SMR and SHAHE
in paramagnets. By comparing SSMR, SSHAHE, Gr , and |Gi|,
we found SSMR(B) ∝ Gr (B) and SSHAHE(B) ∝ |Gi(B)| in
Figs. 5(e) and 5(f), respectively. Because Gr and |Gi| repre-
sent the efficiencies of the spin-transfer and fieldlike torque,
respectively [Figs. 5(c) and 5(d)], the agreement indicates that
the spin-transfer (fieldlike) torque is the mechanism of SMR
(SHAHE) in Pt/GGG. Furthermore, the agreement between
the experiment and theory clarifies that SMR is attributed to
the ensemble of paramagnetic moments, consistent with the
scenario in other magnetic ordered systems. This contrasts
with the conclusions of Ref. [25], in which the MR observed
in noncrystalline paramagnetic yttrium iron garnet (YIG)/Pt
was attributed to the total magnetic moment. Our results thus
unify the description of SMR in compensated ferrimagnets
[41,42], antiferromagnets [19,21,43], ferromagnets [18], and
paramagnets, resolving the long-standing controversy for the
origin of SMR.

Finally, we discuss the interfacial parameters Jint , nPI, and
�CW. We obtained a negative interfacial exchange interaction
of about −2 meV (see Appendix I). This value has the same
sign and order of magnitude as the one found in the Pt/EuS
interface [18,44], −3∼−4 meV, indicating the s− f exchange
coupling is antiferromagnetic in both systems. On the other
hand, a negative Gi was found in W/EuO [45], corresponding
to a positive (ferromagnetic) s− f exchange interaction. The
sign of the exchange interaction in metallic compounds with
rare-earth ions depends on the electron structure of the host
metal and the type of the rare-earth ions [46], and so may
the interfacial exchange interaction. The estimated Gd atom
density corresponds to only 1% of the bulk value for GGG.
The depletion of Gd atoms at the interface is consistent with
the smaller �CW of −1.27 K than the bulk value of −2 K,
indicating the decrease of the exchange interaction among
Gd atoms at the interface. The feature may be attributed to
possible damage of the GGG surface crystallization during
the Pt sputtering [see the transmission electron microscopy
(TEM) images in Appendix J].

In summary, we demonstrate the paramagnetic SMR in a
Pt film on GGG at 2 K. The SMR is induced with apply-
ing magnetic fields, and saturated above several tesla when
all localized spins are aligned. The observed correlation be-
tween SMR/SHAHE and magnetization indicates that the
field-induced magnetization plays a significant role in the spin
transport at the Pt/GGG interface. Our microscopic theory
properly explains the SMR signals as a function of magnetic
fields and quantifies the microscopic spin-exchange param-
eters at the Pt/GGG interface. Our results indicate that the
magnetoresistance measurements allow us to investigate spin
transport at interfaces, essential for accelerating insulator-
based spintronics.
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APPENDIX A: TEMPERATURE DEPENDENCE
OF PT RESISTIVITY

Figure 6 shows the T dependence of the resistivity
ρL(B = 0) = ρD of the Pt film on the GGG slab. We measured
ρL by the conventional four-probe method with applying a
charge current of 200 μA. Down to around 20 K, ρL linearly
decreases with decreasing T. Below 10 K, ρL starts to increase,
which is a signature of the weak antilocalization effect [35].

APPENDIX B: WEAK ANTILOCALIZATION IN PT FILM

We measured magnetoresistance in the longitudinal con-
figuration [35] for T < 50 K to show the WAL effects
in the Pt film. Figure 7 shows the longitudinal FDMR

0 100 200 300
3

4

5

T (K)

 ρ
L 
(1

0-7
 Ω

m
)

FIG. 6. T dependence of the resistivity ρL of Pt, measured in a
5-nm-thick Pt Hall bar on GGG.
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FIG. 7. B dependence of �ρL(Bi ) at 2.5 K. The red, blue, and
green curves indicate the B dependence of �ρL(Bi ) for B in the x, y,
and z directions, respectively. The inset shows the sample with the
applied current Jc||x.

�ρL(Bi ) = [ρL(Bi ) − ρL(Bi = 0)]/ρL(B = 0) as a function
of B in the i = x, y, and z directions (see the inset to Fig. 7)
at 2.5 K. �ρL(Bi ) increases with increasing B for all i, but
their shapes differ from each other. �ρL(Bz ) increases more
rapidly, while �ρL(Bx ) and �ρL(By) show similar trends. The
largest value of �ρL(Bz ) at 9 T is two times greater than those
of �ρL(Bx ) and �ρL(By). Note that the difference between
�ρL(Bx ) and �ρL(By), ∼ 4×10–5 at 9 T, corresponds to the
paramagnetic SMR (we discuss it in Appendix D).

APPPENDIX C: HANLE MAGNETORESISTANCE
IN PT FILM

We here show that the Hanle magnetoresistance [36]
is negligibly small in our Pt/GGG sample. As shown in
Refs. [36] and [37], the HMR may show B-direction depen-
dence similar to the SMR [i.e., HMR appears (disappears)
under B in the x and z (y) directions] and may show up in a
wide temperature range from 300 to 2 K, but weakly depends
on T. To investigate the HMR in our sample, we measure the
B dependence of the longitudinal resistivity at 300 K, where
the HMR, if present in our sample, may only be detected,
while the paramagnetic SMR is suppressed because of the
negligibly small paramagnetic moment in GGG at such high

0 5-5

0

5

10

L H
M

R
 (1

0-5
)

B (T)

FIG. 8. B dependence of LHMR at 300 K.

temperatures. Figure 8 shows the B dependence of LHMR =
[ρL(Bx ) − ρL(By)]/ρL(B = 0) at T = 300 K. We found no
magnetoresistance, indicating that the HMR is undetected in
the present Pt/GGG system. We thus conclude that the HMR
can be neglected in our sample in all the T range. The absence
of the HMR in our Pt/GGG sample may be attributed to
the Pt growth condition, the detail of which is discussed in
Ref. [36].

APPENDIX D: SMR IN LONGITUDINAL
MEASUREMENTS IN PT/GGG

We show the paramagnetic SMR in the longitudinal con-
figuration. We performed FDMR measurements in the x and
y directions and ADMR measurements in the x−y plane
[see Fig. 9(a)].

Figure 9(b) shows the longitudinal FDMR �ρL(Bi ) =
[ρL(Bi ) − ρL(Bi = 0)]/ρL(B = 0), where i = x, y at
2.5 K. The overall behavior is ascribable to the WAL
as discussed in Appendix B. We here address the small
difference between �ρL(Bx ) and �ρL(By), defined as
LFDMR

SMR (B) = [ρL(Bx ) − ρL(By)]/ρL(B = 0). We plot the B
dependence of LFDMR

SMR as a green curve in Fig. 9(d). LFDMR
SMR (B)

gradually increases and approaches to ∼ 3×10–5 at 5 T, sim-
ilar to the B dependence of M in GGG and the FDMR result
in the transverse configuration shown in Figs. 2(a) and 3(a).

Next, we investigate the longitudinal ADMR in the x−y
plane. Figure 9(c) shows �ρL(α)= [ρL(α) − ρL(α = 90◦)]/
ρL(B = 0) at B = 3.5 T and T = 2.5 K. �ρT(α) shows a
clear LADMR

SMR cos2α dependence, consistent with the behavior
of the paramagnetic SMR. We extracted LADMR

SMR at various B
and obtained the B dependence of the ADMR result shown
in Fig. 9(d). LFDMR

SMR and LADMR
SMR agree well with each other.

All experimental findings in the longitudinal measurements
are consistent with the observed SMR in the transverse mea-
surements, showing that the difference between �ρL(Bx ) and
�ρL(By) [Fig. 9(b)] can be attributed to the paramagnetic
SMR.

APPENDIX E: SHAHE MEASUREMENT RESULT

Figure 10(a) shows the transverse FDMR �ρT(Bz ) =
[ρT(Bz ) − ρT(Bz = 0)]/ρT(B = 0) at 2 K for Pt/GGG. �ρT

increases linearly with increasing B due to the ordinary
Hall effect. We estimated the slope of the OHE AOHE as
−6.5×10–5(1/T), using a linear fitting to �ρT for the |B| >

5 T range and averaged the obtained slopes for −9 T < B <

−5 T and 5 T < B < 9 T. The obtained AOHE in the 5-nm-
thick Pt film is almost the same as that obtained in the
30-nm-thick Pt film on GGG at low and high T [47]. The ab-
sence of the Pt thickness and T dependence of AOHE indicates
that the contribution from the other Hall effects induced by the
influence of the interface found in Pt/YIG is negligibly small
[16,35,47]. After subtracting the OHE component, we found
the spin Hall anomalous Hall effect signal shown in Fig. 2(c).

Here we show that the higher-order contribution of
SHAHE [16] is negligibly small in our sample. Figure 10(b)
shows the transverse ADMR at 2 K and selected magnetic
fields. We clearly observe a cosβ dependence of �ρT because
of the OHE [see Fig. 10(a)]. To evaluate the higher-order
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FIG. 9. (a) A schematic illustration of the longitudinal resistivity measurement. A charge current Jc is applied in the x direction and
the longitudinal voltage is measured. B indicates the spatial direction of the magnetic field, and the angle between Jc and B is defined
as α. (b) Longitudinal FDMR at 2.5 K. The red (blue) curve indicates �ρL under B in the x (y) direction. LFDMR

SMR (B) is defined as
LFDMR

SMR (B) =[ρL(Bx ) − ρL(By )]/ρL(B = 0). (c) Longitudinal ADMR �ρL in the x−y plane. The green circles show the α dependence of
�ρL at 2.5 K at 3.5 T. The blue curve indicates a LADMR

SMR cos2α fitting to the experimental result. (d) FDMR and ADMR results as a function of
B at 2.5 K. The green curve (circles) shows the FDMR (ADMR) result of LSMR.

contribution, we carried out the same analysis procedure
used by Meyer et al. [16]: fitting an A1stcosβ + A3rdcos3β

function to the ADMR results shown in Fig. 10(b), where
A1st (B) = S1st

SHAHE(B) + A1st
OHEB, S1st

SHAHE(B) is the first-order
SHAHE contribution as a function of B, A1st

OHE is the coef-
ficient of the OHE, and A3rd(B) = S3rd

SHAHE(B) + A3rd
OHEB is

the higher-order contribution of the same Hall terms. Figure
10(c) shows the B dependence of A1st (blue solid circles) and
A3rd (red solid circles). A1st and A3rd monotonically increase
with increasing B mainly due to the OHE, A1st

OHE and A3rd
OHE,

respectively. We estimate the slope of the OHE in the first-
and high-order contribution as A1st

OHE = −6.3×10–5(1/T) and
A3rd

OHE = −2.1×10–6(1/T) using the results at B = 7 T, and
9 T. A1st

OHE = −6.3×10–5(1/T) is similar to that estimated
from the FDMR results [∼ −6.5×10–5(1/T)]. After subtract-
ing the OHE, we show the B dependence of S1st

SHAHE(B) and
S3rd

SHAHE(B) in Fig. 10(d). We found the first-order SHAHE
contribution [S1st

SHAHE(B) ∼ 2.7×10–5 at 9 T] is about 10 times
larger than the higher-order one [S3rd

SHAHE(B) ∼ 0.26×10–5 at
9 T] in our system. Furthermore, S1st

SHAHE(B) from the ADMR
results is consistent with SSHAHE(B) from the FDMR results
[deep blue curve in Fig. 10(d), and shown in the main text].
Therefore, we can accurately obtain the amplitude of the
first-order SHAHE from the FDMR result by subtracting
the OHE component, justifying our analysis described as
above.

APPENDIX F: MOLECULAR-FIELD APPROXIMATION
FOR MAGNETIZATION OF GGG

GGG is an ideal Curie paramagnet with a weak exchange
interaction between spins of neighboring Gd ions. Using the
molecular-field approximation, the thermal average of spin
〈m〉 is calculated by the self-consistent equation [48]:

〈m〉 = − SBS (SC1Beff/T ) (F1)

where S is the electron spin angular momentum of Gd ions,
Bs(x) is the Brillouin function of spin S as a function of x,
C1 = gμB/kB, g is the g-factor, μB is the Bohr magneton,
Beff= B + NPI〈m〉Jex/gμB is the effective field including the
applied magnetic field B and the Weiss molecular fields, kB

is the Boltzmann constant, T is the temperature, NPI is the
number of the nearest neighbor of the interfacial magnetic
moments, and Jex is the strength of the antiferromagnetic
exchange interaction among Gd ions.

We used the effective (renormalized) Curie-Weiss tempera-
ture �eff

CW for taking all the correlation effects on a Gd ion into
account, which gives the effective field as Beff = BT /(T −
�eff

CW). The �eff
CW should recover the bare Curie-Weiss tem-

perature �CW in the limit B → 0 and 3T �CW/[C1(S + 1)B]
in the limit B → ∞, respectively. For practical purposes it
is convenient to match these limiting cases into a crossover
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FIG. 10. (a) �ρT with B||z, i.e., a the Hall measurement. Jc, B, and β denote the spatial direction of the charge current and magnetic field,
and relative angle, respectively. The transverse FDMR is measured at β = 0 and T = 2 K. (b) Transverse ADMR �ρT(β ) at T = 2 K and
selected B. (c) B dependence of A3rd. The inset shows the B dependence of A1st and A3rd. The amplitudes of A1st and A3rd are obtained by fitting
a A1st cosβ + A3rdcos3β function to the ADMR results shown in (b). (d) B dependence of the first- and third-order SHAHE. The blue (red) plots
show the first-order (third-order) SHAHE, S1st

SHAHE (S3rd
SHAHE), obtained from the ADMR results. The deep-blue curve indicates SSHAHE obtained

from the FDMR results.

function for the effective Curie-Weiss temperature:

�eff
CW(B) = 3�CW

S + 1

BS (Sξ )

ξ

≈
{
�CW (gμBB/kBT � 1)

3T
C1(S+1)B�CW (gμBB/kBT � 1)

, (F2)

with the ansatz ξ = − a0+a1|B|+
√

a2
0+(a2B)2, where

a0 = −3�CW/(S + 1)T , a1 = C1/(T − �CW), and a2 =
C1/T (1 − T/�CW).

Figure 11 shows the plots of Eq. (F1) solved self-
consistently (red line) and using with �eff

CW given as Eq. (F2)
(the blue line). We find a good agreement between both
curves, justifying the use of �eff

CW. In the following discus-
sion and the main text, the approximate form of Beff = BT /

(T − �eff
CW) is used to analyze the data.

APPENDIX G: THEORY OF PARAMAGNETIC SMR

Chen et al. formulated the SMR and SHAHE in a nor-
mal metal/ferromagnetic insulator bilayer system in Ref. [12].
They considered the NM/FM structure shown in Fig. 12(a)
and solved a spin-diffusion equation with a boundary con-
dition which describes spin transfer between a conduction
electron in NM and magnetization in FM at the interface.

The longitudinal (ρL) and transverse resistivity (ρT) of NM
is given as

ρL ≈ ρD + �ρ0 + �ρ1
(
1 − n2

y

)
, (G1)

ρT ≈ �ρ1nxny + �ρ2nz, (G2)

Crossover solution
Self-consistent solution

0 5

4

2

B (T)

|<
m

>|

FIG. 11. B dependence of |〈m〉|. The red and blue lines represent
the self-consistent solution and the approximation with the effective
Curie-Weiss temperature solution for Eq. (F2), respectively.
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FIG. 12. (a) A schematic illustration of the NM/PI or NM/FM
sample structure. We apply a charge current, Jc, in the x direction.
(b) A schematic side view of the interface. Conduction electron spins
are coupled to spins in PI in the deep-blue region (0 < z < b) with
the thickness of b. dNM is the thickness of NM.

with

�ρ0

ρD
= −θ2

SH
2λNM

dNM
tanh

dNM

2λNM
, (G3)

�ρ1

ρD
= θ2

SH
λNM

dNM
Re

2λNMG↑↓tanh2 dNM
2λNM

σD + 2λNMG↑↓coth dNM
λNM

, (G4)

�ρ2

ρD
= −θ2

SH
λNM

dNM
Im

2λNMG↓↑tanh2 dNM
2λNM

σD + 2λNMG↓↑coth dNM
λNM

, (G5)

where ρD = 1/σD is the intrinsic electric resistivity of NM,
n = (nx, ny, nz ) is the unit vector of the magnetization of FI,
θSH is the spin Hall angle of NM, λNM is the spin-diffusion
length of NM, dNM is the thickness of NM, and G↑↓ = Gr +
iGi is the complex spin-mixing conductance at the NM/FM
interface. This formulation [(G1) and (G2)] succeeded in
describing the experimental observation of SMR (�ρ1/ρD)
and SHAHE (�ρ2/ρD) in NM/FM systems. They modeled
the coupling between conduction electron spin in NM and
macroscopic magnetization of FM, which is assumed to be
independent of B.

In the following sections, we model the paramagnetic spin
Hall magnetoresistance [26]. We consider spin transfer at a
paramagnetic insulator/NM interface via the interfacial ex-
change interaction between a conduction electron spin in NM
and localized spin (not magnetization) in PI. As a result of
the interaction, the spin-relaxation time of the conduction
electron in NM becomes anisotropic, giving rise to the SMR
and SHAHE as discussed below. This approach clarifies the
relation between the spin conductance and anisotropic spin
relaxation in NM, which is crucial to understand the param-
agnetic SMR.

APPENDIX H: CORRECTION FROM EFFECTIVE SPIN
CONDUCTANCE AT THE INTERFACE

First, we describe SMR with the boundary condition in-
cluding the effective (longitudinal) spin conductance Gs. Gs

characterizes the spin-flip process at the interface, which is
neglected in a conventional NM/FM interface [12]. For the
sake of completeness, we keep Gs in the boundary condition

describing the spin current at the interface,

−eJs= Gsμs+Grn × (n × μs) + Gin × μs, (H1)

where e is the elementary charge, Js is the spin current vector,
μs is the spin accumulation vector at the NM/PI interface, and
n = B/B is the unit vector of the applied magnetic field B.
By solving a one-dimensional spin-diffusion equation in the z
direction with the boundary condition [Eq. (H1)] at z = 0 and
the zero spin current at z = dNM, we obtain the same form of
the longitudinal and transverse resistivity with Eqs. (G1) and
(G2) but the different expressions of �ρ0/ρD, �ρ1/ρD, and
�ρ2/ρD as

�ρ0

ρD
= 2θ2

SH

[
1 − λNM

dNM
tanh

(
dNM

2λNM

)
R(Gs)

]
, (H2)

�ρ1

ρD
= θ2

SH
2λNM

dNM
tanh

(
dNM

2λNM

)
[R(Gs)−Re[R(Gs−G↓↑)]]

= D1[R(Gs) − Re[R(Gs − G↓↑)]], (H3)

�ρ2

ρD
= θ2

SH
2λNM

dNM
tanh

(
dNM

2λNM

)
Im[R(Gs − G↓↑)]

= D1Im[R(Gs − G↓↑)], (H4)

with

R(x) =1 − xρDλNMcoth(dNM/2λNM)

1 − 2xρDλNMcoth(dNM/λNM)
= 1 − D2x

1 − D3x
, (H5)

where D1 = θ2
SH(2λNM/dNM)tanh(λNM/2dNM), D2 =

ρDλNMcoth(dNM/2λNM), and D3 = 2ρDλNMcoth(dNM/λNM)
are constants, which can be calculated using material
parameters shown later.

Equations (H2)–(H4) describe the correction from Gs, and
they are reduced to Eqs. (G3)–(G5) when Gs = 0, which cor-
responds to the same boundary condition used by Chen et al.
[12].

APPENDIX I: ANISOTROPIC SPIN RELAXATION DUE
TO INTERFACIAL SPIN-EXCHANGE INTERACTION

Next, we explain the relation between the interface spin
conductances and the spin-relaxation times calculated for the
conduction electron in the NM in close vicinity of the NM/PI
interface. We model the interface by introducing an auxiliary
intermixing layer between the NM and the PI with the thick-
ness b and taking a b → 0 limit for calculation [26,49] of
G↑↓ and Gs. In such layer [dark-blue region in Fig. 12(b)],
conducting electrons couple to the localized spins in the PI
via an interfacial exchange interaction. This interaction is
described by the effective Hamiltonian:

Hint = −Jint

∑
i

Si · s(ri ), (I1)

where Jint is the coupling constant, Si is the localized spin
operator, and s(ri ) is the spin density of conduction electrons
at position ri. The continuity equation for the spin current in
the interaction region 0 < z < b reads

∂tμ
α
s − 1

eνF
∂i jαs,i − ωL(r)εαβγ nβμγ

s = − �αγ μγ
s , (I2)
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where the superscript Greek indices denote spin projections
(α, β, γ = x, y, z), subscript Latin ones (such as i = x, y, z
but not the descriptor index “s”) denote current directions,
μα

s is the spin accumulation polarized in the α direction, νF

is the density of states at the Fermi level, jαs,i is the spin
current flowing in the i direction and spin polarized in the
α direction, ωL =ωB − δb(z) 〈Ŝ‖〉(nPIJint/h̄) is the effective
(renormalized) Larmor frequency, ωB = gμBB/h̄ is the bare
Larmor frequency, g is the g-factor, μB is the Bohr magneton,
h̄ is the Dirac constant, δb(z) = 1/b (0 < z < b), 0 (z > b),
〈Ŝ‖〉 is the expectation of spin parallel to B, nPI is the number
of localized spins per unit area at the surface of the PI, and
�αγ is the spin-relaxation tensor. Here, ωL is renormalized by
the interfacial exchange fields [18] due to 〈Ŝ‖〉.

For the case with uniaxial symmetry set by B, �αγ has the
general form

�αγ (r) =δαγ

τs
+δb(z)

[
δαγ

τ⊥
+

(
1

τ‖
− 1

τ⊥

)
nαnγ

]
, (I3)

where τs is the isotropic part of spin-relaxation time induced
by the spin-orbit coupling or magnetic impurities in NM, and
τ⊥ and τ‖ are the transverse and longitudinal spin-relaxation
time per unit of thickness in the interaction region, respec-
tively.

By combining Eq. (I2) with Eq. (I3), we obtain the spin
current in the region where the exchange interaction takes
place [dark-blue region in Fig. 12(b)] as

− 1

eνF
jαs,z

∣∣z=b

z=0 = bωLεαβγ nβμγ
s −

(
b

τs
+ 1

τ⊥

)
μα

s

−
(

1

τ‖
− 1

τ⊥

)
nα (n · μs). (I4)

We take a b → 0 limit to describe the interface spin cur-
rent, where δb(z) becomes a delta function. We compare
Eqs. (H1) and (I4) and obtain the relation between the interfa-
cial spin conductances and anisotropic spin-relaxation times,

Gr = e2νF

(
1

τ⊥
− 1

τ‖

)
, (I5)

Gi = − e2

h̄
nPIJint〈Ŝ‖〉, (I6)

Gs = −e2νF
1

τ‖
, (I7)

where νFJint = Jint is the dimensionless interfacial exchange
interaction.

In order to determine the anisotropic spin-relaxation times
τ⊥ and τ‖, we use the Born-Markov approximation [50] and
obtain [26]

1

τ‖
= 2π

h̄

nPIJ2
int

νF
ξnB(ξ )[1+nB(ξ )]|〈Ŝ‖〉|, (I8)

1

τ⊥
= 1

2τ‖
+π

h̄

nPIJ2
int

νF
〈Ŝ2

‖〉, (I9)

where nB(ξ ) = 1/(eξ − 1) is the Bose-Einstein distribution
as a function of ξ = gμBBeff/kBT = C1Beff/T , and Beff is
the effective magnetic field of the PI (see Appendix F). In a

paramagnetic phase, |〈Ŝ‖〉| and 〈Ŝ2
‖〉 in Eqs. (I8) and (I9) can

be determined as [26]

〈Ŝ‖〉 = −SBS (Sξ ), (I10)

〈
Ŝ2

‖
〉 = S(S + 1) − coth(ξ/2)SBS (Sξ ) (I11)

where S is the spin of Gd3+ in GGG.
Importantly, the difference between the longitudinal and

transverse spin-relaxation times appears only for a finite
|〈Ŝ‖〉|. At the zero magnetic field, Eqs. (I8) and (I9) become
the same, then

1

τ‖
= 1

τ⊥
=2π

3h̄

nPIJ2
int

νF
S(S + 1) (I12)

Substituting the above results into Eqs. (I5)–(I7), we obtain
the magnetic field dependence of the spin conductances at a
NM/PI interface:

Gr = π

h̄
nPI(eJint )

2

{
S(S + 1)

−
[

coth(ξ/2) + ξ

4sinh2(ξ/2)

]
SBS (Sξ )

}

= A1

{
S(S + 1) −

[
coth(ξ/2) + ξ

4sinh2(ξ )

]
SBS (Sξ )

}
,

(I13)

Gi = e2

h̄
nPIJintSBS (Sξ ) = A2SBS (Sξ ). (I14)

Gs = −π

h̄
nPI(eJint )

2 ξ

2sinh2(ξ/2)
SBS (Sξ )

= −A1
ξ

2sinh2(ξ/2)
SBS (Sξ ) (I15)

where A1 = (π/h̄)nPI(eJint )2 and A2 = (π/h̄)nPI(e2Jint ).
From the fitting to the experimental data we determine

three free parameters, �CW, nPI, and Jint . �CW is obtained
from the effective Curie-Weiss temperature �eff

CW, while nPI

FIG. 13. (a) T dependence of paramagnetic SMR and magne-
tization of GGG. SSMR is estimated by fitting a SSMRsin(α)cos(α)
function to the transverse ADMR results at |B| = 3.5 T at various T.
The inset shows the T dependence of M of GGG at |B| = 3.5 T. The
paramagnetic SMR dominates the signal in the shaded T region. (b)
FDMR result of SSMR at selected T. The solid blue curves represent
SFDMR

SMR = �ρT(45 ◦) − �ρT(135 ◦).
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FIG. 14. (a) T dependence of SMR with the model result at |B| = 3.5 T. We subtract SSMR(T = 50 K) from SSMR(T ) and obtain USMR(T ) =
SSMR(T ) − SSMR(T = 50 K). The solid curve shows the best fitting of Eq. (5) as a function of T. (b)–(d) B dependence of USMR, and SSHAHE at
(b) 2 K, (c) 5 K, and (d) 10 K with the model results. We fit Eqs. (5) and (6) to each experimental result plotted as open circles.

and Jint from the values of A1 and A2. The Pt resistivity of
3.4×10–7 �m predicts the following parameters [51]: �SH =
0.104, λPt = 2 nm. We fit Eqs. (H3) and (H4) to the mea-
sured transverse FDMR results of SMR and SHAHE and
obtain nPI = 6.94×1016 atom/m2, Jint = −0.13, and �CW =
−1.26 K. The lower Curie-Weiss temperature than the bulk
value of −2 K suggests the local moments on the surface of
GGG have a lower coordination number than the bulk. This is
consistent with the lower concentration of spins at the GGG/Pt
interface than in bulk GGG, nPI = 6.9×1018 atom/m2. Tak-
ing a typical value of density of state for a metal [52],
νF ≈ 3.5×1028 m–3 eV–1, the corresponding antiferromag-
netic s− f exchange coupling is about −2 meV, which is
similar to that obtained for a Pt/EuS interface [18,44], −3∼
−4 meV. Our theoretical framework describing the spin
transport at the NM/PI interface and the analysis of SMR
established here can be applied to results in other magnets
including para-, ferri-, ferro-, and antiferromagnets [26].

APPENDIX J: TEMPERATURE DEPENDENCE OF THE
EXPERIMENTAL AND THEORETICAL RESULTS

Here we discuss the T dependence of SMR in our sys-
tem by comparing the experimental and theoretical results.
Figure 13(a) shows the detailed T dependence of SSMR. If one
assumes that in Eqs. (H2)–(H5) the charge and spin-transport
parameters of the Pt film (such as conductivity, spin-diffusion
length, and spin Hall angle) are T independent, our theoretical
model with the used parameters predicts a 1/T 2 dependence
for high temperatures, T � SgμBB (which in our case corre-
sponds to ∼15 K). However, a direct fit to the measurement
shows a slower power-law decay, ∼ 1/T 0.5 in the discussed T
range.

First of all, to reconcile the experiment and theory, we take
the T dependence of the parameters into account. From the T
dependence of the Pt resistivity (see Fig. 6), we extract their
values at each T based on the scaling law in Ref. [51]. After

substituting these values into Eqs. (H2)–(H5), we obtained a
good agreement between the experiment and theory for the
power-law decay of SMR with T. However, the amplitude of
the measured signal at large T > 50 K is larger than the one
obtained from the theoretical model.

According to the theory, the paramagnetic SMR dominates
SSMR below 50 K [the shaded region in Fig. 13(a)] and a
strong reduction of SSMR at high T is expected. In contrast,
a sizable signal is observed up to 200 K with a weaker T
dependence. Most likely, this spurious signal stems from a
spin subsystem with a much broader T dependence than the
paramagnetic SMR. To confirm this, we subtract this “back-
ground” signal from SSMR below 50 K. Figure 14(a) shows
the T dependence of USMR(T ) = SSMR(T ) − SSMR(T = 50 K)
as blue solid plots. Interestingly, after this background sub-
traction, the amplitude of the SMR signal is in very good
agreement with the theory. This indicates that at large T when
the paramagnetic SMR becomes negligible, we clearly detect
another SMR-like magnetoresistance with a weaker T depen-
dence.

This finding, together with the good agreement between the
model and experiment on the B dependence, confirms that at
low T (< 50 K) the observed magnetoresistance is attributed
to the paramagnetic SMR. Figures 14(b), 14(c), and 14(d)
show the best fits of our model to USMR(B) and SSHAHE(B) at
T = 2, 5, and 10 K, respectively. USMR(B) is obtained by sub-
tracting SSMR(B) at 50 K presented in Fig. 13(b). The model
again reproduces USMR(B) at all T. In Table I, we summarize
the value of the parameters obtained from the best fitting to
USMR and SSHAHE. Our model can explain the B dependence of
USMR at different T in the low-T regime (T < SgμBB ∼ 15 K)
with similar parameters, which indicates that the origin of
USMR is the paramagnetic SMR. The long tail observed at
high T is clearly not the effect we are focusing on and, as
demonstrated, a simple subtraction of such background can
reveal the paramagnetic SMR.

TABLE I. Parameter values for best fitting.

USMR(T ) USMR(B) (2 K) USMR(B) (5 K) USMR(B) (10 K) SSMR(B) (2 K)

nPI (Gd atom/m2) 6.94×1016 9.12×1016 7.68×1016 6.47×1016 6.89×1016

�CW(K) −1.27 −0.77 −1.00 −1.27 −1.26
Jint −0.25 −0.09 −0.10 −0.12 −0.13
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FIG. 15. (a) STEM image of the Pt/GGG interface. (b) The spatial distribution of elements along the Pt/GGG interface probed by EDX.
The blue, red, and green lines indicate the intensity of Pt, Ga, and Gd atoms, respectively. The inset is the image of the distribution of Pt, Ga,
and Gd atoms, and the color-coded image at the interface.

From our transport experiments, we cannot infer the origin
of the background signal. This requires an investigation which
is beyond the scope of this paper. Nevertheless, the data sug-
gest the existence of a paramagnetic subsystem with broader
T dependence. Plausibly, it could be composed of a small
amount of Gd atoms absorbed into Pt during its deposition
on the GGG surface by sputtering. These Gd atoms couple
much stronger to electrons in Pt than the ones at the interface,
and their T dependence is expected to be broader than Gd
ions in GGG with different characteristic scale SgμBB. To
identify the absorbed Gd atoms, we performed scanning trans-
mission electron microscopy (STEM) and energy-dispersive
x-ray spectroscopy (EDX). Figure 15(a) shows the STEM
image across the Pt/GGG interface. While the sample has a
reasonably good interface, we found an amorphous layer with
a very small thickness of about 0.5 nm, which was created
by the Pt sputtering. Importantly, the EDX profile [Fig. 15(b)]
shows the amorphous layer consists of Pt, Ga, and Gd atoms,
indicating a small amount of Gd atoms are absorbed into Pt.
Besides, at the amorphous layer, the Ga atoms show broader

distribution than Gd, and it makes the majority of Gd atoms
at the surface separated from Pt. These findings support the
existence of a paramagnetic subsystem.

Other possible factors that, combined with the above ef-
fect, may contribute to the observed background signal is the
renormalization of the effective s−d coupling (Jint) either by
the Kondo effect that may be important in Pt [53], or phonons.
Any of these effects may have a rather different T dependence
with respect to SMR. Their studies are beyond the scope of
our work, but definitely it may be interesting to explore them
using SMR in future experiments.

It is important to remark that the above discussion does
not change substantially the results and discussion in the main
text. The subtracted background signal, SSMR(T = 50 K),
amounts only to about 19% of SSMR(T = 2 K), indicating
that the low-temperature SSMR is dominated by the paramag-
netic SMR. In addition, the obtained parameters at 2 K from
SSMR(B) are consistent with that from USMR(B, T ). Therefore,
we can confirm that our paper is adequately based on the
results of the paramagnetic SMR.
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