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Driven dissipative quantum dynamics in a cavity magnon-polariton system
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The dynamics of arbitrary-order quantum correlations in a cavity magnon-polariton system are investigated
based on the quantum master equation in the coherent state representation. The phenomena of Rabi-like oscilla-
tion and level repulsion of the average cavity-photon number agree remarkably well with existing experimental
observations. The competing nature of coherent and incoherent components in these two cases is further revealed
by the second-order quantum coherence of the cavity photons and magnons, which can be systematically tuned
by the driving microwave and thermal bath. Our results demonstrate the rich higher-order quantum dynamics
induced by magnetic light-matter interaction and serve as an indispensable step toward exploring nonclassical
states for cavity photons and magnons in quantum cavity magnonics.
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I. INTRODUCTION

The successful realization of strong coupling between pho-
tons and magnons in microwave cavities [1–8] has brought
another member into the family of cavity quantum electro-
dynamics (QED) systems [9]. Experimental measurements
of this hybrid quantum system have revealed the formation
of magnon-polariton quasiparticles, which can be tuned us-
ing bias magnetic fields [4–8,10], the cavity configuration
[11–13], a DC voltage [14], the experimental temperature
[15,16], Floquet engineering [17], and so on. Extended
studies have also found that the intrinsic nonlinearity of
magnon-magnon interactions can lead to bistable behav-
iors of cavity magnon-polaritons [18,19] and that dissipative
magnon-photon coupling will result in level attraction [20–22]
and non-Hermitian physics [23,24]. Moreover, the cavity
magnon-polariton has been utilized to develop gradient mem-
ory [25] and logic devices [26], to manipulate spin currents
[27] and magnons [28,29], and to generate quantum entan-
glement [30–34] or Schrödinger’s cat states [35,36]. Coherent
control of the dynamics of cavity magnon-polaritons has also
been experimentally demonstrated [37,38], paving the way to
the realization of universal information processing.

Current experimental observations of dynamical features
in cavity magnon-polariton systems have mostly focused on
probing the power spectrum of the reflected or transmitted
microwave field [4–20,23,25,26,37,38], which depends on the
average number of microwave photons in the cavity. However,
as pointed out initially by Glauber [39–41] after the seminal
Hanbury Brown–Twiss experiment [42], infinite sets of field
correlation functions are necessary in order to fully character-
ize the quantum statistical properties of electromagnetic fields
[39–41]. Therefore, in addition to the average photon number,
which is directly related to the first-order field correlation,
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higher-order field correlations are also crucial components in
quantum optics [43–45]. For example, the bunching and anti-
bunching phenomena of photons, which have been observed
in classical and nonclassical optical fields, respectively, are
relevant to the second-order field correlation [43–45]. Further-
more, higher-order correlations have also played an essential
role in many other quantum systems, such as circuit QED
systems [46–53], cavity exciton-polariton systems [54–56],
cavity optomechanics [57,58], ultracold atoms [59–68], and
metal-magnet hybrid structures [69]. Although the second-
order quantum coherence has been utilized to characterize
the magnon blockade effect in magnon-qubit systems recently
[28,29], a systematic investigation of higher-order quantum
correlations in the widely observed dynamical processes in
cavity magnon-polariton systems is still missing, which seri-
ously hinders the further developments of cavity magnonics
beyond the semiclassical level [9].

In this work, the driven dissipative dynamics in a cavity
magnon-polariton system has been thoroughly studied based
on the quantum master equation in the coherent state represen-
tation. In Sec. II, a Fokker-Planck equation of quasiprobability
distribution function and a group of hierarchical equations of
arbitrary-order correlation functions have been established for
the coupled cavity photons and magnons. Then the theoretical
approach has been applied to investigate the average num-
ber of cavity photons and magnons in Sec. III A and their
second-order quantum coherence in Sec. III B for two typical
experimental scenarios. Possible experimental techniques to
measure higher-order correlation functions of cavity photons
are briefly discussed in Sec. III C. Finally, the results are
concluded in Sec. IV.

II. THEORETICAL MODEL AND QUANTUM
DYNAMICAL EQUATIONS

The cavity magnon-polariton system under consideration
is schematically illustrated in Fig. 1(a). A highly polished
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FIG. 1. (a) A schematic diagram of the cavity magnon-polariton
system. A magnet denoted by m is coupled to the cavity microwave
field c. A bias magnetic field B is applied to tune the magnon
frequency ωm = γ B with the gyromagnetic ratio γ . κc and κm are
the damping rates for the cavity photons and magnons, respectively.
An external microwave field with the strength � and the frequency
ω0 can be applied to continuously drive the cavity. (b) The average
cavity-photon number 〈c†c〉 as a function of the bias magnetic field
B and the driving frequency ω0 in the continuous drive scenario, with
the driving strength �/2π = 2 × 1012 Hz. (c) The time evolution of
the average cavity-photon number 〈c†c〉 for different bias magnetic
fields B after injecting 108 coherent microwave photons in an initial
pulse. (d) The Rabi-like oscillation of the average number of cavity
photons (blue solid line) and magnons (red dashed line) with a
zero-detuned bias magnetic field B = 281.25 mT, i.e., ωm = ωc. The
other simulation parameters in panels (b), (c), and (d) are set to the
following [6]: ωc/2π = 7.875 GHz, κc/2π = 1.35 MHz, κm/2π =
1.06 MHz, g/2π = 10.8 MHz, and T = 300 K.

yttrium iron garnet sphere with a diameter of 0.36 mm, placed
inside a microwave cavity with a geometric size of 43.0 ×
21.0 × 9.6 mm3, is coherently coupled to the electromagnetic
mode in the cavity via the magnetic dipole interaction [6].
We assume that only the Kittel mode of the magnet is ex-
cited by the magnetic component of the microwave field. The
cavity can be excited by an external microwave source, either
a discrete pulse [6,38,70] or a continuous wave [4–8]. The
Hamiltonian of this system is [6,30]

H = h̄ωcc†c + h̄ωmm†m + h̄g(c†m + m†c)

+ ih̄�(e−iω0t c† − eiω0t c). (1)

Here, h̄ is the reduced Planck constant; c†(c) and m†(m) are
the creation (annihilation) operators of the cavity photons and
magnons with eigenfrequencies ωc and ωm, respectively; g is
the coupling rate between the cavity photons and magnons,
where the rotating-wave approximation has been employed;
and � and ω0 are the strength and frequency of the continu-
ous driving microwave. The last term in Eq. (1) will not be
included for the pulse excitation scenario.

In order to incorporate the dissipation effect microscop-
ically, we assume that the cavity photons and magnons are

independently coupled to a corresponding thermal bath [71].
The dynamics of this system will then be governed by the
quantum master equation for the reduced density matrix ρ

(Appendix A):

dρ

dt
= 1

ih̄
[H, ρ] + L{ρ}. (2)

Here, L{ρ} is the Lindblad operator, where L{ρ} =∑
o=c,m[κo(1 + no)(2oρo† − {o†o, ρ}) + κono(2o†ρo −

{oo†, ρ})]; nc(nm) is the average number of thermal cavity
photons (magnons) with frequency ωc (ωm) for the thermal
bath with temperature T ; and κc and κm are the damping rates
for the cavity photons and magnons. Once Eq. (2) is solved,
the correlation functions 〈c†pcqm†rms〉 to arbitrary order
(p, q, r, s) of the operators c†, c, m†, and m can be obtained
for the cavity magnon-polariton system. Here, 〈O〉, taking the
form Tr[ρO], is the quantum statistical average of a generic
operator O over the density matrix ρ.

In terms of the coherent states |α〉 and |β〉 for the cav-
ity photons and magnons, respectively, the density matrix ρ

can be expressed as ρ = ∫
d2αd2βP (α, β )|α, β〉〈α, β|. The

quasiprobability distribution function P (α, β ) will then sat-
isfy the Fokker-Planck equation (Appendix B)

∂P
∂t

= iωc
∂

∂α
(αP ) + iωm

∂

∂β
(βP ) + ig

(
β

∂

∂α
+ α

∂

∂β

)

−�e−iω0t ∂

∂α
P + κc

∂

∂α
(αP ) + κm

∂

∂β
(βP )

+ κcnc
∂2

∂α∂α∗P + κmnm
∂2

∂β∂β∗P + H.c. (3)

Then the expectation value O can be further expressed as

〈O〉 =
∫

d2αd2βP (α, β, t )〈α, β|O|α, β〉. (4)

In addition to solving the Fokker-Planck equation (3) di-
rectly, the quasiprobability distribution function P (α, β, t )
can also be obtained by simulating the stochastic differential
equations for α and β [44]:

dα = (−iωcα − igβ + �e−iω0t − κcα)dt

+
√

κcnc(dW1 + idW2), (5)

dβ = (−iωmβ − igα − κmβ )dt

+
√

κmnm(dW3 + idW4), (6)

Here, dWi (i = 1, 2, 3, and 4) are independent Wiener pro-
cesses, whose increasements satisfy the Gaussian distribution
with expectation value 0 and variance dt . The statistical
assembles of quantum trajectories of α and β generated
by Eqs. (5) and (6) will give the quasiprobability distribu-
tion function P (α, β, t ). This so-called “quantum trajectory
method” can be more efficient from the computational aspect,
although these two methods are mathematically equivalent
[44].

Based on the Fokker-Planck equation (3), it is also possible
to get the dynamical equations for the correlation functions of
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cavity-photon and magnon operators. For example, the time
derivative of 〈c〉 can be expressed as ∂

∂t 〈c〉 = ∫
d2αd2β ∂P

∂t α,
according to Eq. (4). By substituting the expression of ∂P

∂t
given by Eq. (3) and performing the integrations over α and
β, one will get

∂

∂t
〈c〉 = −iωc〈c〉 − ig〈m〉 − κc〈c〉 + �e−iω0t . (7)

Similarly, the equation for 〈m〉 will be

∂

∂t
〈m〉 = −iωm〈m〉 − ig〈c〉 − κm〈m〉. (8)

In fact, Eqs. (7) and (8) describe the dynamics of the coherent
components in cavity photons and magnons, respectively.

The equations for arbitrary-order correlation functions
〈c†pcqm†rms〉 can also be derived in the same way. Using the
fact ∂〈O〉

∂t = ∫
d2αd2β ∂P

∂t (α, β, t )〈α, β|O|α, β〉, we get

∂

∂t
〈c†pcqm†rms〉 = [i(p − q)ωc − κc(p + q) + i(r − s)ωm − κm(r + s)]〈c†pcqm†rms〉

+ ig(p〈c†p−1cqm†r+1ms〉 − q〈c†pcq−1m†rms+1〉 + r〈c†p+1cqm†r−1ms〉 − s〈c†pcq+1m†rms−1〉)

+ p�eiω0t 〈c†p−1cqm†rms〉 + q�e−iω0t 〈c†pcq−1m†rms〉
+ 2pqκcnc〈c†p−1cq−1m†rms〉 + 2rsκmnm〈c†pcqm†r−1ms−1〉. (9)

Notice that p, q, r, and s are non-negative integers, and
the terms with negative exponents on the right-hand side of
Eq. (9) should vanish. Therefore, the higher-order correlation
functions will be dependent on the lower-order correlation
functions hierarchically.

The Fokker-Planck equation (3), stochastic differential
equations (5) and (6), and the hierarchical equations (9) are
the central results to describe the driven dissipative quantum
dynamics in cavity magnon-polariton systems. In the follow-
ing, this theoretical approach is exploited to investigate the
average number and the second-order quantum coherence for
cavity photons and magnons in two experimental scenarios.

III. RESULTS AND DISCUSSIONS

A. Average number of cavity photons and magnons

Existing experiments on the cavity magnon-polariton sys-
tem have focused on the power spectrum of the microwave
field, which is proportional to the average number of mi-
crowave photons 〈c†c〉 in the cavity. By setting suitable
integers (p, q, r, s) for Eq. (9), a group of coupled equations
for 〈c†c〉, 〈m†m〉, 〈cm†〉, 〈c†m〉, 〈c†〉, 〈c〉, 〈m†〉, and 〈m〉 can be
obtained as

∂

∂t
〈c†c〉 = −ig〈c†m〉 + ig〈cm†〉 + �e−iω0t 〈c†〉 + �eiω0t 〈c〉

− 2κc〈c†c〉 + 2κcnc, (10)

∂

∂t
〈m†m〉 = ig〈c†m〉 − ig〈cm†〉 − 2κm〈m†m〉 + 2κmnm,

(11)

∂

∂t
〈c†m〉 = iωc〈c†m〉 − iωm〈c†m〉 − ig〈c†c〉 + ig〈m†m〉

+�eiω0t 〈m〉 − κc〈c†m〉 − κm〈c†m〉, (12)

∂

∂t
〈cm†〉 = −iωc〈cm†〉 + iωm〈cm†〉 + ig〈c†c〉 − ig〈m†m〉

+�e−iω0t 〈m†〉 − κc〈cm†〉 − κm〈cm†〉. (13)

One can see that the average number of thermal cavity photons
and magnons is involved here.

If the cavity is continuously driven by the external mi-
crowave field, the dynamics of the system will become
stationary after a long time. In this experimental scenario, the
solution of Eqs. (7) and (8) can be written as 〈c〉(t ) = α0e−iω0t

and 〈m〉(t ) = β0e−iω0t , with the amplitudes

α0 = − i�(ω0 − ωm + iκm)

(ω+ − ω0)(ω− − ω0)
, (14)

β0 = − i�g

(ω+ − ω0)(ω− − ω0)
. (15)

Here, ω± are the eigenfrequencies of the two branches of cav-
ity magnon-polariton modes, where ω± = ωc+ωm

2 − i κc+κm
2 ±√

( ωc−ωm
2 − i κc−κm

2 )2 + g2. Furthermore, the average number
of cavity photons and magnons will become constant in this
case. Specially, the solutions of Eqs. (10) and (11) will give

〈c†c〉 = |α0|2 + (1 − γm)nc + γmnm, (16)

〈m†m〉 = |β0|2 + (1 − γc)nm + γcnc, (17)

where γm and γc are

γm = g2κm(κc + κm)

g2(κc + κm)2 + κcκm(κc + κm)2 + κcκm(ωm − ωc)2
,

γc = g2κc(κc + κm)

g2(κc + κm)2 + κcκm(κc + κm)2 + κcκm(ωm − ωc)2
.

One can find that both the drive source and thermal bath
affect the average number of cavity photons and magnons.
Figure 1(b) further shows 〈c†c〉 as a function of the bias mag-
netic field B and the driving frequency ω0. The anticrossing
of two branches of the cavity photons clearly indicates the
formation of two magnon-polariton modes, which has been
widely observed in previous experiments [9].

Besides the level repulsion observed in the continuous
drive scenario, Rabi-like oscillation behavior is also observed
in the microwave power spectrum in the pulse excitation
scenario [6,38,70]. Figure 1(c) shows the transient dynamics
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of 〈c†c〉 in the cavity after a short pulsive excitation, which
have been obtained by solving the Fokker-Planck equation
(3) based on the quantum trajectory method. The system
parameters are the same as in Fig. 1(b) without the driving
term, and the initial excitation is taken into account by in-
jecting 108 coherent microwave photons. For a rectangular
pulse with frequency ω0/2π = 7.875 GHz and a duration of
1 ns, the corresponding microwave power is estimated to be
−32.8 dBm.

The Rabi-like oscillation of 〈c†c〉 in Fig. 1(c) can be simply
understood from Eqs. (7) and (8) by setting � = 0. With the
initial conditions 〈c〉(0) = 〈c〉0 and 〈m〉(0) = 0, the solution
of 〈c〉(t ) and 〈m〉(t ) will be the linear combination of the two
cavity magnon-polariton modes, namely,( 〈c〉(t )

〈m〉(t )

)
=

∑
i=+,−

γi

(
αi

βi

)
e−iωit . (18)

Here, (α±
β±) = 1√

(ω±−ωc )2+κ2
c +g2

( g
ω± − ωc + iκc

) are the two normal-

ized modes of cavity magnon-polaritons, and the coefficients
γ± are determined to be γ± = ±β∓〈c〉0

α+β−−α−β+
. In the strong-

coupling case κc, κm � g, the contribution of 〈c〉(t ) and
〈m〉(t ) to the average number of cavity photons and magnons
will approximately be

|〈c〉(t )|2 =|〈c〉0|2[A + B + 2C cos(�ωt )]e−2κt , (19)

|〈m〉(t )|2 =|〈c〉0|2C[2 − 2 cos(�ωt )]e−2κt . (20)

Here, �ω =
√

(ωc − ωm) + 4g2 is the frequency difference
between the two cavity magnon-polariton modes, and κ =
κc+κm

2 is the avarage damping rate of the whole system. The

coefficients A, B, and C are expressed as A = |α+β−|2
|α+β−−α−β+|2 ,

B = |α−β+|2
|α+β−−α−β+|2 , and C = |α+α−|2

|α+β−−α−β+|2 = |β+β−|2
|α+β−−α−β+|2 .

Equations (19) and (20) suggest that the Rabi-like oscilla-
tion of cavity photon numbers is caused by the interference
effect between the two dissipative magnon-polariton modes.
The oscillation frequency depends on the frequency differ-
ence between these two modes, which is at a minimum for
the zero-detuned bias magnetic field B = 281.25 mT. Due to
the dissipation effect, the injected microwave photons will
gradually decay and the whole system will reach thermal
equilibrium. The oscillatory decay of 〈c†c〉 and 〈m†m〉 at zero
detuning is further plotted in Fig. 1(d), which shows the in-
terconversion between the average number of cavity photons
and magnons. The sharp dips suggest that nearly all the cavity
photons will be converted into magnons. It is noted that the
proportion of cavity photons participating in the oscillation
reaches a maximum when ωm = ωc, and it will reduce with a
strongly detuned bias magnetic field. This is characterized by
the ratio 2C

A+B , which will be 100% at the zero-detuned bias
magnetic field and will become smaller at larger-detuned bias
magnetic fields.

B. Second-order quantum coherence

The cavity photons (magnons) will be either “coher-
ent” or “incoherent” depending on whether their phases are
locked to give nonzero 〈c〉 (〈m〉) or not [9]. Although the

formation of cavity magnon-polaritons has been confirmed
by observing level repulsion and Rabi-like oscillation in the
microwave power spectrum, no information about the co-
herent and incoherent components of the cavity photons or
magnons in these dynamical processes can be extracted by
merely measuring the first-order correlation function. Hence,
we further investigate the second-order quantum coherence
of the cavity photons and magnons, which are characterized
by the functions g(2)

pho(0) = 〈c†c†cc〉/〈c†c〉2 and g(2)
mag(0) =

〈m†m†mm〉/〈m†m〉2. The g(2) function has been extensively
used to characterize the intensity correlation for a quantum
optical field [43–45]. In particular, a single-mode thermal field
will have g(2)(0) = 2 and an optical field in the coherent state
will have g(2)(0) = 1, even though the two fields may have
the same average number of photons. Furthermore, g(2)(0)
can be less than 1 for nonclassical light [43–45]. Measuring
the second-order quantum coherence could certainly provide
indispensable knowledge about the quantum dynamics in the
cavity magnon-polariton system.

Figures 2(a) and 2(b) show the transient dynamics of
g(2)

pho(0) and g(2)
mag(0) after a pulse excitation as a function of the

bias magnetic field B, which are calculated from the quantum
trajectory method with the same parameters as in Fig. 1(c).
Unlike the oscillations of 〈c†c〉 and 〈m†m〉, which reflect the
exchange of energy between cavity photons and magnons, the
oscillations of g(2)

pho(0) and g(2)
mag(0) indicate the periodic mod-

ulation of these two bosonic fields between the coherent state
and the thermal state. After the cavity photons are coherently
excited by the initial pulse, the coherent component between
the cavity photons and magnons will be interconverted due to
their strong coupling, as suggested by Eqs. (19) and (20). The
oscillation in Figs. 2(a) and 2(b) is not obviously seen in the
beginning, where the coherent component is dominant over
the incoherent component, until it is reduced by the dissipa-
tion effect of the thermal bath. Figure 2(a) further shows that
the coherent component of the cavity photons will be dom-
inant for a longer time under a more-detuned bias magnetic
field, since only a small proportion of it will be involved in
the interconversion with the magnons. Therefore, significant
oscillation of second-order quantum coherence will become
obvious only if the coherent component is comparable to the
thermal counterpart in the two bosonic fields.

The competition between coherent and incoherent compo-
nents in the transient dynamics of the cavity magnon-polariton
system is further investigated for the zero-detuned bias mag-
netic field B = 281.25 mT. With fixed bath temperature T =
300 K, Figs. 2(c) and 2(d) show the periodic modulations of
the cavity photons and magnons between the coherent state
and thermal state after 108, 106, or 104 cavity photons are
coherently injected. The corresponding microwave power will
be −32.8, −52.8, and −72.8 dBm for a rectangular pulse
with a frequency of ω0/2π = 7.875 GHz and a duration of
1 ns. Initially, the magnons are still in the thermal state with
g(2)

mag(0) = 2, which causes a peak at t = 0 in Fig. 2(d). The
more microwave photons are injected, the longer the time
during which the coherent component can suppress the in-
coherent component, as indicated by the larger number of
cycles with purely coherent states of the cavity photons and
magnons. On the other hand, the incoherent component of
the two bosonic fields can be tuned by the thermal bath.
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FIG. 2. The transient dynamics of the second-order quantum co-
herence after an initial pulse excitation. (a) g(2)

pho(0) and (b) g(2)
mag(0) as

functions of the bias magnetic field B, with 108 injected microwave
photons and a bath temperature of T = 300 K. The time evolution
of (c) g(2)

pho(0) and (d) g(2)
mag(0) for different numbers of injected mi-

crowave photons, with a zero-detuned bias magnetic field of B =
281.25 mT and a bath temperature of T = 300 K. The time evolution
of (e) g(2)

pho(0) and (f) g(2)
mag(0) for different bath temperatures, with the

zero-detuned bias magnetic field B = 281.25 mT and 104 microwave
photons injected. The other simulation parameters are the same as
those in Figs. 1(c) and 1(d).

With 104 injected photons, more cycles with purely coherent
photon and magnon states can be recovered by decreasing
the bath temperature from 300 K to 1 K [see Figs. 2(e) and
(f)]. Furthermore, the maxima of g(2)

pho(0) and g(2)
mag(0) have

the same time offset as 〈c†c〉 and 〈m†m〉 in Fig. 1(d), since
only the coherent components of these two bosonic fields will
participate in the interconversion process. Our results thus
demonstrate the dynamical control of second-order quantum
coherence in the cavity magnon-polariton system by engineer-
ing the microwave pulse or the thermal bath.

The second-order quantum coherence in the continuous
drive scenario can also be tuned by the drive source and
the thermal bath, as shown in Fig. 3 by numerically solving
Eq. (9) at the zero-detuned bias magnetic field. Generally,
the two bosonic fields will transition from a thermal state
to a coherent state when the driving strength is continuously
increased and the coherent component becomes dominant [see
Figs. 3(a) and 3(b)]. Moreover, the critical driving strength
for the transition is lowest if the driving frequency is in

FIG. 3. The second-order quantum coherence in the continuous
drive scenario. (a) g(2)

pho(0) and (b) g(2)
mag(0) as functions of the driving

strength for different driving frequencies, with a zero-detuned bias
magnetic field of B = 281.25 mT and a bath temperature of T =
300 K. (c)g(2)

pho(0) and (d) g(2)
mag(0) as functions of the bath temperature

for different driving frequencies, with a zero-detuned bias magnetic
field of B = 281.25 mT and a driving strength of �/2π = 108 Hz.
The other simulation parameters are the same as those in Fig. 1(b).

resonance with either of the cavity magnon-polariton modes
(7.865 or 7.885 GHz here). For a given driving strength of
�/2π = 108 Hz, Figs. 3(c) and 3(d) show the transition from
the coherent state to the thermal state if the bath temperature is
increased and the incoherent component becomes dominant.
Once again, the second-order quantum coherence is most ro-
bust against the thermal fluctuations when either of the cavity
magnon-polariton modes is resonantly excited. Furthermore,
the behaviors of the cavity photons and magnons are asym-
metric if the driving frequency ω0/2π = ωc/2π = ωm/2π =
7.875 GHz [see the dotted lines in Figs. 3(a)–3(d)].

The results in Fig. 3 can be explained by the analytical
expressions of the second-order quantum coherence, where
g(2)

pho = (|α0|2+2n)2−2n2

(|α0|2+n)2 and g(2)
mag = (|β0|2+2n)2−2n2

(|β0|2+n)2 . Here, α0 and
β0 are given by Eqs. (14) and (15), and one has nc = nm ≡
n at the zero-detuned bias magnetic field. Therefore, when
|α0|2 	 n and |β0|2 	 n for large drive strength or low bath
temperature, the second-order quantum coherence functions
g(2)

pho(0) and g(2)
mag(0) will be nearly 1; in contrast, they will be

nearly 2 if |α0|2 � n and |β0|2 � n. While for given driving
strength and bath temperature, |α0| and |β0| will be largest
when ω0 = ω+ or ω0 = ω−. Besides, when ω0 = ωm, the ratio
|α0|/|β0| = κm/g, which explains the asymmetric behavior
between g(2)

pho(0) and g(2)
mag(0).

We have also studied the dependence of second-order
quantum coherence on the bias magnetic field and the driving
frequency with given driving strength or bath temperature,
as shown in Figs. 4 and 5, respectively. When the driving
strength is weak, the incoherent components of cavity photons
and magnons will be dominant, and these two bosonic fields
are nearly in the thermal state in the entire parameter space,
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FIG. 4. Second-order coherence functions g(2)
pho(0) and g(2)

mag(0) as functions of the bias magnetic field B and the driving frequency ω0 in the
continuous drive scenario, with five different driving strengths: (a) �/2π = 107 Hz, (b) �/2π = 108 Hz, (c) �/2π = 109 Hz, (d) �/2π =
1010 Hz, and (e) �/2π = 2 × 1012 Hz. Here, the bath temperature is fixed as T = 300 K. The other simulation parameters are the same as
those in Fig. 1(b).

where g(2)
pho(0) ≈ 2 and g(2)

mag(0) ≈ 2 [see Fig. 4(a)]. With larger
driving strength, the coherent components of cavity photons
and magnons will be enhanced, especially when the driv-
ing frequency is resonant with the cavity magnon-polariton
modes. One can see that the level repulsion will also appear
in the second-order quantum coherence [see Fig. 4(b)]. When
the driving strength is further increased, the coherent compo-
nents will be dominant in more parameter space, as shown in
Fig. 4(c). Finally, the level repulsion will vanish again when
the drive strength is very strong, since the cavity photons
and magnons will be nearly in the coherent state in most
of the parameter space, where g(2)

pho(0) ≈ 1 and g(2)
mag(0) ≈ 1

[see Figs. 4(d) and 4(f)]. On the other hand, the feature of
level repulsion will also be drastically modified when the
bath temperature is continuously decreased (see Fig. 5). As
the incoherent components of cavity photons and magnons
are suppressed at lower bath temperatures, these two bosonic
fields will get closer to the coherent state. Therefore, the
evolutions of level repulsion in the second-order quantum

coherence have directly reflect the competition between the
coherent and incoherent components in these two bosonic
fields.

C. Experimental proposal

Second-order quantum coherence is usually measured in
the spirit of the Hanbury Brown–Twiss experimental setup
[42]. For an optical field, this can be performed with
single-photon detectors. However, the detection of a single
microwave photon is challenging, since the energy of a mi-
crowave photon is about 4 or 5 orders of magnitude lower than
that of an optical photon. Instead, experimental techniques
with linear detectors [72] have been developed to measure
the second-order coherence function of a microwave field
in circuit QED systems [47–53], as schematically shown in
Fig. 6. Here, a 90◦ hybrid coupler is used as a beam splitter
to separate the microwave field b emitted from the cavity
into two modes c and d , which will be amplified afterwards.

FIG. 5. Second-order coherence functions g(2)
pho(0) and g(2)

mag(0) as functions of the bias magnetic field B and the driving frequency ω0 in the
continuous drive scenario, with five different bath temperatures: (a) T = 300 K, (b) T = 100 K, (c) T = 50 K, (d) T = 10 K, and (e) T = 1 K.
Here, the driving strength is fixed as �/2π = 108 Hz. The other simulation parameters are the same as those in Fig. 1(b).
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FIG. 6. A schematic diagram of the experimental setup to mea-
sure the second-order quantum coherence of the microwave field.
Here, the microwave field b emitted from the cavity is split into c
and d by a 90◦ hybrid coupler. The two output modes c and d are
amplified first, and then IQ mixers are used to perform the quadrature
measurement on c and d . This gives the complex envelopes Sc(t ) and
Sd (t ), which can be used to extract the correlation functions of the
microwave field [72].

Then in-phase and quadrature (IQ) mixers will be used to
perform the quadrature measurement on c and d modes, which
gives the complex envelopes Sc(t ) and Sd (t ). The correlation
functions can be calculated from the measured Sc(t ) and Sd (t )
[72]. In the past, this technique has been successfully applied
to obtain the second-order correlation functions of the mi-
crowave field in circuit QED systems [47–53]. We anticipate
that the same experimental techniques can be exploited to
investigate higher-order quantum correlation effects in cavity
magnon-polariton systems.

IV. CONCLUSION

In conclusion, the driven-dissipative dynamics in a cavity
magnon-polariton system has been theoretically studied in a
full quantum level. The Fokker-Planck equation, stochastic
differential equations, and a group of hierarchical equations
have been established to give the arbitrary-order correlation
functions of cavity photons and magnons. The theoretical
approach has successfully reproduced the remarkable phe-
nomena of level repulsion and Rabi-like oscillation observed
in the microwave power spectrum. Furthermore, the second-
order coherence functions of cavity photons and magnons
have been thoroughly investigated for two typical experimen-
tal scenarios. The results reveal the competition between the
coherent and incoherent components in these two bosonic
fields, which can be systematically tuned by engineering the
external drive source and the thermal bath. Therefore, measur-
ing second-order quantum coherence with currently available
experimental techniques could provide another window to
observe the rich dynamics in this hybrid quantum system. It
would also be interesting to search for nonclassical states for
cavity photons and magnons by extending the current work to
the dissipative coupling, ultrastrong coupling, or nonlinearly
interacting cases, which are of fundamental and practical im-
portance for quantum cavity magnonics.
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APPENDIX A: QUANTUM MASTER EQUATION

In this section, we derive the quantum master equation for
the reduced density matrix of the cavity magnon-polariton
system. The dissipation of the cavity photons and magnons
arises when they are coupled to the thermal bath. We write the
Hamiltonan for the whole system as

H = H + HB + V, (A1)

where

H = h̄ωcc†c + h̄ωmm†m + h̄gc†m + h̄gm†c

+ ih̄�(c†e−iω0t − ceiω0t ),

HB =
∑

i

h̄ωia
†
i ai +

∑
j

h̄ω jb
†
jb j,

V =
∑

i

gc,i(c
†ai + a†

i c) +
∑

j

gm, j (m
†b j + b†

jm).

Here, H describes the cavity magnon-polariton system under
consideration; HB describes the thermal bath for cavity pho-
tons and magnons, respectively, which consists of an infinite
set of harmonic oscillators with frequencies {ωa,i} and {ωb, j};
and V describes the coupling interaction between the system
and the thermal bath. The total density matrix ρT for the whole
system will satisfy the Liouville-von Neumann equation

dρT (t )

dt
= 1

ih̄
[H(t ), ρT (t )]

= 1

ih̄
[H(t ), ρT (0)]

+
(

1

ih̄

)2 ∫ t

0
[H(t ), [H(τ ), ρT (τ )]dτ. (A2)

In the interaction picture, Eq. (A2) will become

dρ int
T (t )

dt
= 1

ih̄

[
V (t ), ρ int

T (0)
]

+
(

1

ih̄

)2 ∫ t

0
[V (t ),

[
V (τ ), ρ int

T (τ )
]
dτ. (A3)

Here, we have denoted ρ int
T (t ) = U †(t, 0)ρT (t )U (t, 0) and

V (t ) = U †(t, 0)V (t )U (t, 0) using the unitary evolution oper-
ator U (t, 0) = US (t, 0)UB(t, 0), where US (t, 0) = e

1
ih̄

∫ t
0 H (τ )dτ

and UB(t, 0) = e
1
ih̄

∫ t
0 HB (τ )dτ .

The reduced density matrix ρ int for the cavity magnon-
polariton system can be obtained by tracing over the degree of
freedom of the thermal bath, namely, ρ int = TrB[ρ int

T ]. There-
fore, the quantum master equation for ρ int can be obtained
from Eq. (A3) as

dρ int

dt
= 1

ih̄
TrB

[
V (t ), ρ int

T (0)
]

+
(

1

ih̄

)2

TrB

∫ t

0
[V (t ),

[
V (τ ), ρ int

T (τ )
]
dτ. (A4)

With the Born approximation ρT (t ) = ρ(t ) ⊗ ρB(0),
the first term in the right-hand side of Eq. (A4)
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will be

TrB
[
V (t ), ρ int

T (0)
] = TrB(U †

S U †
BV (t )ρT (0)USUB − U †

S U †
BρT (0)V (t )USUB)

=
∑

i

gc,i(U
†
S c†ρUSTrB[aiρB] + U †

S cρUSTrB[a†
i ρB] − U †

S ρc†USTrB[ρBai] − U †
S ρcUSTrB[ρBa†

i ])

+
∑

j

gm, j (U
†
S m†ρUSTrB[b jρB] + U †

S mρUSTrB[b†
jρB] − U †

S ρm†USTrB[ρBb j] − U †
S ρmUSTrB[ρBb†

j]).

(A5)

This term will vanish because one has TrB[aiρB] = TrB[a†
i ρB] = TrB[b jρB] = TrB[b†

jρB] = 0 for the thermal bath.
For the parameter range we study here, the coupling term and drive term in H will be much smaller than the terms of cavity

photons and magnons. Therefore, the time-evolution operator can be further approximated as US (t, 0) ≈ e−iωcc†ct e−iωmm†mt . Then
the second term in the right-hand side of Eq. (A4) will describe the damping of the cavity photons and magnons due to the
thermal bath individually, which will give [43]

dρ int

dt
= −κcnc(cc†ρ int − 2c†ρ intc + ρ intcc†) − κc(nc + 1)(c†cρ int − 2cρ intc† + ρ intc†c)

− κmnm(mm†ρ int − 2m†ρ intm + ρ intmm†) − κm(nm + 1)(m†mρ int − 2mρ intm† + ρ intm†m). (A6)

Here, κc (κm) is the damping rate for cavity photons (magnons), and nc(nm) is the average number of the quanta at the frequency
ωc(ωm) in the thermal bath [43]. Transforming the result above back to the Schrödinger picture, we get the Lindblad form of the
quantum master equation (2) in the main text.

APPENDIX B: FOKKER-PLANCK EQUATION

In this section, we describe how to get the Fokker-Planck equation from the quantum master equation. In the coherent
state representation for cavity photons and magnons |α, β〉, the reduced density matrix ρ can be expressed in terms of the
quasiprobability distribution function P (α, β ) as [43]

ρ =
∫

d2αd2βP (α, β )|α, β〉〈α, β|. (B1)

Substituting the expression (B1) into the left and right sides of Eq. (2), we have
∫

d2αd2β
∂P
∂t

|α, β〉〈α, β|

=
∫

d2αd2βP{−iωc(c†c|α, β〉〈α, β| − |α, β〉〈α, β|c†c) − iωm(m†m|α, β〉〈α, β| − |α, β〉〈α, β|m†m)

− g(c†m|α, β〉〈α, β| − |α, β〉〈α, β|c†m) − g(m†c|α, β〉〈α, β| − |α, β〉〈α, β|m†c)

+�(c†e−iω0t |α, β〉〈α, β| − ceiω0t |α, β〉〈α, β| − |α, β〉〈α, β|c†e−iω0t + |α, β〉〈α, β|ceiω0t )

− κc(1 + nc)(c†c|α, β〉〈α, β| − 2c|α, β〉〈α, β|c† + |α, β〉〈α, β|c†c)

− κcnc(|α, β〉〈α, β|cc† − 2c†|α, β〉〈α, β|c + cc†|α, β〉〈α, β|)
− κm(1 + nm)(m†m|α, β〉〈α, β| − 2m|α, β〉〈α, β|m† + |α, β〉〈α, β|m†m)

− κmnm(|α, β〉〈α, β|mm† − 2m†|α, β〉〈α, β|m + mm†|α, β〉〈α, β|)}. (B2)

Using the following rules for the operators c, c†, m, and m† acting on the coherent state |α, β〉[43],

c|α, β〉〈α, β| = α|α, β〉〈α, β|, |α, β〉〈α, β|c† = |α, β〉〈α, β|α∗,

m|α, β〉〈α, β| = β|α, β〉〈α, β|, |α, β〉〈α, β|m† = |α, β〉〈α, β|β∗,

c†|α, β〉〈α, β| =
(

∂

∂α
+ α∗

)
|α, β〉〈α, β|, |α, β〉〈α, β|c =

(
∂

∂α∗ + α

)
|α, β〉〈α, β|,

m†|α, β〉〈α, β| =
(

∂

∂β
+ β∗

)
|α, β〉〈α, β|, |α, β〉〈α, β|m =

(
∂

∂β∗ + β

)
|α, β〉〈α, β|,

we get the Fokker-Planck equation (3) for P in the main text.
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