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Resonant optical topological Hall conductivity from skyrmions
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We study the high-frequency Hall conductivity in a two-dimensional model of conduction electrons coupled to
a background magnetic skyrmion texture via an effective Hund’s coupling term. For an ordered skyrmion crystal,
a Kubo formula calculation using the basis of skyrmion crystal Chern bands reveals a resonant Hall response
at a frequency set by the Hund’s coupling: h̄ωres ≈ JH . A complementary real-space Kubo formula calculation
for an isolated skyrmion in a box reveals a similar resonant Hall response. A linear relation between the area
under the Hall resonant curve and the skyrmion density is discovered numerically and is further elucidated
using a gradient expansion which is valid for smooth textures and a local approximation based on a spin-trimer
calculation. We point out the issue of distinguishing this skyrmion contribution from a similar feature arising
from spin-orbit interactions, as demonstrated in a model for Rashba spin-orbit coupled electrons in a collinear
ferromagnet, which is analogous to the difficulty of unambiguously separating the dc topological Hall effect
from the anomalous Hall effect. The resonant feature in the high-frequency topological Hall effect is proposed
to provide a potentially useful local optical signature of skyrmions via probes such as scanning magneto-optical
Kerr microscopy.

DOI: 10.1103/PhysRevB.104.134419

I. INTRODUCTION

Originally proposed in particle physics [1], skyrmions are
realized in many condensed matter systems as noncoplanar
magnetic swirls with a nontrivial integer topological invari-
ant. The topological nature of skyrmions provides them with
a sense of robustness against small perturbations, which,
together with their small sizes, has made them promising
candidates for realizing future dense-data-storage technol-
ogy [2–5]. The stabilization, manipulation, and detection of
skyrmions have thus emerged as a central theme which has
attracted immense research interest in the fundamental and
applied aspects of skyrmion physics [5]. Skyrmions have
been found in both isolated and crystalline forms in a wide
range of magnetic solids [6] including quantum Hall systems
[7,8], noncentrosymmetric magnetic systems [9–16], antifer-
romagnets [17], and frustrated magnets [18–21]. Recently,
skyrmions have even been proposed in two-channel Kondo
lattice systems, where two channels of conduction electrons
are Kondo coupled symmetrically to a lattice of Kondo
spins [22]. At low temperature, the channel SU(2) symme-
try is spontaneously broken by the Kondo effect, leading to
a “ferromagnetic” ordering of a spinorlike order parameter.
Skyrmions then appear as topological defects in the “ferro-
magnetic” phase [22], and they have been shown to support
movable Majorana zero modes, providing a new, potential
platform for realizing topological quantum computation [23].
Skyrmions have also been proposed to drive superconductiv-
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ity in twisted bilayer graphene [24], and there has been interest
in studying skyrmions at topological insulator (TI) surfaces
and in graphene [25–34].

In experiments, magnetic skyrmions can be detected
directly by visualizing the real-space profile of their out-of-
plane and in-plane spin components using magnetic force
microscopy [16,35,36] and Lorentz transmission electron mi-
croscopy [13,21,37], respectively. Other techniques suitable
for detecting and studying crystals of skyrmions include
x-ray [19–21] and neutron diffraction [11,12]. In metallic
magnets, the noncoplanarity of the skyrmion spin texture im-
prints a real-space Berry phase on the conduction electrons
[38,39]. The extra Berry phase can be regarded as an emer-
gent magnetic field seen by the electrons, thereby inducing
an additional Hall effect known as the topological Hall ef-
fect (THE), first observed in MnSi [9,10], which provides an
indirect transport probe of skyrmions. In addition to charge
transport, the real-space Berry phase also affects heat flow
through topological Nernst [40,41] and thermal Hall effects
[42]. However, there is growing evidence of examples in thin
films where the ostensible appearance of THE may in fact
be an additional Hall effect contribution stemming from in-
homogeneous magnetic domains and domain wall scattering
[43–49]. Hence one generally needs complementary imaging
probes to confirm the existence of skyrmions.

While the impact of skyrmions on electronic charge and
heat transport properties has been actively studied, their
impact on electronic optical properties remains less ex-
plored. To fill in this gap, we examine in this paper the
nonzero-frequency Hall conductivity in a model of conduc-
tion electrons coupled to skyrmions via an effective Hund’s
coupling JH .
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The band structure of electrons coupled to local moments
is conveniently divided into two sectors containing electronic
states whose spins are locally parallel or antiparallel to the
underlying skyrmion spins. For a skyrmion crystal (SkX),
each sector supports bands with nontrivial Chern numbers
as a result of the real-space Berry phase; this Berry phase
can be regarded as a fictitious Aharonov-Bohm flux which
leads to an effective electronic Hofstadter model. We use
the Kubo formula to compute the resulting ac Hall conduc-
tivity, uncovering nontrivial frequency dependence in two
frequency windows. The structure at low frequency is set by
the energy gap between neighboring Chern bands, while the
high-frequency response near h̄ω ≈ JH exhibits a resonance
originating from a large number of intersector spin-flip tran-
sition channels between pairs of Chern bands which disperse
similarly and differ in energy by a similar amount of JH . We
show that the high-frequency resonance is robust, occurring
also for isolated skyrmions, as demonstrated by a real-space
Kubo formula computation for a skyrmion in a box. We pro-
vide an analytical understanding of this resonance through a
smooth-texture approximation and a local spin-trimer calcu-
lation. These show that the area under resonance of Im σxy

scales linearly with the skyrmion density ρsk .
Introducing a Rashba-type spin-orbit coupling (SOC) term

into the electronic tight-binding model and considering a fer-
romagnetic spin texture, we show that SOC also produces
a similar Hall effect resonance. The analogy between the
Rashba spin-orbit coupling and the coupling to skyrmions
may be understood as two analogous ways to mix the orbital
and the spin degree of freedom of the electron [50–52]. While
the mixing takes place in momentum space for the Rashba
spin-orbit coupling, it occurs in real space for the coupling
to skyrmions. We will discuss how the momentum-space
SOC affects the manifestation of the resonant topological
Hall effect. Such resonant features in the Hall and Kerr ef-
fects have been previously discussed at charged impurities on
magnetized TI surfaces [53] and for time-reversal-breaking
multipolar magnetic orders in solids [54].

The nontrivial high-frequency topological Hall effect is
expected to be manifest in experiments such as scanning Kerr
microscopy, the magneto-optical Kerr effect, and the Fara-
day effect. Materials hosting a large density of skyrmions,
such as Gd2PdSi3 [19], Gd3Ru4Al12 [20], GdRu2Si2 [21], and
MnGe [12], are likely to be viable candidates for observing
the nonzero-frequency topological Hall effect and its resonant
feature.

The paper is organized as follows. Section II introduces
a triangular-lattice model of conduction electrons coupled to
a spin texture, and the spin textures studied in this paper.
Section III is devoted to properties of the SkX spin tex-
ture, encompassing its electronic band structures, conductivity
spectra featuring the Hall resonance, and the numerical linear
scaling of the area under the resonance with the skyrmion
density. In Sec. IV, this scaling relation is explained by an
analytical expression obtained from a smooth-texture approx-
imation. In Sec. V, we present the study of a “skyrmion in
a box” and show that the resonance is robust and occurs
even when the spin texture contains only a single skyrmion.
Section VI discusses an analytical understanding of how
this resonance occurs even in the minimal setting with three

FIG. 1. Triangular SkX spin texture. (a) Color plot illustrating
the profile of the z component of the spin texture with a hexagonal
unit cell whose width is given by L. Each unit cell contains a Néel
skyrmion with a radius R = L/2. (b) Profile of the in-plane spin
components.

sites, i.e., a spin trimer, hosting a noncoplanar spin config-
uration. Based on this analytical spin-trimer result, we try
to understand the Hall resonance in the SkX case and the
skyrmion-in-a-box case as a local spatial average over triangu-
lar plaquettes. In Sec. VII, we discuss how spin-orbit coupling
in a uniform ferromagnet can also produce a resonance feature
similar to skyrmions, and how it may complicate the issue of
extracting the skyrmion contribution to the resonant optical
Hall response. We conclude in Sec. VIII with a discussion of
how the spatial variation of the imaginary part of the Hall
conductivity at the resonant frequency, using tools such as
scanning Kerr microscopy, might serve as a useful optical
probe of skyrmions and SkX.

II. MODEL

We consider a triangular-lattice model of electrons hopping
on nearest-neighbor bonds, sensing a spin-dependent potential
of a background spin texture {Si} via an effective ferromag-
netic Hund’s coupling JH > 0. The Hamiltonian is given by
[55–57]

H0 = −t
∑
〈i j〉

(c†
iσ c jσ + c†

jσ ciσ ) − JH

∑
i

ŝi · Si, (1)

where ŝi = 1
2 c†

iσ σσσ ′ciσ ′ is the electron spin operator, σ =
(σx, σy, σz ) are the Pauli matrices, and Si is a unit-norm clas-
sical spin vector at site i of the spin texture. We set the lattice
constant of the triangular lattice a = 1.

We consider two configurations to numerically solve for
the electronic properties: (i) a triangular crystal of Néel
skyrmions commensurate with the underlying triangular lat-
tice and (ii) an open-boundary hexagonal box containing one
skyrmion.

Figure 1 illustrates the SkX spin texture with a hexagonal
unit cell of width L containing one Néel skyrmion and enclos-
ing L2 sites. The hexagonal box is obtained by simply cutting
out a single unit cell from the lattice. Within the hexagonal
box (unit cell), the skyrmion texture is defined by a circular
ansatz [58]

Si = ( sin θ (ri) cos φ(ri), sin θ (ri) sin φ(ri ), cos θ (ri)), (2)
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FIG. 2. Band structures corresponding to the SkX with (a) R =
2.5 and (b) R = 10, with JH = 10t . The band structures consist of
Chern bands grouped into a low-energy parallel sector and a high-
energy antiparallel sector. Bold bands illustrate an example of pairs
of similarly dispersing low- and high-energy Chern bands differing
in energy by an amount ∼JH , which leads to a resonant feature in the
ac conductivity at h̄ω ≈ JH as shown later.

where ri = ri − rhex is the position of the ith site relative to
the center rhex of the hexagonal box (unit cell).

θ (ri ) =
{π |ri|

R for |ri| < R

0 otherwise,
(3)

cos φ(ri ) = ri,x

|ri| , sin φ(ri ) = ri,y

|ri| , (4)

where ri,x(y) is the x(y) component of ri.
In the remainder of this paper, we fix the skyrmion radius

R = L/2, with R � 1 for large skyrmions. We will quote the
value of R when discussing variation of the optical response
with skyrmion size.

III. SKYRMION CRYSTAL

In this section, we focus on the properties of a SkX, in-
cluding its electronic bands, high-frequency resonance in the
Hall response, and the scaling of the resonant feature with the
skyrmion density.

A. Electronic bands

Figure 2 shows the band structures corresponding to the
SkX with R = 2.5 in Fig. 2(a) and R = 10 in Fig. 2(b) when
JH = 10t . These bands are shown along high-symmetry lines
of the mini-Brillouin-zone (mini-BZ) obtained from folding
the original BZ of the underlying triangular lattice. Given
the large JH/t � 1, the system is in the adiabatic regime,
where the bands are effectively Zeeman split into a low-
energy sector and a high-energy sector, differing in energy

by JH , corresponding to states where the electron spins are
locally parallel and antiparallel, respectively, to the underlying
skyrmion spins. To highlight this, the energy in Fig. 2 is
measured in units of JH . Each sector has L2 = 4R2 bands,
with a bandwidth W ≈ 9t , so the average energy spacing
between a pair of neighboring bands is W/4R2; for our choice
of JH/t = 10 this corresponds to a level separation ∼JH/4R2.

These bands have nontrivial Chern numbers due to the
real-space Berry phase picked up by electrons as they traverse
the skyrmion texture, which admits an effective description of
the two sectors using generalized Hofstadter models carrying
opposite fluxes [56,59–62]. We find pairs of similarly dispers-
ing Chern bands, one from the parallel sector and the other
from the antiparallel sector, as illustrated by the bold bands in
Fig. 2. They differ in energy by a similar amount of roughly
JH , resulting in a number of optical transition channels at this
energy, which will be shown later to cause a resonance feature
in the ac conductivity at h̄ωres ≈ JH .

The following linear response Kubo formula is used to
study the ac conductivity tensor σαβ (ω) [63,64]:

σαβ = ih̄e2

A
∑
kmn

f (Ekn) − f (Ekm)

Ekm − Ekn

× (vkα )nm(vkβ )mn

h̄ω + iγ + Ekn − Ekm
, (5)

where α, β = x, y and h̄(vkα )nm ≡ 〈kn| ∂H(k)
∂kα

|km〉 is a matrix
element of the velocity operator between the Bloch states
|kn〉 and |km〉 corresponding to the energy eigenvalues Ekn

and Ekm, respectively. H(k) is the Hamiltonian matrix, f is
the Fermi distribution, A is the area of the two-dimensional
(2D) system, and γ is a small broadening. To study the open-
boundary skyrmion in a box, the Kubo formula is modified
into a real-space version where the composite label (k, m)
is replaced with the energy-level label. Similar to the SkX
case, the current operator j = −ev can be obtained from
δH0[A]/δA (see, e.g., Appendix A of Ref. [49] for more de-
tails), where A is the vector potential of the externally applied
field and H0[A] is the Hamiltonian after the Peierls substitu-
tion. In the rest of this paper, we fix parameters γ = 0.05t and
JH = 10t and set the electron filling to 1/6. The main results
can be straightforwardly generalized to other electron fillings,
which is discussed in Sec. IV.

B. Frequency-dependent conductivity in a skyrmion crystal

Figure 3 shows σxy(ω) and σxx(ω) obtained from the Kubo
formula for the SkX with R = 2.5, which corresponds to the
band structure in Fig. 2(a). σxy and σxx exhibit nontrivial fre-
quency dependence in two windows, one at small frequency
set by the average energy gap between neighboring Chern
bands, and the other occurring around JH . The former arises
from intrasector transitions among Chern bands within the
parallel sector, while the latter originates from interband spin-
flip transitions between Chern bands in the parallel sector
and those in the antiparallel sector. The dissipative parts of
the conductivity tensor, Re σxx and Im σxy, can be shown
to track the joint density of states (JDOS) of the optical
transitions ∝ ∑

k

∑
Ekn<μ

∑
Ekm>μ δ(h̄ω − Ekm + Ekn), where

μ is the chemical potential. The nondissipative parts, Im σxx
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FIG. 3. Spectrum of (a) σxy and (b) σxx for a small SkX unit
cell L = 5 with a skyrmion radius R = 2.5 which corresponds to
the band structure in Fig. 2(a). Two windows of nontrivial fre-
quency dependence are seen: (1) a low-frequency regime set by
the average energy gap between neighboring Chern bands and (2) a
high-frequency regime around h̄ω ≈ JH . The former originates from
transitions among Chern bands within the same, parallel-spin sector,
whereas the latter arises from spin-flip transitions across pairs of
Chern bands which disperse similarly and differ in energy by ≈ JH .

and Re σxy, correspondingly exhibit a frequency dependence
consistent with Kramers-Kronig relations given the above dis-
sipative response. In the high-frequency window, the JDOS
peaks at h̄ω ≈ JH as a result of having a number of transition
channels due to the presence of many similarly dispersing
pairs of Chern bands differing in energy by a similar amount
of roughly JH , as mentioned in the previous section. For a SkX
with a small R, the average energy gap W/4R2 is significant, so
that the Chern bands are well separated, and the conductivity
spectrum displays discrete peaks.

Upon increasing the skyrmion size and the corresponding
periodicity of the SkX, the small-frequency window shifts
towards zero as the energy gap between neighboring Chern
bands shrinks. However, the high-frequency transition re-
mains at around JH , being set by the local spin-flip energy
gap. This is illustrated in Fig. 4, which shows σxy(ω) and
σxx(ω) for a SkX with R = 10 whose band structure is given
by Fig. 2(b). Due to the shrunken energy gap between adjacent
levels, the discrete peaks seen earlier have merged with one
another to form a Lorentzian-like resonant curve of JDOS
peaking around JH , which can again be traced back to the
presence of many similarly dispersing pairs of Chern bands.

C. Dependence on JH/t

Upon decreasing JH , the bands at the top of the parallel
sector begin to overlap and hybridize with the bottom bands
of the antiparallel sector. Meanwhile, the feature of having
pairs of similarly dispersing Chern bands becomes weaker for

FIG. 4. Spectrum of (a) σxy and (b) σxx for a larger SkX unit
cell L = 20 and larger-radius skyrmion R = 10, corresponding to the
band structure in Fig. 2(b). While the low-energy response moves
to lower frequency due to the smaller energy separation between
neighboring Chern bands, the large-energy response remains around
h̄ω ≈ JH . Due to the smaller separation between neighboring Chern
bands, the response shows a smooth Lorentzian behavior. The res-
onant peaks in Im σxy and Re σxx near JH originate from spin-flip
transitions involving many pairs of “energy-nested” Chern bands.

those bands that are not involved in the hybridization. The
resonance feature shifts to a smaller frequency ωres follow-
ing the decreasing JH and becomes eventually inseparable
from the low-frequency spectrum. Figure 5 illustrates the
evolution of the resonance feature. For a reasonably large
JH/t , e.g., Fig. 5(b), the resonance feature is fairly isolated
from the low-frequency spectrum, at least for the imaginary
part. For JH/t = 1, the resonance contribution, identifiable
with the Lorentzian-like dip of Im σxy at JH , is still visi-
ble but differs by a sign from that of the adiabatic limit.
The sign change may be caused by the changes in the band
occupations—namely, some “antiparallel sector” bands are
now occupied—and the changes in the wave functions as a
result of a significant hybridization between the parallel and
the antiparallel sector. For correlated transition metal oxides,
we expect t ∼ 200–300 meV while the Hund’s coupling is
JH ∼ 0.7–1 eV, so we expect JH/t ∼ 2–5. For materials such
as MnGe, JH/t ∼ 1 [65]. The rest of this paper focuses on the
adiabatic limit, where the resonance feature is well separated
from the low-frequency spectrum, which enables a tractable
analysis in Sec. IV.

D. Scaling of resonance with skyrmion density

We next examine the scaling of the Hall resonance with
the areal skyrmion density ρsk = 2/

√
3L2 by varying L = 2R.

Figure 6(a) shows the Kubo results for Im σxy near JH , for
L = 20, . . . , 25. As shown in Fig. 6(b), the areas under the
resonant curves in Fig. 6(a) vary linearly with ρsk . In the next
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FIG. 5. σxy spectra for (a) JH/t = 10, (b) JH/t = 5, and
(c) JH/t = 1, illustrating the shift of the Lorentzian-like resonance
feature at h̄ωres ≈ JH to lower frequencies upon decreasing JH . For
small JH/t , the resonance feature becomes inseparable from the
low-frequency spectrum. Here, R = 10.

section, we derive this result using a smooth-texture approxi-
mation on the Kubo formula.

Lastly, it is worth mentioning that it is the imaginary part
of σxy(ω), instead of the real part, that has a direct connection
with the skyrmion density, in contrast with the dc topological
Hall contribution, which is real valued. Moreover, the linear
relation discovered in this paper occurs only after σxy(ω) is
integrated over the frequency rather than at any generic high
frequency. For instance, it is found that Im σxy(ω) at the
resonant frequency JH , though monotonically increasing with
the skyrmion density, deviates from a linear relation even in
the adiabatic regime.

IV. SMOOTH-TEXTURE APPROXIMATION FOR
THE HALL RESONANCE

In this section, we elucidate the Lorentzian-like shape
of the Hall resonance and the linear relation between ρsk

and the area under resonance of Im σxy, which can be es-
timated by applying a smooth-texture approximation on the
Kubo formula. Our main result in this section is that the
area under the resonant imaginary Hall conductivity is given

FIG. 6. (a) Resonant feature in Im σxy near JH from numerical
Kubo calculation for SkXs with varying unit cell size L. (b) Linear
relation between ρsk = 2/

√
3L2 and area under Im σxy resonance

obtained from the curves shown in (a). The value of ρsk = 0.002
corresponds to L = 24.

by

S ≡
∫

dω Imσ res
xy (ω) ≈ e2

h̄2

πt2

JH

Nsk

A F , (6)

where the numerical factor F involves a momentum integral
which depends on the electron filling; we give its explicit form
in Appendix. This result reproduces the linear scaling with
skyrmion density Nsk/A which we have observed numerically
in the previous section; we will see later that a similar numer-
ical scaling is also obtained for a single “skyrmion in a box”
problem.

With somewhat less rigor, we can show that the Hall con-
ductivity near the resonance behaves as

σ res
xy (ω) ≈ −e2

h̄

Nsk

A
t2

JH

F
h̄ω − JH + iγ̃

, (7)

where γ̃ ∝ t is an effective broadening (which decreases
roughly as 1/R with increasing skyrmion size).

The above results are obtained in two steps. We begin
by expressing the Kubo formula in a local basis, where the
spin quantization axis at each site is taken to be the direction
of the skyrmion spin. In a second step, we replace certain
matrix elements by their simplified values for a corresponding
uniform ferromagnet. This second step becomes increasingly
accurate in the limit where the SkX spin texture varies slowly
in space, namely, large L, when the neighboring spins are
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almost parallel. The local basis we use is defined via eigen-
functions of the Hund’s coupling term, so that(

ci↑
ci↓

)
= mi · σ

(
pi

ai

)
, (8)

mi =
(

sin
θi

2
cos φi, sin

θi

2
sin φi, cos

θi

2

)T

, (9)

where pi and ai denote the electron annihilation operators for
electrons at site i whose spin is parallel and antiparallel to Si,
respectively, while θi and φi are defined in Sec. II. In this basis,
the Hamiltonian is

H0 = −JH

∑
i

(p†
i pi − a†

i ai ) + Hpp + Haa + Hap + Hpa,

(10)

Hpp =
∑
〈i j〉

(Tpp,i j p†
i p j + H.c.), (11)

Haa =
∑
〈i j〉

(Taa,i ja
†
i a j + H.c.), (12)

Hpa = H†
ap =

∑
〈i j〉

(Tpa,i j p†
i a j + Tpa, ji p

†
jai ). (13)

The local unitary rotation leads to the spin texture being ab-
sorbed into effective complex hopping amplitudes Ti j . Hpp and
Haa then appear as generalized Hofstadter models of spinless
fermions, p† and a†, which see opposite Berry fluxes as de-
termined by these hopping integrals [56]. These fluxes can be
viewed as an emergent magnetic field, which is responsible for
the topological Hall effect. The hopping integrals are given by

Ti j =
(

Tpp,i j Tpa,i j

Tap,i j Taa,i j

)
= −t

(
cos

(
θi
2

)
cos

( θ j

2

) + e−i(φi−φ j ) sin
(

θi
2

)
sin

( θ j

2

)
e−iφ j cos

(
θi
2

)
sin

( θ j

2

) − e−iφi cos
( θ j

2

)
sin

(
θi
2

)
eiφi cos

( θ j

2

)
sin

(
θi
2

) − eiφ j cos
(

θi
2

)
sin

( θ j

2

)
cos

(
θi
2

)
cos

( θ j

2

) + ei(φi−φ j ) sin
(

θi
2

)
sin

( θ j

2

)
)

.

(14)

The following form of the Kubo formula for the Hall conductivity is useful for the discussion in this section [66]:

σxy(ω) = i

Aω

∑
k

∑
Ekn<μ

∑
Ekm>μ

[ 〈kn| jx |km〉 〈km| jy |kn〉
h̄ω + iγ + Ekn − Ekm

− 〈kn| jy |km〉 〈km| jx |kn〉
h̄ω + iγ − Ekn + Ekm

]
, (15)

where j is the current operator. For large ω > 0 relevant to the resonance, we can drop the second term in the square brackets. In
the local basis, the current operator is j = jpp + jaa + jap + jpa. Near resonance, the optical transitions between the parallel and
antiparallel sectors are dominant, so that jpp + jaa can be neglected. The Kubo formula may thus be approximated by

σ res
xy (ω) ≈ ih̄

AJH

∑
k,m,n

′
[ 〈Pkn| jx

pa |Akm〉 〈Akm| jy
ap |Pkn〉

h̄ω + iγ + EP
kn − EA

km

]
, (16)

where we have replaced the frequency in the prefactor by its
value JH on resonance, and the prime on the sum indicates a
restriction to Ekn < μ and Ekm > μ. The current operators are
explicitly given by

jpa = − ie

h̄

∑
〈i j〉

Tpa,i j (p†
i a j + p†

jai )ri j, (17)

jap = − ie

h̄

∑
〈i j〉

Tap,i j (a
†
i p j + a†

j pi )ri j, (18)

with ri j = r j − ri. We have replaced (|kn〉 , |km〉) by
(|Pkn〉 , |Akm〉) to denote that these are Bloch states of the
effective Hofstadter models for the parallel sector and an-
tiparallel sector, respectively. Therefore m, n now run over
1, 2, . . . , L2 rather than up to 2L2. We have restricted the
initial states to the parallel sector, which is appropriate for
our electron filling, and restricted the summation over inter-
mediate states to just the antiparallel bands since they are
the dominant terms for the resonance. In the large JH/t limit,
|Pkn〉 and |Akm〉 are annihilated by a and p operators, respec-
tively, which will be used below.

At this stage, we can integrate the imaginary part of the
response from Eq. (16) to get

S ≈ π

AJH

∑
kmn

′
Im Nknm, (19)

Nknm = 〈Pkn| jx
pa |Akm〉 〈Akm| jy

ap|Pkn〉. (20)

As shown in Appendix, the sum over m can be carried out ex-
actly, which leads to the expectation value of “kinetic energy”
-type operators p†

i p j in the state |Pkn〉. For a smooth, slowly
varying skyrmion texture, the slow gradients of the spin di-
rection are mainly captured by the prefactors Tpa,i j, Tap,i j .
The operator expectation values can be replaced, to leading
order, by the corresponding expectation values in a uniform
ferromagnet, which leads to the final result in Eq. (6).

To make progress on understanding the frequency depen-
dence of the resonant Hall effect, we have examined the
current matrix elements in the numerator of the Hall conduc-
tivity. For any fixed k, our numerical calculation shows that
| 〈Pkn| jx

pa |Akm〉 〈Akm| jy
ap |Pkn〉 | has its largest magnitude

around m ≈ n, and it decays rapidly as |m − n| increases (see
Appendix for an illustrative plot of the matrix elements). The
decay occurs over an energy window |(EA

km − EP
kn) − JH | <

αt , where α ≈ 1 for R = 10. Since the matrix elements are
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FIG. 7. Electron filling dependence of the area under Im σxy

computed from the smooth-texture approximation equation (6) at
skyrmion density ρsk = 0.002.

peaked, while the denominator is a smooth function of the
energy difference, it is a reasonable approximation to set

σ res
xy (ω) ≈ − h̄

AJH

1

h̄ω + iγ̃ − JH

∑
kmn

′
Im Nknm, (21)

where the effective broadening γ̃ = αt 
 JH is determined
by the energy window discussed above. This leads to the result
in Eq. (7), in agreement with the resonant Lorentzian response
we find from our numerics. From our numerical results, we
also find that γ̃ scales inversely with the unit cell width,
roughly as 1/L, so the resonant peak height of Im σ res

xy scales
roughly as the square root of the skyrmion density.

Finally, Fig. 7 shows the electron filling dependence of
the area under Im σxy at a fixed L = 24 (equivalently, ρsk =
0.002) computed from the smooth-texture approximation
equation (6). The dotted line marks the 1/6 filling used in the
Kubo formula calculation, showing a quantitative agreement
with the Kubo formula result in Fig. 6(b). The sign switching
of the area implies a sign switching of the resonant peak,
according to Eq. (7). This occurs at the electron filling where
the chemical potential falls into the region of the band struc-
ture with many band crossings associated with a van Hove
singularity, analogous to the sign switching behavior in the dc
topological Hall conductivity [60].

The analysis in this section is possible in the limit of large
JH/t , which supports a well-separated resonance feature from
the low-frequency spectrum. The inseparability at small JH/t
leads to an impediment to an analysis, in contrast with the dc
topological Hall effect, which can be shown to be proportional
to the topological charge density regardless of the magnitude
of JH/t [67–69].

V. HALL RESONANCE OF AN ISOLATED SKYRMION

To demonstrate that the resonance feature near JH is
present regardless of the crystal structure of the skyrmion
spin texture, we consider the model H0 in an open-boundary
hexagonal box of width L, as defined in Sec. II. The spin
texture contains a single skyrmion of radius R = L/2 centered
in the middle of the box.

FIG. 8. Resonant feature in Im σxy for a skyrmion in a hexagonal
box with width (a) L = 20 and (b) L = 40. The color plots on the
right show the profiles of the solid angle of the spin textures at
each elementary plaquette, depicting a large real-space Berry phase
gradient when L is small. We observe side peaks which move towards
and merge with the main peak at JH when L increases. For the larger
L, the result has a stronger resemblance to the resonance in the
SkX case. We attribute the side peaks to the inhomogeneity of the
emergent magnetic field, as described in the text.

Figure 8 shows the corresponding Im σxy obtained from
the real-space Kubo formula, demonstrating the presence of
the resonance at JH even with a single-skyrmion spin texture.
The results are shown for a small and a large confinement
area with L = 20 and 40, respectively. The color plots to the
right display the profile of the solid angle subtended by the
three spins at each elementary triangular plaquette of the spin
texture, a measure of the local scalar spin chirality, depicting
a more gradual variation of the real-space Berry flux density
(i.e., the emergent magnetic field) in the larger box. We ob-
serve from these results that there is a central peak which
agrees with the resonant feature seen in the SkX. In addition,
we observe side peaks away from the main resonant peak at
JH ; these side peaks appear to merge into the resonant feature
at JH upon increasing the confinement area and the skyrmion
size, thus better resembling the resonant peak of the SkX in
Fig. 4(a). We attribute these side peaks to the inhomogeneity
of the emergent magnetic field of the skyrmion. We have
found that when we cut out hexagonal unit cells centered
at different points from the SkX spin texture in Sec. II, the
side peaks become even more pronounced when the box is
centered at the collinear regions where three skyrmions meet
in Fig. 1(a). In the collinear region, the emergent magnetic
field is zero, whereas it becomes nonzero in the surrounding
region which lies within the skyrmion core. This pattern of the
emergent magnetic field resembles what has been studied in
“magnetic antidot” structures, where the field is absent inside
the dot region and nonzero outside. Such antidots support
current-carrying localized states with a discrete energy-level
spectrum [70–72]. The number of localized states trapped at
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the antidot and their degree of localization are enhanced when
the field strength contrast between the inside and the outside
is large, which occurs in our case when the real-space Berry
phase gradient is big, namely, small L. In our spinful electron
model coupled to a spin texture, these energy levels appear
in both the parallel and antiparallel sectors. It is thus plau-
sible that the observed side peaks originate from intersector
transitions between these energy levels, which can occur at a
frequency slightly different from JH .

The persistence of the Hall resonance here implies that
it is observable even when the texture is no longer a SkX,
e.g., a disordered array of skyrmions. In fact, the resonance
can be seen even in a minimal three-site system hosting a
noncoplanar spin configuration, which will be studied next.

VI. HALL RESONANCE IN A SPIN TRIMER

To illustrate the persistence of the Hall resonance in a
minimal three-site system, we consider the following trimer
model, analogous to Eq. (1), defined on a triangular plaquette

 with three spins {Si} for i = 1, 2, 3 ∈ 
 forming a nonzero
solid angle �
.

H
 = −t
∑

〈i j〉∈


(c†
iσ c jσ + H.c.) − JH

∑
i∈


si · Si. (22)

For simplicity, we suppose that the three spins are related to
one another by a 2π/3 rotation around the z axis as follows:

S1 = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),

S2 = ( sin θ cos(ϕ + 2π/3), sin θ sin(ϕ + 2π/3), cos θ ),

S3 = ( sin θ cos(ϕ + 4π/3), sin θ sin(ϕ + 4π/3), cos θ ),

where θ ∈ [0, π ] and ϕ = −π/6. This corresponds to the spin
configuration in Fig. 9(a). The model is invariant under the
2π/3 rotation, which admits an analytical expression for σxy,


at resonance.
In the basis of C = (c1↑, c1↓, c2↑, c2↓, c3↑, c3↓)T , the

trimer model is represented by

H = H0 + H1 + H2 + H3, (23)

H0 = −t

⎛
⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎠ ⊗ 1spin, (24)

H1 = −JH

2

⎛
⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎠ ⊗ S1 · σ, (25)

H2 = −JH

2

⎛
⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎠ ⊗ S2 · σ, (26)

H3 = −JH

2

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠ ⊗ S3 · σ. (27)

FIG. 9. (a) Schematic illustration of the trimer model. Red ar-
rows denote the spin vectors on a triangular plaquette 
, which form
a noncoplanar spin configuration when the polar angle θ is nonzero
(mod π ). (b) Energy levels of the trimer model as a function of θ

showing the presence of pairs of energy levels whose energies differ
by roughly JH . This leads to a resonance in σxy,
 at h̄ωres,
 ≈ JH .
(c) σxy,
 at resonance as a function of the solid angle �
 subtended
by the spins. (d) Small change in resonance frequency ωres,
 as a
function of �
.

H commutes with the threefold rotational operator Z = W ⊗
U , where W and U are expressed below.

W =

⎛
⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎠, (28)

U =
(

eiπ/3 0
0 e−iπ/3

)
. (29)

W has three eigenvalues {1, ν, ν2}, where ν = ei2π/3, and the
corresponding eigenvectors are given by

|ξ1〉 = 1√
3

(1 1 1)T
, (30)

|ξν〉 = 1√
3

(1 ν2 ν)T
, (31)

|ξν2〉 = 1√
3

(1 ν ν2)T
, (32)

respectively. U has two eigenvalues λ = eiπ/3 and λ̄ = e−iπ/3

corresponding to the eigenvectors

|χλ〉 = (1 0)T
, (33)

|χλ̄〉 = (0 1)T
. (34)

One can check that Z has three eigenvalues {−1, λ, λ̄}, each
of which is twofold degenerate. Denote the eigensubspaces
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of the three eigenvalues by {|ψ1〉, |ψ2〉}, {|ψ3〉, |ψ4〉}, and
{|ψ5〉, |ψ6〉}, respectively, where

|ψ1〉 = |ξν ⊗ χλ〉, (35)

|ψ2〉 = |ξν2 ⊗ χλ̄〉, (36)

|ψ3〉 = |ξ1 ⊗ χλ〉, (37)

|ψ4〉 = |ξν ⊗ χλ̄〉, (38)

|ψ5〉 = |ξν2 ⊗ χλ〉, (39)

|ψ6〉 = |ξ1 ⊗ χλ̄〉. (40)

In the {ψa} basis, H is block diagonalized into three 2 × 2
blocks which can be further diagonalized straightforwardly.
The spectrum of H contains six energy levels as shown in
Fig. 9(b), featuring pairs of energy levels differing in energy
by roughly JH . At 1/6 filling, only the lowest level is occu-
pied. At resonance h̄ω ≈ JH , the transition between the first
and the fourth energy levels, E1 and E4, is the only dominant
contribution to the resonant peak σ

peak
xy,
 . For θ ∈ [0, π/2),

these eigenstates are given by

|E1〉 = ζ |ψ3〉 + η|ψ4〉√
2

, (41)

|E4〉 = �|ψ6〉 + κ|ψ5〉√
2

, (42)

E1 = − t

2
− 1

2

√
J2

H + 9t2 + 6JHt cos θ, (43)

E4 = − t

2
+ 1

2

√
J2

H + 9t2 − 6JHt cos θ, (44)

where the coefficients ζ , η, �, and κ are functions of t , JH , θ ,
and ϕ.

ζ = − ξ + JH cos θ + 3t√
ξ (ξ + JH cos θ + 3t )

, (45)

η = − JH sin θeiϕ

√
ξ (ξ + JH cos θ + 3t )

, (46)

� = ξ ′ + JH cos θ − 3t√
ξ ′(ξ ′ + JH cos θ − 3t )

, (47)

κ = − JH sin θe−iϕ

√
ξ ′(ξ ′ + JH cos θ − 3t )

, (48)

ξ =
√

J2
H + 9t2 + 6JHt cos θ, (49)

ξ ′ =
√

J2
H + 9t2 − 6JHt cos θ. (50)

Using these eigenfunctions to compute the resonant peak
σ

peak
xy,
 and keeping only the interlevel contribution between

|E1〉 and |E4〉, we obtain

σ
peak
xy,
 ≈ i

√
3t2

4h̄ωres,
γ

e2

h̄
|ζ ∗κ − �η∗|2, (51)

where h̄ωres,
 = E4 − E1 changes slightly with θ and is plot-
ted as a function of �
 in Fig. 9(d). The term |ζ ∗κ − �η∗|2

depends on θ as ∼ sin2 θ peaking as θ approaches π/2 from
below, in agreement with the monotonic increasing of Im
σ

peak
xy,
 with �
, as shown in Fig. 9(c), for �
 ∈ [0, 2π ).

While crossing from θ ∈ [0, π/2) to (π/2, π ], the energy
levels can cross one another as shown in Fig. 9(b). Im σ

peak
xy,


switches sign abruptly and scales with θ as approximately
− sin2 θ instead, which can be confirmed by recalculating
Eq. (51) taking into account the level crossing. The sharp
jump at (θ,�
) = (π/2, 2π ) is expected to be smoothed out
by thermal broadening as the temperature rises. We have also
checked that the analytical expression agrees very well with
the numerical results which incorporate other less dominant
interlevel contributions to Hall conductivity, i.e., the transition
involving |E1〉 and |Ea〉 for a �= 1, 4. Our key observation is
that Im σ

peak
xy,
 grows monotonically with the solid angle �
, at

least for small �
. An implication of this finding is that the
Hall resonance can be utilized in a local optical probe which
can distinguish regions with spin noncoplanarity from those
without the noncoplanarity, thereby enabling a visualization
of a spin texture hosting skyrmions and perhaps other non-
coplanar magnetic objects.

Before concluding the section, we examine a possible con-
nection for a given spin texture between the net Hall response
and the local Hall response σxy,
 associated with a local �
.
Under a high-frequency applied electric field, the electronic
response is expected to be local. That is, in an inhomogeneous
system, the overall response function can be approximated by
the local response function associated with the local property
that exhibits the inhomogeneity, averaged over the system,
e.g., magnetization in an inhomogeneous magnetic domain
configuration [48] or the real-space Berry phase associated
with �
 in the case of skyrmion spin texture. A supporting
argument for this is to regard the electrons as semiclassical
objects which traverse only a small distance after several cy-
cles of the high-frequency applied field, thereby sensing only
the local properties [48,73]. For a given skyrmion spin texture,
the Hall conductivity obtained from averaging the local Hall
conductivity is given by

σ av
xy = 1

N


∑



σxy,
, (52)

where the local Hall response σxy,
 can be computed using the
trimer model, N
 is the number of the plaquette, and the sum
is carried over all the triangular plaquettes.

Figure 10(a) shows the frequency dependence of Im σ av
xy

featuring a resonance near JH for the series of SkXs studied in
Sec. III D. We observe a very sharp resonance whose height is
an order of magnitude higher than that in Fig. 6(a), whereas
the resonance width is an order of magnitude smaller. This
is the consequence of having an enormous amount of nearly
degenerate atomiclike energy levels due to the absence of the
intertrimer hopping. The hopping is expected to lift the degen-
eracy, which permits other transition channels at frequencies
different from JH , thereby broadening the resonance width
to resemble Fig. 6(a) better. Figure 10(b) shows the scaling
between the area under the resonance and ρsk , which exhibits
a linear relation identical to Fig. 6(b), except that the values
are three times larger. We attribute this overestimate to the
fact that the electrons are highly confined to each plaquette,
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FIG. 10. Results from the local approximation: (a) Lorentzian-
like resonance of Im σ av

xy near h̄ω = JH for various SkXs with

different skyrmion densities ρsk = 2/
√

3L2. (b) A linear relation
between ρsk and the area under Im σ av

xy (ω) in (a). ρsk = 0.002 cor-
responds to L = 24.

which provides a better chance for the intersector transitions
to occur compared with when the electrons are more de-
localized in a lattice environment. Therefore maintaining a
certain degree of delocalization by enlarging the number of
sites beyond the trimer is a promising way to reduce the
discrepancy between the local approximation and the actual
results.

VII. IMPACT OF SPIN-ORBIT COUPLING

So far, the effect of spin-orbit coupling (SOC) has been
ignored. However, SOC can also produce a resonance in Hall
conductivity near h̄ω = JH , which can already be seen even
in a simple ferromagnetic spin texture. To demonstrate this,
we introduce a Rashba hopping term HR, defined below, into
Eq. (1) and set Si = −ẑ; this may be thought of as modeling
the response of a system at saturation magnetization [58],
while the SkX in Sec. II is an intermediate-field phase with
〈S〉 = −εẑ, for 0 < ε < 1.

HR =
∑
〈i j〉

iχRc†
iα (ẑ × r̂i j · σαβ )c jβ + H.c., (53)

where r̂i j is the unit vector of ri j = r j − ri and χR is the
strength of the Rashba SOC. Figure 11(a) shows the band
structure of H0 + HR for χR = 0.05t [74], featuring similarly
dispersing bands differing in energy by roughly JH . As a
result, a resonant feature is obtained near JH , as shown in
Fig. 11(b) in the same frequency window as that for skyrmion
spin textures. Such a resonant feature persists despite the

FIG. 11. (a) Band structure of the model with Rashba SOC,
H0 + HR, for a ferromagnetic spin texture Si = −ẑ, featuring simi-
larly dispersing bands differing in energy by approximately JH . (b) A
resonance feature near h̄ω = JH arises from the Rashba SOC and the
similarly dispersing bands.

variation of χR in the large-JH limit since the presence of the
pair of similarly dispersing bands is rather robust. A notable
distinction from the results of the previous sections lies in that
the width of the resonance here is narrower since it involves
interband transitions between only a single pair of similarly
dispersing bands. When the texture contains skyrmions, we
also expect SOC to generate a resonance at JH , and experi-
ments will detect the effect of both. The analogous roles of
spin-orbit coupling and coupling to skyrmions can be under-
stood as two ways to cause the same mixing effect between
the orbital and the spin degree of freedom of the conduction
electron. While the spin-orbit coupling achieves this in mo-
mentum space, the coupling to skyrmions does this in real
space [50–52].

Recent works on the dc Hall effect have made it increas-
ingly apparent that SOC and noncollinearity of a spin texture
intertwine to produce a resultant Hall effect which is not sim-
ply the addition of the individual contributions [75–77]. For
instance, there can be extra Hall effect contributions arising
only in the simultaneous presence of SOC and noncollinear
magnetic order [75,77]. It is very likely that the intertwined
effect also appears in the nonzero-frequency Hall effect. In-
deed, a recent study has shown that an interplay between
SOC and coplanar magnetic orders or magnetic multipo-
lar orders leads to distinct Hall conductivity spectra, which
depend on the detailed arrangement of magnetic dipoles, de-
spite the similar electronic band structures in the explored
cases [54].

Therefore a study where skyrmion spin texture and SOC
are simultaneously treated is generally needed to make a
quantitative comparison with experiments. This is left for
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FIG. 12. Frequency dependence of Im σxy near resonance ob-
tained from a hexagonal-box calculation, as in Sec. V, with L = 40
for three cases: (i) Si = −ẑ with Rashba hopping χR = 0.05t , (ii)
skyrmion in a box with χR = 0, and (iii) skyrmion in a box with
χR = 0.05t . The results indicate the difference in optical Hall con-
ductivity between a ferromagnetic (FM) spin order and a skyrmion
spin order.

the future. Even so, based on our results in the previ-
ous section, we expect the presence of skyrmions to be
detectable using optical Hall measurements since it gives
rise to a distinct optical Hall response between a spin tex-
ture containing skyrmions and other ordered phases, e.g.,
ferromagnetic order. Such a difference is expected to be
pronounced when the skyrmion density is large. Figure 12
highlights this point. It illustrates the difference in the Hall
conductivity spectrum between a ferromagnetic order and a
skyrmion spin order in the presence of Rashba hopping. The
results are obtained from hexagonal-box calculations as in
Sec. V. The result from Fig. 8(b) is also included here for
comparison.

VIII. CONCLUSION

We have shown that in a 2D model of conduction electrons
coupled to skyrmion spin textures via a Hund’s coupling,
a high-frequency resonance in Hall conductivity arises at a
characteristic frequency set by the Hund’s coupling. For SkX
spin textures, the resonance originates from transitions be-
tween many pairs of topological Chern bands which disperse
similarly and differ in energy by a similar amount ≈ JH .
Its presence does not depend on whether the spin texture
is a crystal of skyrmions or a single skyrmion. A linear
relation between the skyrmion density and the area under
the Hall resonance, Im σxy(ω), is found and is explained
using a smooth-texture approximation and a local approxi-
mation. Probes such as the magneto-optical Kerr effect and
Faraday effect, which are known to track nonzero-frequency
Hall conductivity, may be suitable experimental techniques
for detecting the optical topological Hall conductivity and
its resonance. Near the resonant frequency, a real-space pro-
file of a skyrmion spin texture may be mapped out using
the Kerr microscopy technique, as theoretically shown in
Fig. 13. Our results can be tested in materials hosting a large

FIG. 13. Real-space profile of Im σxy,
 for a random skyrmion
array at resonance h̄ω ≈ JH obtained from the local approximation.
The dark droplets corresponding to a large nonzero-frequency topo-
logical Hall conductivity are the skyrmions, while the bright regions
with Im σxy,
 = 0 correspond to the ferromagnetic background. The
color scale in this spatial map is in arbitrary units since the value of
Im σxy,
 is sensitive to the broadening γ . Such a profile could po-
tentially be mapped out by magneto-optical Kerr microscopy, which
is known to probe the local Hall conductivity, enabling the use of
resonant optical Hall conductivity as a tool to visualize skyrmions.

density of skyrmions such as Gd2PdSi3 [19], Gd3Ru4Al12

[20], GdRu2Si2 [21], and MnGe [12]. We also point out how
SOC can produce a similar resonance and how it affects the
experimental manifestation of the resonant topological Hall
conductivity. Similar to the dc Hall effect [75,77], a quan-
titative comparison with experiments when skyrmions and
significant SOC coexist generally requires a study where both
skyrmions and SOC are simultaneously treated. Studying this
would be the next logical step in exploring optical probes of
skyrmions. It is also intriguing to explore whether the Hall
resonance, involving pairs of topological Chern bands, can be
understood using the state-pairwise geometrical construction
formulated in Ref. [78].
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APPENDIX: SIMPLIFYING THE KUBO FORMULA FOR
THE SUM RULE AND RESONANT HALL CONDUCTIVITY

In this Appendix, we will show that the area under the
resonance of Im σxy, S , is proportional to ρsk .

S =
∫

dω Im σ res
xy (ω) ≈ π

AJH
Im

×
∑

k

∑
EP

kn<μ

∑
m

〈Pkn| jx
pa|Akm〉〈Akm| jy

ap|Pkn〉 (A1)

≡ π

AJH
Im N . (A2)

The magnitude of the matrix element
〈Pkn| jx

pa|Akm〉〈Akm| jy
ap|Pkn〉 is found to generally peak

around n ≈ m, and it decays abruptly as |n − m| increases, as
illustrated by Fig. 14. This sharp feature is used to shed light
on the Lorentzian shape of the Hall resonance in the main
text. The Hall resonance curve σ res

xy (ω) in Eq. (7) and the area
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FIG. 14. (a) and (b) Color plots illustrating that the numerator
(Num.) in the Kubo formula in Eq. (16), involving current operator
matrix elements, has its magnitude peaking around n = m and de-
caying quickly with increasing |n − m|. The result is obtained at a
generic crystal momentum k and for L = 20.

S above can be obtained by calculating N , which can be
simplified by the following observations.

Observation 1. We can use the Bloch theorem to convert
the matrix elements of jx

pa and jy
ap, which involve the whole

lattice summation, into summations over a chosen magnetic
unit cell (u.c.), i.e.,

〈Pkn| jx
pa|Akm〉 = − ieNsk

h̄

∑
i∈u.c.

∑
δa

Tpa,i(i+δa )

×〈Pkn|p†
i ai+δa + p†

i+δa
ai|Akm〉δa,x, (A3)

〈Akm| jy
ap|Pkn〉 = − ieNsk

h̄

∑
i∈u.c.

∑
δa

Tap,i(i+δa )

×〈Akm|a†
i pi+δa + a†

i+δa
pi|Pkn〉δa,y, (A4)

where Nsk denotes the number of skyrmions in the system,
which equals the number of unit cells since we have one
skyrmion per unit cell. δa are the nearest-neighbor vectors.

δ1 = (1, 0), (A5)

δ2 = (1/2,
√

3/2), (A6)

δ3 = (−1/2,
√

3/2). (A7)

Observation 2. The operator
∑

m |Akm〉〈Akm| can be
shown to be diagonal in the sublattice index s.

∑
m

|Akm〉〈Akm| =
∑

D,D′,s

eik·(D−D′ )

Nsk
|ADs〉〈AD′s|, (A8)

where s = 1, . . . , L2 is the sublattice index and |ADs〉 is an
antiparallel electron state localized at a site whose position
is given by D + ds, where D is the position of a reference
point of a unit cell and ds is the position of the site relative
to the reference point. When this is used concurrently with
observation 1, the phase factor becomes unity as the unit cell
is fixed to be the same for the matrix elements of jx

pa and jy
ap.

For a given bond 〈i(i + δa)〉 in the jx
pa matrix element, the

s-diagonal feature selects only several 〈i(i + δa)〉 bonds in the
jy
ap matrix element. Suppose that 〈i1i2〉 and 〈i3i4〉 are the rele-

vant bonds from jx
pa and jy

ap, respectively; the contribution to

N becomes ∼〈Pkn|(p†
i1

ai2 + p†
i2

ai1 )(a†
i3

pi4 + a†
i4

pi3 )|Pkn〉 =
〈Pkn|p†

i5
pi6 |Pkn〉, where i5 and i6 are two sites taken from

FIG. 15. Diagrams illustrating the three types of 〈i1i2〉 bond in
jx
pa corresponding to {(a), (b)}, {(c), (d )}, and {(e), ( f )}. They are

denoted by the solid blue lines. For a given solid bond, there are
several 〈i3i4〉 bonds in jy

ap, which combine with 〈i1i2〉 to give a
nonzero contribution towards N . They are denoted by red dashed
lines.

{i1, i2, i3, i4}, and the precise answer depends on the type of
bonds, which will be illustrated later. To arrive at this property,
we recall that the a and p operators annihilate |Pkn〉 and
|Akm〉, respectively.

From these, N becomes

N = Nsk

( ie

h̄

)2 ∑
k

∑
EP

kn<μ

′∑
〈i1i2〉

′′∑
〈i3i4〉

〈Pkn|Qi5i6
i1i2i3i4

|Pkn〉,

(A9)

Qi5i6
i1i2i3i4

= Tpa,i1i2 Tap,i3i4 ri1i2,xri3i4,y p†
i5

pi6 , (A10)

where the sum over 〈i1i2〉 is the equivalence of
∑

i1∈u.c.

∑
δa

with i2 = i1 + δa. The sum over 〈i3i4〉 is similarly de-
fined, except that it is done over a more restricted subset
as mentioned earlier, and hence the double prime. There
are three types of 〈i1i2〉 bond associated with the nearest-
neighbor vectors. However, there are only two types of
〈i3i4〉 associated with δ2 and δ3 since δ1 has a vanishing y
component.

We illustrate the computation of Qi5i6
i1i2i3i4

using the following
concrete example. Suppose that 〈i1i2〉 = δ1, i.e., i2 = i1 + δ1.
There are only eight 〈i3i4〉 bonds contributing to S as sketched
in Figs. 15(a) and 15(b). 〈i1i2〉 is denoted by the blue bonds,
while 〈i3i4〉 is denoted by the red dashed bonds. The common
feature is that either i1 or i2 is equal to i3 or i4. For i3 = i2 and
i4 = i3 + δ3, i5 and i6 correspond to the dangling end points,
namely, (i5, i6) = (i1, i4) since i2 is glued to i3.

The hopping matrix element, 〈Pkn|p†
i5

pi6 |Pkn〉, is hard
to compute analytically since it requires solving the Hofs-
tadter model for the parallel sector. Therefore, for the sake of
deriving the scaling relation, we assume that it is given by a
value corresponding to a uniform ferromagnetic spin texture
with Si = ẑ, where |Pkn〉 → |p ↑〉 and p†

i → c†
i↑. p can be

determined by k when viewing that the SkX BZ is obtained
by folding the BZ of the Bravais triangular lattice to which p
belong.

〈Pkn|p†
i5

pi6 |Pkn〉 → 〈p ↑|c†
i5↑ci6↑|p ↑〉 = eip·δ2

A . (A11)

This approximation works well when the SkX spin tex-
ture varies slowly in space, namely, large L, such that the
neighboring spins are almost parallel. Since the result is site
independent, the sum over 〈i1i2〉 contains only Tpa,i1i2 and
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Tap,i3i4 , namely,

∑
i1∈u.c.

Tpa,i1(i1+δ1 )Tap,(i1+δ1 )(i1+δ1+δ3 )δ1,xδ3,y. (A12)

The following observation is useful for computing the sum.
The hopping integral

Tpa,i1i2 = −t

(
e−iφi2 cos

θi1

2
sin

θi2

2
− e−iφi1 cos

θi2

2
sin

θi1

2

)

= −t
[
mz

i1

(
mx

i2 − imy
i2

) − mz
i2

(
mx

i1 − imy
i1

)]
, (A13)

where we have reexpressed it in terms of a slowly varying
auxiliary “vector field” mi1 defined on each site as

mi1 =
(

sin
θi1

2
cos φi1 , sin

θi1

2
sin φi1 , cos

θi1

2

)
. (A14)

We have checked that, at large L, the SkX spin texture de-
fined in Sec. II indeed leads to a smooth {mi1} which can be
approximated by a continuum vector field m(r), where

mi1 ≈ m − δ1 · ∇m, (A15)

mi2 ≈ m, (A16)

mi3 ≈ m, (A17)

mi4 ≈ m + δ3 · ∇m. (A18)

The Taylor expansion is expanded around the common site
i2 = i3. After being converted into an integral, the summation

therefore becomes

2t2

√
3

∫
u.c.

dr

√
3

2
(−δ1 · ∇mz(mx − imy)

+ mzδ1 · ∇(mx − imy))(δ3 · ∇mz(mx + imy)

− mzδ3 · ∇(mx + imy)).

This integral can be computed using the circular ansatz de-
fined in the main text. After including the contributions from
other bond combinations listed in Fig. 15, we obtain the final
result for N , which is purely imaginary:

N = iπ
√

3Nsk

( te

h̄

)2 ∫
EFM

p↑ <μFM

dp
(2π )2

[
cos px + cos

√
3py

+ 2 cos
py

√
3

2

(
cos

px

2
+ cos

3px

2

)]
, (A19)

where we have converted
∑

p → A
∫ dp

(2π )2 . The summation
over the occupied bands is estimated by the ferromagnetic
value corresponding to the dispersion EFM

p↑ of the parallel sec-
tor and the chemical potential μFM determined by the electron
density.

Therefore the area S is indeed proportional to the skyrmion
density Nsk/A.

S ≈ e2

h̄2

πt2

JH

Nsk

A F , (A20)

F = π
√

3
∫

EFM
p↑ <μFM

dp
(2π )2

[
cos px + cos

√
3py

+ 2 cos
py

√
3

2

(
cos

px

2
+ cos

3px

2

)]
. (A21)
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