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Effective field theory of magnons: Chiral magnets and the Schwinger mechanism
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We develop the effective field theoretical descriptions of spin systems in the presence of symmetry-breaking
effects: the magnetic field, single-ion anisotropy, and Dzyaloshinskii-Moriya interaction. Starting from the lattice
description of spin systems, we show that the symmetry-breaking terms corresponding to the above effects can
be incorporated into the effective field theory as a combination of a background (or spurious) SO(3) gauge field
and a scalar field in the symmetric tensor representation, which are eventually fixed at their physical values.
We use the effective field theory to investigate mode spectra of inhomogeneous ground states, focusing on one-
dimensionally noncollinear states, such as helical and spiral states. Although the helical and spiral ground states
share a common feature of supporting the gapless Nambu-Goldstone modes associated with the translational
symmetry breaking, they have qualitatively different dispersion relations: isotropic in the helical phase while
anisotropic in the spiral phase. We clarify the reason for this qualitative difference based on the symmetry-
breaking pattern. As another application, we discuss the magnon production induced by an inhomogeneous
magnetic field, and find a formula akin to the Schwinger formula. Our formula for the magnon production gives
a finite rate for antiferromagnets, and a vanishing rate for ferromagnets, whereas that for ferrimagnets interpolates
between the two cases.
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I. INTRODUCTION

Symmetry and its spontaneous breaking give one of the
most fundamental concepts in modern physics. If the ground
state exhibits a spontaneous breaking of continuous global
symmetry of the system, the Nambu-Goldstone (NG) theorem
predicts the inevitable appearance of the gapless excitation,
or the NG mode [1–3]. In relativistic systems respecting the
Lorentz symmetry, the number of broken global symmetries
is matched with that of the NG modes while in nonrelativistic
systems, it is, in general, not. Furthermore, in the latter case,
dispersion relations of the resulting NG modes often show
the quadratic behavior (ω = ±ak2) rather than the relativistic
linear one (ω = ±c|k|). Besides, the NG modes associated
with spontaneous space-time symmetry breaking have several
characteristic behaviors such as the anisotropic dispersion
relation realized in, e.g., the smectic-A phase of liquid crys-
tals [4–6] and the Fulde-Ferrell-Larkin-Ovchinnikov phase of
superconductors [7–9], in addition to the mismatch between
the numbers of broken symmetries and NG modes. Although
these behaviors are beyond the prediction of the original
NG theorem, recent theoretical developments clarify both the
counting rule and dispersion relation of the NG mode asso-
ciated with the internal symmetry breaking of nonrelativistic
systems [10–25]. Also, there are several approaches to under-
stand the NG modes for spontaneous space-time symmetry
breaking [26–32]. One way to work out the nonrelativistic
and spacetime generalization of the NG theorem is to use the
effective field theory (EFT) (see, e.g., Refs. [11,18,20,22,29]).

Magnons, or quantized spin waves, in various kinds
of magnets— antiferromagnets, ferromagnets, and
ferrimagnets—give a canonical condensed matter example of
these NG modes; a relativistic one in the antiferromagnets
and a nonrelativistic one in the ferro/ferrimagnets. Although
spin systems are originally described as lattice models,
we can still describe their low-energy dynamics based
on a continuum field theory at energy scales much lower
than the inverse lattice spacing. We can regard this field
theory model as an EFT of magnons that describes magnon
dynamics at low energies [33–38]. In addition, the magnon
EFT can incorporate various symmetry-breaking terms,
such as a Zeeman term due to the coupling to external
magnetic fields and single-ion anisotropy, as those terms are
induced by small background fields that break symmetry
explicitly (see, e.g., Ref. [38]). Thus, the spin system serves
as one of the best places for investigating the nontrivial
dynamics caused by the background field. An interesting
symmetry-breaking term attracting much attention recently
is the Dzyaloshinskii-Moriya (DM) [39,40] interaction that
arises from the spin-orbit coupling in a specific class of
magnets called chiral magnets. Another example is the
inhomogeneous magnetic field, which may drastically change
the dynamics of the magnon.

In lattice models, the DM interaction represents an inter-
action term proportional to the vector product of neighboring
spins, which favors the easy-plane noncollinear ordering. As
a result of the competition between the DM interaction and
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the Zeeman term or the anisotropic term in the potential,
a lot of interesting noncollinear ground states appear, such
as the chiral soliton lattice in a (1 + 1)-dimensional spin
chain and a skyrmion lattice in (2 + 1)-dimensional spin
systems, whose peculiar thermodynamic and transport behav-
iors have been recently observed [41–47]. Recent theoretical
studies in the presence of the DM interaction have revealed
various Bogomol’ny-Prasad-Sommerfield [48,49] (BPS) so-
lutions [50–54] and instanton solutions [55], which enable us
to study chiral magnets analytically to some extent. When the
DM interaction is more influential than the terms in the poten-
tial, spin systems tend to realize simple noncollinear ground
states where the magnetization vector is modulated along one
dimension. We call this one-dimensionally modulated ground
state a helical state (see, e.g., Ref. [55]) or spiral state [56],
depending on the direction of the DM interaction relative
to the potential terms. In terms of the magnetization vector
n = (n1, n2, n3) with a constraint n · n = 1, we can represent
the Zeeman term and the single-ion anisotropy term as terms
in the potential linear and quadratic in the third component
of magnetization vector n3. If we take the DM interaction as
an interaction term between n1 and n2 of spins in neighboring
lattice sites, we find that the ground state is the helical state,
provided the anisotropy term in the potential does not favor
easy-axis strongly [55]. If we take the DM interaction as an
interaction term between n3 and n1, n2 of spins at neighbor-
ing lattice sites, we find the spiral state as the ground state,
provided potential terms are not too strong [56].

Thanks to its low-dimensional character, it is much simpler
to analyze the low-energy dynamics in the helical and spiral
phases than other possible noncollinear ground states. Since
both the helical and spiral phases show the one-dimensional
noncollinear order, we can expect that they share an essential
property: for instance, one may expect both of them to support
the phonon as the NG mode associated with the spontaneous
breaking of translational symmetry. Nevertheless, we need to
be careful since a general statement of the NG theorem is
absent in the case of spontaneous breaking of the space-time
symmetry. It is worth studying the number of massless degrees
of freedom and dispersion relation of these modes in each
case. To study the energy spectrum, previous works rely on,
e.g., the linear spin wave theory [57–61], the time-dependent
Ginzburg-Landau theory [62], and the effective Hamiltonian
[63] (see also Ref. [64] for a review).

In this paper, we study the dynamics of spin systems by
means of EFT, focusing on physical effects induced by ex-
plicit symmetry-breaking terms; namely, the magnetic field,
single-ion anisotropy, and the DM interaction. Starting from
the lattice description of spin systems with these symmetry-
breaking terms, we can incorporate them into the EFT by
treating them as background fields on which the SO(3) trans-
formation for the magnetization vector acts appropriately. We
find that the DM interaction can be described by a background
SO(3) gauge field [53] and the magnetic field can be described
by the temporal component of SO(3) gauge field, whereas a
scalar field in the symmetric rank-two tensor representation
is needed to describe the single-ion anisotropy (see, e.g., Ref.
[38]). The assignment of the (spurious) gauge transformation
rules to these background (spurious) fields helps to incorpo-
rate explicit breaking terms into the EFT of spin systems.

This symmetry-based construction of the EFT with the DM
interaction provides a unified description of magnons in an-
tiferromagnets, ferromagnets, and ferrimagnets with the DM
interaction.

We present several applications of our EFT of magnons.
First, we investigate the low-energy dynamics induced by
the DM interaction. A simple choice of the DM interaction
gives the helical ground state and another choice gives the
spiral ground state. Both of these noncollinear ground states
spontaneously break the translation symmetry along one di-
rection. While both helical and spiral ground states support
gapless NG modes, their properties are qualitatively different:
the NG mode in the helical phase shows the isotropic linear
dispersion relation, whereas that in the spiral phase shows
the anisotropic dispersion relation (see, e.g., Refs. [57–59,62–
64] for previous works on the anisotropic dispersion rela-
tion). Moreover, the dispersion relation of the NG mode in
the spiral phase is sensitive to the types of magnets (anti-
ferromagnets, ferromagnets, or ferrimagnets) though that in
the helical phase is not. The spiral state in an antiferromag-
net shows a linear dispersion along the modulation and a
quadratic dispersion perpendicularly. On the other hand, spi-
ral states in ferromagnets and ferrimagnets show quadratic
dispersions along the modulation and quartic dispersions per-
pendicularly. We clarify the reason why these differences arise
from the symmetry-based EFT viewpoint along the line of
Refs. [11,18,20,22,29].

As another application, we investigate the production rate
of magnons caused by the inhomogeneous magnetic field
from the collinear ground state. We show the magnon EFT
with easy-axis anisotropy can be mapped into a relativistic
model of a charged scalar field whose gap is determined by
the sum of the easy-axis potential and the ratio of magneti-
zation and condensation parameter f 2

t . We obtain a formula
for the production rate of magnons analogous to Schwinger’s
formula [65–68] (or the Landau-Zener formula [69–72]) for
the charged particle pair production rate by a constant electric
field. Our formula shows that the antiferromagnet corresponds
to the relativistic regime (small effective mass) and gives the
nonvanishing magnon production rate, whereas the ferromag-
net corresponds to the nonrelativistic regime (infinite effective
mass) and gives the vanishing production rate. The production
rate for ferrimagnets interpolates between those for antiferro-
magnets and ferromagnets.

The paper is organized as follows. In Sec. II, we describe
a way to implement symmetry-breaking terms in EFT start-
ing from spin systems on a lattice. In Sec. III, we write
down an EFT of magnons in the form of the O(3) non-
linear sigma model and confirm the known result for the
noncollinear ground state. In Sec. IV, we apply our EFT to the
helical/spiral ground states induced by the DM interaction.
In Sec. V, we apply our EFT to describe the production of
magnons by an inhomogeneous magnetic field. Section VI is
devoted to a discussion. In the Appendix, we present a coset
construction of EFT for NG modes.

II. MODEL AND SYMMETRY ON LATTICE

Let us consider spin systems whose SO(3) spin-rotation
symmetry is explicitly but softly broken due to the external
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FIG. 1. A schematic picture of the spin system under considera-
tion. We assume the localized spins live on the cubic-type lattice.

magnetic field, DM interaction, and single-ion anisotropic
interaction terms. As a concrete example, we consider spin
systems, whose Hamiltonian reads1

Ĥ =
∑

n

d∑
i=1

[ |J|
2

(ŝn+î − sgn(J )ŝn)2 + Di · (ŝn × ŝn+î )

]

−
∑

n

[μB · ŝn + (ŝn)tCŝn]

= −
∑

n

d∑
i=1

(
Jδab + Dc

i ε
ab
c

)
ŝn

aŝn+î
b

−
∑

n

[
μBaŝn

a + Cabŝn
aŝn

b

]+ (const), (1)

where ŝn denotes a spin vector on site n with the
(anti)ferromagnetic interaction J > 0 (J < 0), μB the exter-
nal magnetic field B multiplied by the magnetic moment μ,
the DM interaction Di, and anisotropic interaction C known
as the single-ion anisotropy. On the second line, we have
introduced the Kronecker delta δab and the Levi-Civita sym-
bol εabc for the internal spin indices a, b, · · · = 1, 2, 3, and
the summation over the repeated indices is implied. To ex-
press the nearest-neighbor pairs, we defined the direction î =
1, 2, · · · , d with a spatial dimension d . In this paper, we only
consider the simple cubic-type lattice schematically shown in
Fig. 1, where the frustration in the antiferromagnetic case does
not appear.2 In addition, when considering the antiferromag-
netic order, we focus on the G-type antiferromagnet, in which
the Néel order appears along all the spatial directions. Relax-

1The expression in the first line of this equation is useful when we
explicitly consider the continuum limit. This is because a relation
between a continuum order parameter field and a lattice spin vector
depends on whether the system shows ferromagnetic or antiferro-
magnetic order controlled by the sign of J .

2The DM interaction in real materials appears if the inversion
symmetry is broken—e.g., in spin systems on the Kagome lattice
or on the cubic lattice with a distortion (see, e.g., Refs. [116,117]).
Thus, one may regard our simplification as just a theoretical one or
assume the presence of the inversion breaking point in another spatial
direction where the spin does not stay.

ing these assumptions is an interesting problem but beyond
the scope of the present paper. Here the DM interaction Di

is assumed to have a directional dependence expressed by its
subscript i.

In the absence of explicit symmetry-breaking terms (Dc
i =

μBa = Cab = 0), the Hamiltonian enjoys SO(3) symmetry,
whose possible spontaneous breaking leads to the gapless col-
lective excitations, or magnons (quantized spin wave) as NG
modes. By promoting the symmetry-breaking parameters to
background fields (spurions), we can construct a low-energy
effective Lagrangian for the magnons with other possible low-
energy modes based only on the symmetry argument [38].
Although the explicit breaking terms break the global SO(3)
symmetry, we can investigate their effects using the back-
ground field (or the so-called spurion) method if they are small
compared to the symmetric interaction (|Dc

i |, |μBa|, |Cab| �
|J|).

As the first attempt to parametrize the DM interaction, let
us introduce the SO(3) gauge field coupled to the Noether
current corresponding to the global SO(3) symmetry. When
the Hamiltonian is given only by the first term in Eq. (1),
Ĥ0 ≡ −∑

n,i J (ŝn)t ŝn+î + (const), the Heisenberg equation of
motion for ŝn

a generated by the SO(3) invariant Hamiltonian
Ĥ0 provides a discretized version of the conservation law of
the Noether current:

∂t Ĵ
0
a (n) +

d∑
i=1

[
Ĵ i

a(n + î/2) − Ĵ i
a(n − î/2)

] = 0

with

{
Ĵ0

a (n) ≡ ŝn
a

Ĵ i
a(n + î/2) = Jεbc

a ŝn
bŝn+î

c .
(2)

By introducing the background gauge field coupled to the
Noether current, we obtain the following modification of the
Hamiltonian:

Ĥ0 → Ĥ0 −
∑

n

d∑
i=1

aAa
i (n + î/2)Ĵ i

a(n + î/2)

−
∑

n

Aa
0(n)Ĵ0

a (n)

= −
∑

n

d∑
i=1

[
Jδab + JaAc

i (n + î/2)εab
c

]
ŝn

aŝn+î
b

−
∑

n

Aa
0(n)ŝn

a, (3)

with an SO(3) gauge field Aa
μ (a = 1, 2, 3). Here we in-

troduced the lattice spacing � between spins for future
convenience. We can now identify two symmetry-breaking
terms μBa and Da

i in the original Hamiltonian in Eq. (1) as
the following background values of the SO(3) gauge field:

Aa
0(n) ≡ μBa, Aa

i (n + ĵ/2) ≡ (J�)−1Da
i . (4)

Although this illustrates the basic idea of the background
field (spurion) method for the magnetic field and the DM
interaction term, this simplified Noether procedure in Eq. (3)
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does not implement the local SO(3) gauge invariance fully on
the lattice and is not complete.

To correctly implement the SO(3) gauge invariance on the
lattice, we draw an analogy to the Hamiltonian lattice gauge
theory [73]. We first make the Hamiltonian Ĥ0 invariant under
the local SO(3) transformation,

Ĥ0 → Ĥ ′
0 ≡

∑
n

d∑
i=1

|J|
2

[U (n, n + î)ŝn+î − sgn(J )ŝn]2

−
∑

n

[A0(n)]t ŝn, (5)

where the local SO(3) transformation g(n) ∈ SO(3) acts on
ŝn, U (n, n + î), and A0 as

ŝn → g(n)ŝn

U (n, n + î) → g(n)U (n, n + î)g(n + î)t

A0(n) → g(n)A0. (6)

The link variable U (n, n + î) corresponds to a spatial part
of the SO(3) gauge field on the lattice (see, e.g., Ref. [73]
in detail). We will eventually identify its continuum limit
describing the DM interaction. Noting that the last trans-
formation is equivalent to A0(n) ≡ Aa

0(n)ta → g(n)A0gt (n),
which is identified as a time-independent gauge trans-
formation, we will further consider time-dependent gauge
invariance acting on A0(t, n) as3

A0(t, n) → g(t, n)A0(t, n)g(n, t )t + ig(t, n)−1∂0g(n, t )t . (7)

We now study the expansion in powers of the lattice spac-
ing a of the gauge-invariant theory Eq. (5) to obtain the
original Hamiltonian in Eq. (1) with symmetry-breaking terms
μBa, Da

i , and Cab, ignoring higher-order terms in powers of
a, which will become irrelevant in the continuum limit. By
expanding the link variable U at a small lattice spacing a, we
can identify the SO(3) gauge field Aa

i as

U (n, n + î) = eiaAa
i (n+î/2)ta

= I3×3 + i�Aa
i (n + î/2)ta + O(�2). (8)

Counting ŝn+î + sgn(J )ŝn = O(�), the O(�2) term in U gives
higher-order terms which vanish in the continuum limit. Here,
we have also introduced generators of the Lie algebra ta ∈
SO(3) satisfying

[ta, tb] = iε c
abtc. (9)

3We can rigorously justify this treatment as follows: With the CP1

parametrization of the spin with zn = (z1
n, z2

n )t , the path-integral
formula gives the Lagrangian L = ∑

n iz†
n∂0zn − H (sz†σz) =∑

n iz†
nD0zn − H0(sz†σz) +∑

n

∑d
i=1 Aa

i Ji
a. The first term with single

time derivative is the so-called Berry phase term. We also introduced
a covariant derivative D0zn ≡ ∂0zn − isAa

0σazn (corresponding to
SO(3), due to the redundancy of the U(1) part zn → eiθ (x)zn). Thus,
the Aa

0 ŝn
a term in the Hamiltonian comes from the correct gauging of

the temporal part of SO(3) symmetry.

Using the explicit form of ta in the vector representation,

t1 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, t2 =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

t3 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, (10)

we expand the gauge-invariant Hamiltonian in powers of the
lattice spacing � as

Ĥ ′
0 =

∑
n

d∑
i=1

|J|
2

[
ŝn+î − sgn(J )ŝn + i�Aa

i taŝn+î + O(�2)
]2

−
∑

n

A0 · ŝn
a

=
∑

n

d∑
i=1

[ |J|
2

(ŝn+î − sgn(J )ŝn)2 + J�Ai · (ŝn+î × ŝn)

]

−
∑

n

[
A0 · ŝn

a − |J|�2

2
(ŝn)t

(
Aa

i ta
)2

ŝn

]
, (11)

where we have not explicitly displayed terms that vanish in
the naive continuum limit [(O(J�3) terms]. Comparing this
with the original Hamiltonian Eq. (1), we can confirm the
identification Eq. (4) of the background values of the fields
to obtain the magnetic field μB and the DM interaction Da

i ,
together with a specific value Ccr of the anisotropic potential
[the last term C in Eq. (1)], given by

Ccr = −|J|�2

2

(
Aa

i ta
)2 = − 1

2|J|
(
Da

i ta
)2

. (12)

This fine-tuned potential corresponds to the case of the con-
tinuum Hamiltonian whose potential can be combined with
the DM interaction simply as the square of the covariant
derivative.

The generic values of the single-ion anisotropy C can also
be implemented by introducing another background scalar
field W (n) in the symmetric rank-two tensor representation,
on which the local SO(3) transformation g(n) acts as W (n) →
g(n)W (n)g(n)t . We should identify its background value as

W (n) ≡ C − Ccr. (13)

Thus, apart from higher-order terms in powers of the lattice
spacing a, which vanish in the naïve continuum limit, we
find that the Hamiltonian in Eq. (1) with symmetry-breaking
terms μBa, Da

i , and Cab can be obtained from the lattice gauge
invariant theory,

Ĥ ′′
0 ≡

∑
n

d∑
i=1

|J|
2

[U (n, n + î)ŝn+î − sgn(J )ŝn]2

−
∑

n

Aa
0(n)ŝn

a −
∑

n

(ŝn)tW (n)ŝn, (14)

at particular values of the background gauge field A0, Ai and
scalar field W given in Eqs. (4) and (13).
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III. EFFECTIVE FIELD THEORY OF MAGNONS

In this section, we implement explicit symmetry-breaking
terms presented in the previous section into a field-theoretical
description of spin systems, or the O(3) nonlinear sigma
model. We also clarify the matching condition for the low-
energy coefficient in the collinear (homogeneous) ground
state and review the low-energy spectrum in the absence of the
explicit symmetry breaking (also see the Appendix for a coset
construction as a complementary way to derive the effective
Lagrangian).

A. O(3) nonlinear sigma model description

Since we are interested in the low-energy (long wave-
length) behaviors of the system, we can employ the
field-theoretical (continuum) description of the system. A
continuum field-theoretical description of magnons (spin
waves) is given by the O(3) nonlinear sigma model, in which
a three-component unit vector n = (n1, n2, n3)t with nana = 1
plays a role as a dynamical degree of freedom. We note that
this unit vector expresses the usual magnetization order pa-
rameter in the ferromagnetic case, while it represents the Néel
order parameter in the antiferromagnetic case.

The local SO(3) transformation simply acts on the vector
field n as n → g(x)n with g(x) ∈ SO(3), as is the case with the
lattice spin. The symmetry-based discussion in the previous
section enables us to incorporate explicit breaking terms in
the O(3) nonlinear sigma model. In fact, taking the continuum
limit of the background (spurious) gauge and scalar fields
introduced in the previous section, we have the SO(3) gauge
field Aμ(x) ≡ Aμ(x)ata and the scalar W (x) in the symmetric
tensor representation on which the local SO(3) transformation
g(x) ∈ SO(3) acts as

Aμ(x) → g(x)Aμ(x)g−1(x) + ig(x)∂μg−1(x)

W (x) → g(x)W (x)g−1(x). (15)

Using these, we construct the general local SO(3) invariant
effective Lagrangian and eventually fix the (spurious) fields to
the nontrivial background values as

Aa
0(x) = μBa,

Aa
i (x) = (J�)−1Da

i ≡ κa
i ,

W (x) = C − Ccr,

(16)

to investigate small effects of the explicit breaking terms in
the lattice Hamiltonian Eq. (1).

Using the transformation rules of the fields na(x), Aa
μ(x),

and W (x) as ingredients, we can construct the general SO(3)
invariant effective Lagrangian. In the leading order of the
derivative expansion, where we only keep terms up to second
order in derivatives, the SO(3) invariant effective Lagrangian
is given by

Leff = m(n2∂0n1 − n1∂0n2)

1 + n3
+ mAa

0na

+ f 2
t

2
(D0na)2 − f 2

s

2
(Din

a)2 + rW abnanb, (17)

where we defined a covariant derivative with the SO(3) back-
ground gauge field as

Dμna ≡ ∂μna − εa
bcnbAc

μ. (18)

Equation (17) supplemented with Eqs. (16) defines our EFT
for general magnets, including chiral magnets. This contin-
uum field theory should be valid at low energies and contains
four parameters m, ft, fs, and r as low-energy coefficients.
They can be determined from the underlying lattice model
by the matching condition, which will be discussed shortly.
Note that the sum of the first and second terms in Eq. (17)
manifestly breaks the Lorentz invariance4 with an effective
speed of light cs ≡ fs/ ft , but is SO(3) gauge invariant [15]. If
the symmetry-breaking terms vanish (Aa

μ = 0,W ab = 0), the
effective Lagrangian in Eq. (17) reduces to the usual O(3)
nonlinear sigma model describing ferromagnets (m �= 0, ft =
0), antiferromagnets (m = 0, ft �= 0), and ferrimagnets (m �=
0, ft �= 0). The first term is responsible for the quadratic gap-
less dispersion relation of the magnon in ferro/ferrimagnets.
In the rest of this section, we will introduce the matching
condition and study the low-energy spectrum on the top of
the collinear ordered phase.

B. Matching condition and low-energy spectrum
in collinear order

Before discussing magnon dynamics in the presence of
symmetry-breaking terms, we here clarify the matching con-
dition for low-energy coefficients m, ft, fs and r in the
collinear ground state, which breaks approximate SO(3) sym-
metry. We also demonstrate the low-energy spectrum of
gapless magnons in the absence of symmetry-breaking terms.

To illustrate the procedure in a simple context, let us as-
sume that the symmetry-breaking background fields give the
collinear ground state with the magnetization/Néel vector
pointing the north pole as 〈n〉 = n0 ≡ (0, 0, 1)t . We then in-
troduce magnon fields πα (α = 1, 2) as fluctuations on the top
of the ground state, which parametrize the vector n as

n = (π1, π2,
√

1 − (πα )2)t , (19)

where we explicitly solved the constraint nana = 1. Substitut-
ing this parametrization into Eq. (17), we obtain the effective
Lagrangian of magnons given by

L(2)
eff = −m

2
ε3

αβπα∂0π
β + m

(
δ3

a + δα
a πα − 1

2
δ3

a (πα )2

)
Aa

0

+ rW 33 + f 2
t

2

[
(D0π

α )2 + (
Aα

0 πα

)2]
− f 2

s

2

[
(Diπ

α )2 + (
Aα

i πα

)2]
+ r[(W 13 + W 31)π1 + (W 23 + W 32)π2]

+ r[(W 11 − W 33)(π1)2 + (W 22 − W 33)(π2)2

+ (W 12 + W 21)π1π2] + Lint, (20)

4More precisely, a modified Lorentz symmetry remains exact, see
Refs. [118–120].
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where Lint contains more than two magnon fields representing
interactions between them. We have also defined the covariant
derivative of the magnon field as

Dμπα = ∂μπα + ε3α
β Aβ

μ − A3
μεα

β3π
β. (21)

Since the ground state spontaneously breaks the SO(3) sym-
metry down to its subgroup SO(2)z, the magnon fields can be
identified as the NG bosons. The effective Lagrangian Eq. (20)
is reparametrized by πα fields to make their role as NG bosons
manifest, and is equivalent to the original EFT in Eq. (17),
provided all order terms of πα in Lint are kept. In the rest of
this section, we assume symmetry-breaking terms in Eq. (20)
do not induce a tachyonlike instability around the assumed
ground state n0 ≡ (0, 0, 1)t . Thus, the actual values of the
symmetry-breaking terms in Eq. (20) cannot be arbitrary.

We now discuss the matching conditions within a tree-level
analysis to fix the phenomenological parameters in the effec-
tive Lagrangian Eq. (20): the four parameters m, ft, fs, and r.
We first introduce the SO(3) current defined by the variation
of the effective action S in terms of the SO(3) gauge fields:

Jμ
a (x) = δS

[
πα; Aa

μ,W
]

δAa
μ(x)

, S
[
πα; Aa

μ,W
] =

∫
dd+1x Leff .

(22)

Based on the derived effective Lagrangian, we specify the
SO(3) spin currents in the expansion with respect to the
magnon field πα (x) as

J0
3 
 m − m

2
(πα )2

− f 2
t εαβ3π

β
(
∂0π

α + ε3α
γ Aγ

0 − A3
0ε

α
γ 3π

γ
)
,

Ji
3 
 f 2

s δi jεαβ3π
β
(
∂ jπ

α + ε3α
γ Aγ

j − A3
jε

α
γ 3π

γ
)
,

J0
α 
 mπα − f 2

t ε3
αβ

(
∂0π

β + ε3β
γ Aγ

0 − A3
0ε

β

γ 3π
γ
)
,

Ji
α 
 f 2

s δi jε3
αβ

(
∂ jπ

β + ε3β
γ Aγ

j − A3
jε

β

γ 3π
γ
)
. (23)

Here we only collect the leading-order terms with the magnon
field πα (J0

α and Ji
α also have terms quadratic with respect to

the magnon field). Note that one magnon contribution appears
in the currents Jμ

α for the broken symmetry while it does
not in the current Jμ

3 for the unbroken symmetry. It is also
worth noting that there is zero-magnon contribution in J0

3 for
the ferro/ferrimagnetic case, which will lead to the matching
condition specified below.

We then define the generating functional Z[Aa
μ,W ] for the

SO(3) current Jμ
a by the path integral over πα (x):

Z
[
Aa

μ,W
] =

∫
Dπα exp

(
iS
[
πα; Aa

μ,W
])

. (24)

The expectation values of the currents can be obtained by
taking the functional derivative with respect to Aa

μ:

〈
Jμ

a (x)
〉 = i−1 δ

δAa
μ(x)

ln Z
[
Aa

μ,W
]
. (25)

We can also introduce the generalized susceptibility for the
SO(3) symmetry (correlation functions of current operators),

defined by

χ
μν

ab (ω, k) = −
∫

dd+1x eiωt−ik·x δ2 ln Z
[
Aa

μ,W
]

δAa
μ(x)δAb

ν (0)
. (26)

If we wish to find the expectation values of the current op-
erators and the susceptibility at the tree level, we just need
to evaluate Eq. (24) at the collinear ground state πα (x) = 0
and the background values of Aa

μ and W (x). Denoting the
ground-state expectation value of an operator O by 〈O〉, we
obtain the expectation value of the current operator Ĵμ

a and the
correlation functions of the current operators (susceptibility)
at the tree-level approximation as〈

J0
3 (x)

〉|π=0 = m

χ00
αβ (ω = 0, k = 0)|π=0 = f 2

t δαβ

χ
i j
αβ (ω = 0, k = 0)|π=0 = − f 2

s δi jδαβ. (27)

Throughout this section, we use an abbreviated notation of
πα = 0 to denote the ground-state values: πα = 0 and the
background field Aa

μ and W fixed at physical values given
in Eqs. (16). The second and third equations indicate a
nonvanishing long-range correlation for the (approximately)
conserved currents, which is a manifestation of spontaneous
symmetry breaking. Its structure is the same as the familiar
symmetry breaking in the Lorentz invariant systems, except
for the independent numerical prefactor, which reflects the
fact that the propagating speed of magnons is generally not the
speed of light. On the other hand, the first equation is peculiar
to the nonrelativistic system since the nonvanishing charge
density m �= 0 manifestly breaks the Lorentz invariance.

Taking the variation with respect to the background field
W , we can also obtain the matching condition for r as

r =
〈
δSeff

δW 33

〉∣∣∣∣
π=0

, (28)

which is proportional to 〈ŝn
3 ŝn

3〉 in the lattice model description.
Equations (27) and (28) provide the matching conditions for
low-energy coefficients m, ft, fs, and r.

Depending on which coefficients are present, we can clas-
sify various magnets into three types: antiferromagnets, ferro-
magnets, and ferrimagnets. For simplicity, let us consider the
simple situation with vanishing explicit symmetry-breaking
terms—the background magnetic field Ba, DM interaction Da

j ,
and single-ion anisotropy Cab. In this case, we can simplify the
quadratic part of the effective Lagrangian as

L(2)
eff = −m

2
ε3

αβπα∂0π
β

+ f 2
t

2
δαβ∂0π

α∂0π
β − f 2

s

2
δαβδi j∂iπ

α∂ jπ
β, (29)

which results in the following equation of motion:(
f 2
t ∂2

0 − f 2
s ∇2 m∂0

−m∂0 f 2
t ∂2

0 − f 2
s ∇2

)(
π1

π2

)
= 0. (30)

By solving the characteristic equation for the coefficient ma-
trix, we can investigate the number of the independent NG
modes and their dispersion relations. The result is summarized
as follows:
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(i) Antiferromagnet ( ft �= 0, m = 0):

two NG modes with ω = cs|k|, (31)

(ii) Ferromagnet ( ft = 0, m �= 0):

one NG mode with ω = f 2
s

m
k2, (32)

(iii) Ferrimagnet ( ft �= 0, m �= 0):

one NG mode and one gapped mode

with ω = f 2
s

m
k2 + O(k4), ω = m

f 2
t

+ O(k2).
(33)

We list only positive frequencies here and subsequently,
although there are negative frequency solutions with the op-
posite sign. Here, we have introduced the propagating speed
of the antiferromagnetic magnon as cs ≡ fs/ ft , which is not
necessarily the speed of light in contrast to the NG mode in the
Lorentz invariant system. Note that the ferro/ferrimagnetic
magnons show the quadratic dispersion relation and the num-
ber of gapless excitation NNG obeys the general counting rule:

NNG = NBS − rank ρ with ρab(x) ≡ 〈[
iQ̂a, Ĵ0

b (x)
]〉
. (34)

Here, we introduced the number of the broken symmetry NBS

and the so-called Watanabe-Brauner matrix ρab, where Q̂a =∫
dd x Ĵ0

a (x) (a = 1, 2, 3) denotes the Noether charge associ-
ated with the SO(3) symmetry. One finds that the counting
rule Eq. (34) is completely consistent with the present setup
by recalling NBS = dim SO(3)/SO(2) = 2 and rank ρ = 1 for
the collinear ferro/ferrimagnetic ground state or rank ρ = 0
for the antiferromagnetic one. Here, we used the fact that
our matching condition ρ12(x) = 〈Ĵ0

3 (x)〉 = m does not vanish
in ferro/ferrimagnets while it does in antiferromagnets. The
dispersion relation at small k in the ferrimagnet case given in
Eq. (33) reduces to that in the ferromagnet case as ft → 0
while it does not reduce to that of antiferromagnet in the
limit of m → 0. This apparent inconsistency comes from our
limiting procedure: we first take the small k limit in Eq. (33)
and consider the m → 0 limit. The full dispersion relation
for ferrimagnets is available from Eq. (30), which, of course,
reproduces that of antiferromagnets when we take m → 0.

IV. LOW-ENERGY SPECTRUM ON
HELICAL/SPIRAL PHASE

In this section, we apply the effective Lagrangian Eq. (17)
to study low-energy excitation spectra of noncollinear (inho-
mogeneous) ground states induced by the DM interaction.
When the DM interaction is sufficiently large, noncollinear
states tend to become the ground state. The simplest of such
noncollinear ground states develop a one-dimensional modu-
lation of the spin vector. Depending on the types of the DM
interaction, they are called the helical ground state or spiral
ground state. Both of them support a gapless NG mode as a
low-energy excitation, that is, the phonon associated with the
spontaneous breaking of the translation symmetry. Nonethe-
less, we demonstrate that the form of the dispersion relation is
qualitatively different between helical and spiral states.

A. Isotropic dispersion relation in helical ground state

As the first application, we consider the case where the
simple combination of the uniaxial DM interaction and easy-
axis anisotropic potential along the same direction are present.
For simplicity, we choose the following background values for
the external fields in the effective Lagrangian Eq. (17):

Aa
0 = 0, Aa

i = κiδ
a
3, and rW ab = W

2
δa

3δ
b
3. (35)

Using this setup, we will show that the system develops helical
order in the case of the easy-plane potential (W < 0) [55]. Due
to the spontaneous breaking of the translational symmetry, the
helical ground state is shown to support a translational gapless
phonon (NG mode) in the low-energy spectrum irrespective of
the types of chiral magnets.

In contrast to the analysis in Sec. III B, we have a
noncollinear ground state, which forces us to abandon the
description in Eq. (20) in terms of NG bosons on the collinear
ground state. We thus here start with the original O(3) non-
linear sigma model description given in Eq. (17). Substituting
Eq. (35) into the effective Lagrangian Eq. (17), we obtain

Leff = m(n2∂0n1 − n1∂0n2)

1 + n3
+ f 2

t

2
(∂0na)2

− f 2
s

2

(
∂in

a − κiε
a
b3nb

)2 + W

2
(n3)2. (36)

One should note that the potential V (n3) = −W (n3)2/2 fa-
vors n3 = ±1 (easy axis) if W > 0, whereas it favors n3 =
0 (easy-plane) if W < 0. To find the ground state, we use
the Hamiltonian defined by the Legendre transformation of
Eq. (36) as

H = �a∂0na − Leff

= 1

2 f 2
t

(
�a − m

(
n2δ1

a − n1δ2
a

)
1 + n3

)2

+ f 2
s

2

(
∂in

a − κiε
a
b3nb

)2 − W

2
(n3)2, (37)

where we defined the conjugate momentum �a as

�a ≡ ∂Leff

∂ (∂0na)
= m

(
n2δ1

a − n1δ2
a

)
1 + n3

+ f 2
t ∂0na. (38)

Noting that the Hamiltonian Eq. (37) is expressed as a sum
of the quadratic terms, we try to find a candidate ground-state
solution by requiring the first two terms to vanish:

∂0na = 0, ∂in
a − κiε

a
b3nb = 0. (39)

The solutions of this set of equations are given by

n̄a =
⎛
⎝

√
1 − Ā2 cos(κ · x + φ̄)

−√
1 − Ā2 sin(κ · x + φ̄)

Ā

⎞
⎠, (40)

where two real parameters Ā ∈ [−1, 1] and φ̄ ∈ [0, 2π ) de-
note integration constants, which characterize an orbit on the
unit sphere at a constant latitude n3 = Ā. Since we can regard
the potential to be a function of these orbits (n3 = Ā), we can
find the ground state by just finding the orbit corresponding to
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FIG. 2. A schematic picture of the helical ground state in the DM
dominant (2 + 1)-dimensional magnet.

the minimum of the potential. Thus, we find the ground states
as

Ā =
⎧⎨
⎩

±1 for W > 0
0 for W < 0

arbitrary ∈ [−1, 1] for W = 0.

(41)

While the ground state is collinear for Ā = ±1, it realizes
the noncollinear helical order for |Ā| < 1. Figure 2 shows a
schematic picture of the helical ground-state configuration of
na with Ā = 0 (the orbit circling at the equator). Thus, we
find that the helical order is realized along the direction of the
DM interaction κ when W � 0 (see also Ref. [55]). The fine-
tuned case with W = 0 is unique in the sense that circles at
any latitude give the degenerate classical ground states corre-
sponding to the Kaplan-Shekhtman-Aharony-Entin-Wohlman
limit [74,75]. In this case of W = 0, BPS soliton solutions
in (1 + 1)-dimension have been exhaustively worked out in
Ref. [55]. One should note that our parametrization of the
(n3)2 term in the potential differs from many previous works,
including Ref. [55], where the additional term was present in
the potential as V (n3) = (−W + κ2)(n3)2/2.

Let us then consider the case with W < 0, and investigate
the low-energy spectrum on the helical ground state. For that
purpose, we consider fluctuations of δA and δφ around the
fixed background values Ā = 0 and φ̄ = 0, and rewrite the
effective Lagrangian by promoting δA(x) and δφ(x) to dynam-
ical fields. In short, we parametrize the spin vector na as

n(x) =
⎛
⎝
√

1 − (δA(x))2 cos(κ · x + δφ(x))
−
√

1 − (δA(x))2 sin(κ · x + δφ(x))
δA(x)

⎞
⎠



⎛
⎝ cos(κ · x + δφ(x))

− sin(κ · x + δφ(x))
δA(x)

⎞
⎠, (42)

where, in the second equality, we have retained the leading
order of the expansion with respect to the fluctuation (δA
and δφ) to investigate the low-energy spectra of δA and δφ.
Substituting this parametrization into the original effective
Lagrangian Eq. (36), we now obtain the quadratic part of the
Lagrangian for the amplitude mode δA and phase mode δφ as

L(2)
eff = m(1 − δA)∂0δφ + f 2

t

2
[(∂0δA)2 + (∂0δφ)2]

− f 2
s

2
[(∂iδA)2 + (∂iδφ)2] + W

2
(δA)2, (43)

from which we can read off the following linearized equations
of motion:(

f 2
t ∂2

0 − f 2
s ∇2 −m∂0

m∂0 f 2
t ∂2

0 − f 2
s ∇2 − W

)(
δφ

δA

)
= 0. (44)

Note that the equations of motion for the amplitude and phase
fluctuations are coupled in the presence of the magnetization
parameter m while they decouple for vanishing m. Solving the
characteristic equation for the matrix and noting W = −|W |,
we obtain the dispersion relation in each case of magnets as

(i) Antiferromagnet ( ft �= 0, m = 0):

ω = fs

ft
|k|,

√
|W | + ( fsk)2

ft
, (45)

(ii) Ferromagnet ( ft = 0, m �= 0):

ω = fs|k|
√

|W | + ( fsk)2

m
= fs

√|W |
m

|k| + O(|k|3), (46)

(iii) Ferrimagnet ( ft �= 0, m �= 0):

ω =
( |W |

m2 + |W |
) 1

2 fs

ft
|k|

+ m4

2
√

|W |(m2 + |W |)5

( fs|k|)3

ft
+ O(|k|5),

ω =
√

m2 + |W |
ft

+ 2m2 + |W |
2(m2 + |W |)3/2

f 2
s k2

ft
+ O(k4). (47)

We now see that the helical ground state with W < 0 sup-
ports only one gapless excitation (NG mode, and its dispersion
relation is linear with respect to the momentum in all cases.
This is in sharp contrast to the limiting case of W = 0 in
Eq. (47), in which the ferromagnet supports the magnon with
a quadratic dispersion.

In the current case (W < 0), the dispersion relation at
small k in the ferrimagnet case Eq. (47) reduces to that in
the antiferromagnet case Eq. (45) in the limit of m → 0 but
does not reduce to that in the ferromagnet case of Eq. (46)
in the limit of ft → 0. On the other hand, the dispersion
relations for the antiferromagnet in Eq. (45) and ferromagnet
in Eq. (46) reduce in the limit W → 0 to Eqs. (31) and (32) for
the antiferromagnet and ferromagnet. However, the dispersion
relation of the gapless mode of the ferrimagnet in Eq. (47) is
singular as W → 0 and does not agree with Eq. (33). This
discontinuity is due to the change of the small k behavior
from |W ||k| at W < 0 to k2 at W = 0, which is similar to
magnon dispersion relations in the collinear ordered phase.
Again, the full dispersion relation for ferrimagnets before
small-k expansion, which is available from solving Eq. (44),
reproduces both ferromagnetic and antiferromagnetic limits.

Let us clarify the symmetry-breaking pattern for the helical
ground state. Originally, the effective Lagrangian Eq. (36)
enjoys SO(2)z spin rotation symmetry and spatial translation
symmetry Rd . The helical ground state clearly breaks one
spatial translation symmetry down to Rd−1

⊥ and, thus, one
may regard the resulting gapless mode as the translational
phonon. However, we note that it is also possible to interpret
this gapless mode as the magnon in a rotating frame. This is
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because one can also regard the symmetry breaking pattern as

SO(2)z × Rd → Rs+‖ × Rd−1
⊥ , (48)

since the helical ground-state configuration remains invariant
under a particular combination of the SO(2)z spin rotation
and spatial translation R‖ along the modulation, which we ex-
pressed as Rs+‖. In fact, we can eliminate the DM interaction
by performing the field redefinition of the spin vector (see e.g.,
Ref. [55]) and, as a result, the newly defined spin develops
the collinear order so one obtains the corresponding magnon
mode. In this interpretation, the linear dispersion with W < 0
corresponds to the magnon in the presence of the easy-plane
potential, where the remaining SO(2)z symmetry is sponta-
neously broken (the spectrum with W = 0 corresponds to the
magnon without SO(3) symmetry breaking perturbations). In
short, one can call the gapless mode in the helical phase the
translational phonon or SO(2)z magnon in the rotating frame.

B. Anisotropic dispersion relation in spiral ground state

Let us next consider (2 + 1)-dimensional chiral magnets
containing an isotropic (in the x, y plane) DM interaction
Da

i ∝ δa
i , i = 1, 2, which allows a spiral ground state when

the DM interaction is more dominant than the potential. To

obtain the simplest explicit solution, we consider the case
without a potential (after the DM interactions are explicitly
separated from covariant derivatives). Hence our effective La-
grangian is given by

Leff = m(n2∂0n1 − n1∂0n2)

1 + n3
+ f 2

t

2
(∂0na)2 − f 2

s

2
(∂in

a)2

+ f 2
s κ[n3(∂yn1 − ∂xn2) + (n2∂x − n1∂y)n3]. (49)

This Lagrangian corresponds to the following choice of back-
ground fields with a constant term −κ2/2 discarded:

Aa
0 = 0, Aa

i = −κδa
i , rWabnanb = − f 2

s κ2(n3)2. (50)

Instead of treating the constrained variable na, we now ex-
plicitly solve the constraint nana = 1 by using the spherical
parametrization of the spin vector n given by

n =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ with 0 � θ < π, 0 � φ < 2π.

(51)
Substituting this into Eq. (49), we obtain the Lagrangian in
terms of the unconstrained variables:

Leff = 2m sin2 θ

2
∂0φ + f 2

t

2
[(∂0θ )2 + sin2 θ (∂0φ)2] − f 2

s

2
[(∂iθ )2 + sin2 θ (∂iφ)2]

+ f 2
s κ

[
(cos φ∂y − sin φ∂x )θ − 1

2
sin 2θ (cos φ∂x + sin φ∂y)φ

]
. (52)

To find a one-dimensionally noncollinear solution, let us
assume that the configuration is independent of time t and
spatial coordinate y. This assumption is consistent with the
equation of motion, thanks to the space-time translational
symmetry. Retaining only the x dependence, we find energy
density E of such a configuration as

E[θ, φ] = f 2
s

2

[(
dθ

dx

)2

+ sin2 θ

(
dφ

dx

)2]

− f 2
s κ

[
− sin φ

dθ

dx
− 1

2
sin 2θ cos φ

dφ

dx

]
. (53)

The equation of motion for φ can be solved trivially by taking

φ = ±π

2
+ 2nπ, n ∈ Z. (54)

With this choice, the energy density becomes

E[θ ] = f 2
s

2

(
dθ

dx

)2

± f 2
s κ

dθ

dx
, (55)

where the ± sign corresponds to φ = ±π/2 + 2nπ . It is
interesting to observe that the DM interaction for the one-
dimensionally noncollinear configuration becomes a total
derivative and does not affect the equation of motion for θ ,
which becomes

d2θ̄ (x)

dx2
= 0, (56)

yielding the following solution:

θ̄ (x) = cx + d with c, d ∈ R, (57)

where c and d are integration constants. Although all these
solutions with arbitrary values of c, d are solutions of the field
equations, they can give different energy densities because of
the total derivative term induced by the DM interaction. We
can minimize the energy density of these solutions,

E[θ̄ ] = f 2
s

(
c2

2
± κc

)
, (58)

to find the ground state at the value of c = ∓κ . Since both
signs give physically equivalent ground states, we find the
spiral ground state with a moduli parameter d as

φ̄ = π

2
, θ̄ (x) = −κx + d, with d ∈ R. (59)

Since this ground-state solution represents the one-
dimensional spiral modulation of the spin vector, it is called
the spiral phase (see Fig. 3). The most general spiral solu-
tion can be obtained by applying simultaneous rotation in
the x-y plane and spin vector in the n1-n2 plane. The spiral
state is similar to the helical state in that both describe the
one-dimensional modulations. Nevertheless, the behavior of
the collective excitation, or the translational phonon, is quali-
tatively different, as will be shown below. As a representative
spiral state, we take the solution in Eq. (59) as the background
to study the dispersion relation of low-energy excitations.
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FIG. 3. A schematic picture of the spiral ground state in the (2 +
1)-dimensional magnet.

To investigate the low-energy excitation in the spiral
ground state, we introduce the fluctuations δθ and δφ around
the spiral ground state as

θ (t, x) = −κx + δθ (t, x), φ(t, x) = π

2
+ δφ(t, x). (60)

Note that the fluctuation field δθ (t, x) appears in the specific
combination with the position coordinate −κx + +δθ (t, x)
due to the spatial translational symmetry breaking in the spiral
phase. This implies that δθ (t, x) is identified as the trans-
lational phonon field attached to the translational symmetry
breaking.

Then, we substitute this parametrization to the effective
Lagrangian Eq. (52) and collect the terms within the quadratic
order of fluctuations. We find that it is useful to use δ�(x) ≡
sin(−κx)δφ instead of δφ(x). The resulting effective La-
grangian for the fluctuations δθ and δ� is given by

L(2)
eff = f 2

t

2
[(∂0δθ )2 + (∂0δ�)2] − f 2

s

2
[(∂iδθ )2 + (∂iδ�)2]

− f 2
s κ2

2
(δ�)2 + mδθ∂0δ� − 2 f 2

s κ sin κx δθ∂yδ�.

(61)

This result shows that the fluctuations δθ and δ� couple
through the first-order time derivative term, and the sinusoidal
modulation proportional to the magnitude of the DM interac-
tion κ with the momentum ∂y perpendicular to the modulation.

Due to the explicit presence of the sinusoidal function, the
linear mode analysis will be a little complicated in the same
way as the band theory with a periodic potential.

Let us investigate the low-energy spectrum described by
Eq. (61). First, we derive the equation of motion given by(

f 2
t ∂2

0 − f 2
s ∇2

)
δθ − (

m∂0 − 2 f 2
s κ sin κx∂y

)
δ� = 0,(

f 2
t ∂2

0 − f 2
s ∇2 + f 2

s κ2)δ� + (
m∂0 − 2 f 2

s κ sin κx∂y
)
δθ = 0.

(62)

Performing the Fourier transformation with respect to the time
argument, we can rewrite these equations in a matrix form,

A(ω)�ϕ = H (x)�ϕ with �ϕ ≡
(

δθ

δ�

)
, (63)

where we introduced the coefficient matrices as

A(ω) ≡
(

f 2
t ω2 −imω

imω f 2
t ω2

)
,

H (x) ≡ f 2
s

( −∇2 2κ sin κx∂y

−2κ sin κx∂y −∇2 + κ2

)
. (64)

Let us first derive the eigenvalue spectra of the reduced
Hamiltonian H (x), which are periodic along the x direction
as x → x + a with the period a ≡ 2π/κ . Thanks to the peri-
odicity, we can apply Bloch’s theorem [76] by introducing �ϕk

as a simultaneous eigenstate for H and the discrete translation
Ta = ea∂x as

H (x)�ϕkx (x) = Ekx �ϕkx (x) and Ta �ϕkx (x) = eikxa �ϕkx (x).
(65)

Here, the discrete translation operator induces TaH (x +
a)T −1

a = H (x) and Ta �ϕ(x) = �ϕ(x + a). Bloch’s theorem tells
us that we can decompose such an eigenvector as

�ϕkx (x) =
∫

dk⊥
2π

∑
n

ei(kx+κn)x+ik⊥y�vn(k), (66)

with �vn(k) ≡ (v(0)
n (k), v(1)

n (k))t . We also have introduced the
momentum perpendicular to the modulation direction as
k⊥. Note that the momentum along the modulation direc-
tion kx takes a value within the first Brillouin zone: kx ∈
[−π/a, π/a) = [−κ/2, κ/2). Substituting this vector into the
eigenvalue problem, we obtain recurrence relations among vn

as

f 2
s

(
[(kx + κn)2 + k2

⊥]v(0)
n (k) + κk⊥[v(1)

n−1(k) − v
(1)
n+1(k)]

) = En(k)v(0)
n (k),

f 2
s

(−κk⊥
[
v

(0)
n−1(k) − v

(0)
n+1(k)

]+ [(kx + κn)2 + k2
⊥ + κ2]v(1)

n (k)
) = En(k)v(1)

n (k). (67)

As expected, the nondiagonal element is proportional to κk⊥.
Thus, we can derive the exact result for the eigenvalue with
the eigenfunction on the momentum plane k⊥ = 0 as

E (0)
n (kx, 0) = f 2

s (kx + κn)2,

E (1)
n (kx, 0) = f 2

s [(kx + κn)2 + κ2]. (68)

It is clear that the former branch of the solution with n = 0
gives the lowest-lying eigenvalue, and all the bands with

n �= 0 have gaps determined by the magnitude of the DM
interaction κ .

Apart from the k⊥ = 0 plane, we need to solve the coupled
infinite-dimensional recurrence relation. We observe that the
coupling between neighboring bands n and n + 1 is propor-
tional to κk⊥ and that the recurrence relations separate into
two sets: those relating v

(0)
2n with v

(1)
2n+1 and those relating

v
(1)
2n with v

(0)
2n+1. These facts allow us to use an approxi-

mation to take account of only 2n + 1 bands between the
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−nth and nth bands to obtain eigenvalues of the Hamil-
tonian at small k2/κ2 for low-lying states. Defining ω+

n ≡
(kx + nκ )2 + k2

⊥ + κ2 and ω−
n ≡ (kx + nκ )2 + k2

⊥, we find an

explicit form of the eigenvalue problem in the three-band trun-
cated approximation as the following two sets of 3 × 3 matrix
equations:

⎛
⎜⎜⎝

ω+
1 − E (k)

f 2
s

−κk⊥ 0

−κk⊥ ω−
0 − E (k)

f 2
s

κk⊥
0 κk⊥ ω+

−1 − E (k)
f 2
s

⎞
⎟⎟⎠
⎛
⎜⎝

v
(1)
1 (k)

v
(0)
0 (k)

v
(1)
−1(k)

⎞
⎟⎠ = 0, (69)

⎛
⎜⎜⎝

ω−
1 − E (k)

f 2
s

κk⊥ 0

κk⊥ ω+
0 − E (k)

f 2
s

−κk⊥
0 −κk⊥ ω−

−1 − E (k)
f 2
s

⎞
⎟⎟⎠
⎛
⎜⎝

v
(0)
1 (k)

v
(1)
0 (k)

v
(0)
−1(k)

⎞
⎟⎠ = 0. (70)

We find discrete energy bands En(k) labeled by n = 0, 1, 2, · · · , as a function of momentum k in the first Brillouin zone,
by solving the third-order equations for vanishing determinant of the three-band equations. Similarly, we can also consider
the five-band truncated approximation. The ground state eigenvalue in the five-band approximation is obtained by solving the
following 5 × 5 matrix equations:⎛

⎜⎜⎜⎜⎜⎜⎝

ω+
2 − E (k)

f 2
s

−κk⊥ 0 0 0

κk⊥ ω+
1 − E (k)

f 2
s

−κk⊥ 0 0

0 −κk⊥ ω−
0 − E (k)

f 2
s

κk⊥ 0

0 0 κk⊥ ω+
−1 − E (k)

f 2
s

−κk⊥
0 0 0 κk⊥ ω+

−2 − E (k)
f 2
s

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

v
(0)
2 (k)

v
(1)
1 (k)

v
(0)
0 (k)

v
(1)
−1(k)

v
(0)
−2(k)

⎞
⎟⎟⎟⎟⎟⎠ = 0. (71)

Figure 4 shows the comparison of the eigenvalues En(0, k⊥)
with the three-band and five-band approximations. Note that
while the results for the three-band approximation (dashed
lines) and five-band approximation (solid lines) are not so
different at the low-k⊥ region and the low-lying band, the
deviation appears at high-k⊥ regions and at higher bands. As
we increase the number of bands in the approximation, we, of
course, obtain more bands of eigenvalues. We are interested
in the dispersion relation at small values of momentum, es-
pecially for low-lying states. Because the coupling between
neighboring bands is proportional to k⊥/κ , we can use an
expansion in powers of k⊥/κ to evaluate energy eigenvalues.
We find that the (2n + 1)-band approximation gives an exact

FIG. 4. A comparison of the eigenvalue E (0, k⊥) with the three-
band approximation (dashed lines) vs five-band approximation (solid
lines) on the kx = 0 plane (κ = 1).

result for the lowest-band spectrum E0(k)/( f 2
s κ2) up to terms

of order (k⊥/κ )2n in powers of (k⊥/κ )2.
Once eigenvalues of the reduced Hamiltonian H are given

in terms of the band energy spectra En(k) in the momentum
space with the corresponding eigenvector �ϕn, we can obtain
the dispersion relation by solving the following equation [re-
call Eqs. (63) and (64)]:(

f 2
t ω2 − En(k) −imω

imω f 2
t ω2 − En(k)

)
�ϕn = 0. (72)

To find nontrivial eigenvectors, we require the determinant of
the coefficient matrix to vanish. This characteristic equation
gives the dispersion relations given by

(i) Antiferromagnet ( ft �= 0, m = 0):

ωn(k) =
√

En(k)

ft
= cs

√
En(k)

fs
(two modes), (73)

(ii) Ferromagnet ( ft = 0, m �= 0):

ωn(k) = En(k)

m
(one mode), (74)

(iii) Ferrimagnet ( ft �= 0, m �= 0):

ωn(k) =
√

m2 + 4 f 2
t En(k) ± m

2 f 2
t

(two modes), (75)

where we again introduced cs ≡ fs/ ft . As is the case for the
collinear ground state, the number of independent modes for
ferromagnets ( ft �= 0, m = 0) is half that of the antiferro-
magnets ( ft = 0, m �= 0) or ferrimagnets ( ft �= 0, m �= 0).
This is because the vanishing f 2

t makes two fluctuation com-
ponents δθ and δ� to be one canonically conjugate pair of
dynamical variables so they just give one independent degree
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FIG. 5. Low-energy spectrum for the antiferromagnetic spiral phase with the five-band approximation (κ = 1, f = 1).

of freedom in contrast to the case of other magnets, where
they become two independent degrees.

Equations (73)–(75) enable us to clarify the low-energy
spectrum of the spiral phase from the approximated eigen-
value En(kx, k⊥). The resulting dispersion relations with the
five-band approximation are shown in Figs. 5–8 (note that
kx takes the value in kx ∈ [−κ/2, κ/2) while k⊥ can be any
real number k⊥ ∈ R). One sees that the lowest branch of the
bands (n = 0) gives the gapless excitation, which dominates
the low-energy behavior of the spiral phase. We identify this
gapless mode as the NG mode, or the translational phonon,
attached to the spatial translatinoal symmetry breaking in the
spiral phase. Besides, we also have other bands (n = ±1,±2
in the current working accuracy) corresponding to the gapped
excitation in the first Brillouin zone: kx ∈ [−κ/2, κ/2). Recall
that the number of the independent mode is different, as shown
in Eqs. (73)–(75): all spectra for the antiferromagnetic case
( ft �= 0, m = 0) are doubly degenerated, and the ferrimag-

netic case ( ft �= 0, m �= 0) breaks that degeneracy, so more
surfaces can be seen in the leftmost panels of Figs. 7 and 8.
We also note that an asymmetry of the spectrum with respect
to the momentum inversion induced by the DM interaction is
absent in Figs. 7 and 8. This is because our spectrum should be
regarded as those for phonons and not for magnons. In other
words, the −κx term appearing in Eq. (60) shifts the spectrum
of the translational phonon so the momentum asymmetry is
hidden in the phonon spectrum.

The rightmost panels in Figs. 5–8 show the section of the
low-energy spectrum at kx = 0 and k⊥ = 0, respectively. In
sharp contrast to the helical phase, the fluctuation spectrum
at the low-energy region shows anisotropic behaviors. This
peculiar behavior results from the anisotropic behavior of the
eigenvalue En=0(kx, k⊥),

En=0(kx, k⊥) = k2
x − k2

x k2
⊥

κ2
+ 3k4

⊥
8κ2

+ · · · , (76)

FIG. 6. Low-energy spectrum for the ferromagnetic spiral phase with the five-band approximation (κ = 1, m = 1).
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FIG. 7. Low-energy spectrum for the ferrimagnetic spiral phase with the five-band approximation (κ = 1, f 2 = 1, m = 0.5).

which is exact up to the order of k4
⊥ in powers of k⊥/κ , and

can be obtained in the five-band approximation in Eq. (71).
Using Eqs. (73)–(75), we find the low-energy spectrum

for the spiral phase. Depending on the type of magnets, we
find the dispersion relation for the lowest (gapless) mode as
follows:

(i) Antiferromagnet:

ωn=0(k) =

⎧⎪⎪⎨
⎪⎪⎩

cs|kx|
(
1 − k2

⊥
2κ2

+ 3k4
⊥

16κ2|kx |2 + · · · ) if kx �= 0,

cs

√
3
8

k2
⊥
κ

+ · · · if kx = 0,

(77)

(ii) Ferromagnets or ferrimagnets:

ωn=0(k) = f 2
s

m

[
k2

x

(
1 − k2

⊥
κ2

)
+ k4

⊥
2κ2

+ · · ·
]
. (78)

This gapless excitation is identified as the NG mode as-
sociated with the spontaneous symmetry breaking of the
one-dimensional translation. The anisotropic dispersion re-
lation is a remarkable property of the one-dimensional
modulation consistent with the result from a symmetry-based
general approach [32]. We also note that ferrimagnets have
another branch of the gapped mode, whose gap is controlled
by the magnetization parameter m. Thus, the gapped mode
can appear with a relatively small gap when m/( fs ftκ ) < 1
(compare Figs. 7 and 8).

The energy spectrum in the spiral phase is qualitatively
different from that in the helical phase (even the numbers of
the gapless mode in antiferromagnets is different). Moreover,
in the spiral phases, the low-momentum behaviors of the en-
ergy spectrum are also different between the antiferromangets
and ferro/ferrimagnets. We shall explain these results
from the symmetry viewpoint. First, the symmetry-breaking

FIG. 8. Low-energy spectrum for the ferrimagnetic spiral phase with the five-band approximation (κ = 1, f 2 = 1, m = 1).
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pattern is different from the helical phase. In addition to the
spatial translation, the effective Lagrangian Eq. (49) remains
invariant under a simultaneous rotation in the spin and real
spaces (recall that one of the symmetry-breaking terms Aa

i
is expressed by the isotropic tensor δa

i , which ties the spin
and spatial indices). As a result, we identify that the model
Eq. (49) originally enjoys SO(2)s+l × R2 symmetry, where
SO(2)s+l denotes the simultaneous rotation in the spin and
real spaces. The spiral ground state then breaks SO(2)s+l

symmetry as well as one spatial translation symmetry so the
symmetry breaking pattern is identified as

SO(2)s+l × R2 → R1
⊥. (79)

We clearly see that the number of broken symmetries is dif-
ferent from that in the helical phase [recall Eq. (48)]. The
fluctuation fields δθ and δφ correspond to the NG field at-
tached to these broken symmetries. This identification seems
to result in the presence of two gapless NG modes in the
spiral phase, but we need to be careful whether they describe
independent modes or not.

To clarify this point, let us investigate Noether charges
based on the original effective Lagrangian Eq. (49). For that
purpose, we recall that the SO(2)s+l and R1

‖ (or the broken
translational) symmetries with infinitesimal transformation
parameters ε and ξ act on the field n as

δn1 = ε(n2 + iLzn
1) + ξ∂xn1

δn2 = ε(−n1 + iLzn
2) + ξ∂xn2

δn3 = iLzn
3 + ξ∂xn3, (80)

where we defined the orbital angular momentum operator
Lz ≡ −i(y∂x − x∂y). This transformation rule allows us to find
the corresponding Noether charge densities as

ρ(x) = m

[
1 − n3 + n2iLzn1 − n1iLzn2

1 + n3

]

+ f 2
t [n2∂0n1 − n1∂0n2 + iδabLzn

a∂0nb], (81)

px(x) = m(n2∂xn1 − n1∂xn2)

1 + n3
+ f 2

t δab∂0na∂xnb, (82)

where we used the normalization condition n2 = 1 to rewrite
ρ(x). Then, noting that the conserved charge Q = ∫

d3xρ(x)
and Px = ∫

d2xpx(x) generates the symmetry transforma-
tions, we find the ground-state expectation value of the
Noether charge’s commutator as

〈[iPx, ρ(x)]〉gs = −m∂xn̄3(x) = −mκ sin(−κx + d ), (83)

which is nonvanishing in the ferro/ferrimagnetic case
(m �= 0). Interestingly, the right-hand-side of the commuta-
torEq. (83) is given by the topological charge density (see,
e.g., Ref. [77]).

In summary, we find that the ferro/ferrimagnetic spiral
phase supports the nonvanishing ground-state commutator be-
tween the Noether charges attached to the broken symmetries.
This is a primary reason why two NG fields (δθ, δφ) do
not describe two independent gapless modes but rather the
coupled mode in the ferro/ferrimagnetic spiral phase, whose
dispersion relation is further modified from those in antifer-
romagnets. In other words, we identify that the NG fields δθ

and δφ form one type-B NG mode in the ferri/ferromagnetic
spiral phase while they give two independent type-A NG
modes in the antiferromagnetic one.

A remark on the possible breakdown of the long-range
order is in order. Due to its peculiar low-k⊥ behavior of
the dispersion relation—quadratic for antiferromagnet and
quartic for ferro/ferrimagnets—one may wonder whether it
does affect the fate of the spiral phase to be disordered or
to be the quasi-long-range order. At zero temperature, we
may not encounter an infrared divergence for the correlation
function of NG modes thanks to the frequency (and kx) in-
tegral. In particular, the zero-temperature ferro/ferrimagnets
are free from such a dangerous fluctuation contribution
because one finds no contribution after performing the fre-
quency integral. This situation is similar to the fact that the
Mermin-Wagner theorem [78–80] does not apply to the zero-
temperature (1 + 1)-dimensional ferromagnet. Nevertheless,
in finite-temperature systems, all magnets could suffer from
the divergent fluctuation contribution, so they may develop the
quasi-long-range order (or may be disordered) instead of the
true long-range order (see, e.g., Ref. [6]). It is interesting to
investigate the fate of the spiral phase at the finite temperature,
but it is beyond the scope of this paper.5

Before closing this section, we comment on the degenerate
point in the spectrum. As we learn at the beginning of the
band theory, the band crossing is usually avoided because of
the level repulsion, which results from nondiagonal matrix
elements of the involved energy states. However, as shown in
Figs. 5–8, we find several crossing points at the higher bands.
This is because every band in the current model only couples
to their nearest-neighboring bands so no level repulsion takes
place between non-nearest neighbors. In that sense, most of
the degenerate points appear just accidentally. However, there
is a special degenerate point (kx, k⊥) = (±κ/2, 0) located at
the boundary of the Brillouin zone, where all bands show
twofold degeneracy. This twofold degeneracy has a simple
origin: First, there is no coupling between different bands
when k⊥ = 0, so the kx spectrum on the k⊥ = 0 plane is
continuous, as given in Eq. (68). Second, the kx spectrum has
to live within the first Brillouin zone because of the period-
icity in the x direction. Therefore, the twofold degeneracy at
(kx, k⊥) = (±κ/2, 0) is inevitable.

V. MAGNON PRODUCTION BY INHOMOGENEOUS
MAGNETIC FIELD

In this section, we consider the production rate of magnons
from the collinear (homogeneous) ground state in (d + 1)
dimensions caused by an inhomogeneous magnetic field as
another application of the EFT of magnons. This mechanism
gives a magnon analog of a pair creation of charged particles
by an electric field—the Schwinger mechanism [65,66,68].
We show that the magnon production rate (or ground-state
decay rate) is controlled by an effective mass of the magnon
consisting of the quadratic term of the potential and the ratio
of the coefficients of the linear and quadratic time derivative

5See Ref. [121] for a recent discussion for the fate of the Fulde-
Ferrell-Larkin-Ovchinnikov superfluid phase.
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terms. Hence, we will find different types of magnets (ferro-
, antiferro-, ferrimagnets) give drastically different magnon
production rates.

A. Setup

Suppose that our spin system possesses a potential with
an easy-axis anisotropy and develops the collinear ground
state. In addition, we apply an inhomogeneous magnetic field
along the spin direction of the ground state and investigate the
resulting dynamics of magnons. We also assume for simplicity
that there is no DM interaction. This situation is described
by the effective Lagrangian with the following background
values of the external fields:

Aa
0 = μB(x)δa

3, Aa
i = 0, and rW ab = M2

2
δa

3δ
b
3, (84)

with M2 > 0 (easy axis). We also assume the sign of the
background magnetic field as B(x) � 0, so the ground state is
fixed as 〈n〉 = (0, 0, 1)t . Substituting these background values
into the effective Lagrangian Eq. (20), we obtain the effec-
tive Lagrangian at the quadratic order of fluctuation fields
πα (α = 1, 2) around the ground state 〈n〉 = (0, 0, 1)t as

L(2) = −m

2
ε3

αβπα∂0π
β + f 2

t

2
δαβD0π

αD0π
β

− f 2
s

2
δi jδαβ∂iπ

α∂ jπ
β − mμB(x) + M2

2
(πα )2. (85)

One sees that the easy-axis potential generates the mass
term proportional to M2 for the magnon. The effect of
the applied magnetic field appears inside the covariant time
derivative and the mass term if m �= 0. To obtain the pro-
duction rate of magnons due to the inhomogeneous magnetic
field, we only need to consider the above quadratic effective
Lagrangian. Hence, we neglect the interaction term in the
following.

The occurrence of the magnon pair production becomes
clear by mapping our model to the system of a relativistic
charged scalar field. For that purpose, we introduce a new
complex scalar field � defined by the linear combination of
magnon fluctuations π1 and π2 as{

� ≡ 1√
2
(π1 + iπ2)

�∗ ≡ 1√
2
(π1 − iπ2)

⇔
{

π1 ≡ 1√
2
(� + �∗),

π2 ≡ 1√
2i

(� − �∗).
(86)

This transformation enables us to rewrite the effective La-
grangian in terms of the complex scalar field � as

L(2) = f 2
t D0�

∗D0� − im

2
[�D0�

∗ − �∗D0�]

− f 2
s δi j∂i�

∗∂ j� − M2�∗�, (87)

where the covariant derivative acting on πα is translated to
that acting on the complex scalar field:

D0� = ∂0� + iμB�, D0�
∗ = ∂0�

∗ − iμB�∗. (88)

Apart from the background scalar potential A0(x) = μB(x),
the effective Lagrangian Eq. (87) takes a familiar form de-
scribing a relativistic charged scalar field except for the linear
time derivative term, which manifestly breaks the Lorentz
symmetry (with an effective speed of light cs = fs/ ft). The

present model Eq. (87) with a general f 2
t /m interpolates

the relativistic (quadratic time derivative) to a nonrelativis-
tic (linear time derivative) charged scalar field [81]. In fact,
by changing the ratio of the low-energy coefficient f 2

t /m,
we can interpolate two limiting regimes. Let us denote the
characteristic energy scale as k. When f 2

t /m � k, one can
neglect the second term and the model Eq. (87) reduces to
the usual relativistic charged scalar field. On the other hand,
when f 2

t /m � k, one can instead throw away the first term
and the model Eq. (87) describes a bosonic Schrödinger field
(see, e.g., Ref. [81] for more detailed discussions).

We observe that this Lorentz-symmetry breaking term can
be regarded as a chemical potential corresponding to the
U(1) 
 SO(2) symmetry in the relativistic charged scalar
model. Therefore, we can absorb the linear time derivative
term into the temporal component of the external gauge field
by defining a modified covariant derivative Dμ� as

Dμ� ≡ ∂μ� − iAμ�, D0�
∗ ≡ ∂μ�∗ + iAμ�∗, (89)

with an inhomogeneous scalar potential :

A0(x) ≡ m

2 f 2
t

− μB(x), Ai = 0. (90)

We can now rewrite the effective Lagrangian Eq. (87) to a
more useful expression, paying a cost of a constant mass shift,
leading to the following effective action:

Seff [�;A0]

=
∫

d4x
[

f 2
t D0�

∗D0� − f 2
s δi jDi�D j� − M2

eff�
∗�
]
,

(91)

with the effective mass Meff defined by

M2
eff ≡ M2 + m2

4 f 2
t

. (92)

Therefore, our problem is mapped to that of a relativistic
charged scalar field described by the action Eq. (91) with
the effective mass Eq. (92) and the inhomogeneous external
electric potential Eq. (90). Thanks to unbroken U(1) 
 SO(2)
symmetry, one can classify magnon excitations into those
with positively/negatively charged excitations under U(1) 

SO(2) symmetry. In fact, U(1) symmetry acts on field vari-
ables � and �∗ as � → e−iθ� and �∗ → eiθ�∗. Therefore,
the background magnetic field in A0(x) couples to � and
�∗ with opposite charges in a similar manner with the elec-
tron and positron coupled to the electric field in quantum
electrodynamics. Motivated by this observation, we call the
collective excitation described by � and �∗ magnons and
antimagnons. Intuitively speaking, they describe the fluctua-
tions of the spin vector with clockwise and counterclockwise
rotation seen from the north pole.

We here recall that the relativistic charged scalar also
shows the Schwinger mechanism as discussed by Weisskopf
[67] (see, e.g., Ref. [82] for a recent review on the Schwinger
mechanism). Therefore, as a consequence of our mapping to
the effective action Eq. (91), we can carry over all the re-
sults on the Schwinger mechanism for the relativistic charged
scalar by simply replacing the electric field with Ei ≡ ∂iA0 −
∂0Ai = −μ∂iB and the mass with M2

eff . To investigate the
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magnon production, we consider a simple inhomogeneous
magnetic field profile linear in x,

B(x) = −b(x − xref ), (93)

with b > 0. We assume that n3 = +1 is the collinear ground
state. To assure it, we can take a finite interval of x, let
xref to the right of the region, and then take the limit of an
infinitely large region (xref → ∞). In this limit, we obtain
the positive linearly decreasing inhomogeneous magnetic field
applied to the n3 = +1 collinear ground state. Similarly to
the Schwinger mechanism of charged particle pair production
by a constant electric field,6 we expect to obtain the pair
production rate of magnon and antimagnon by this linearly
decreasing magnetic field. We will compute this production
rate in an idealized situation of an infinite x interval in the
following.

B. Magnon production rate

To evaluate the magnon production rate, we use the gener-
ating functional in our setup. The generating functional as a
functional of the gauge potential A is given by

Z[A] = eiW [A] ≡ lim
T →∞

〈0|e−iĤ�(A)T |0〉

= N
∫

D� eiSeff [�;A],

(94)

where |0〉 denotes the collinear vacuum state and Ĥ�(A) is
the Hamiltonian of the magnon under the inhomogeneous
magnetic field obtained from the Lagrangian Eq. (87) (N is
a normalization constant). In the language of the relativistic
charged scalar field, we can regard the slope of the magnetic
field b as the applied constant electric field because of Ex =
∂xA0(x) − ∂0Ax = μb. The generating functional (94) defines
the vacuum-to-vacuum transition amplitude, and its imaginary
part, if present, can be regarded as the ground state decay rate,
or the magnon pair production rate. Thus, we will evaluate the
imaginary part of the generating functional below.

One nice way to evaluate the generating functional is the
world-line formalism, which was originally developed by
Feynman [83,84] along the line of the proper-time formalism
of Fock and Nambu [85,86] (see, e.g., Refs. [82,87,88] for
reviews on the world-line formalism). We use the world-line
formalism, which will be briefly described subsequently to
make the paper self-contained. Here, we introduce the effec-
tive Minkowski metric ημν = diag(− f −2

t , f −2
s , · · · , f −2

s ) and
ημν = diag(− f 2

t , f 2
s , · · · , f 2

s ), which allows us to express the
effective action in a covariant manner as

Seff [�;A] =
∫

dd+1x�∗[ημνDμDν − M2
eff

]
�. (95)

6In the case of charged particle production, the constant piece of
A0(x) does not affect the production rate because it is a gauge degree
of freedom. However, the constant piece of B(x) appearing in A0(x)
in Eq. (90) in the case of magnon production is physical and is used
to tune the collinear ground state, although it does not affect the
production rate.

Then, performing the Gaussian integral and using ln det A =
Tr ln A, we can rewrite the generating functional as

iW [A] = − ln det
[− D2+M2

eff

] = −Tr ln
[− D2+M2

eff

]
,

(96)

with D2 = ημνDμDν . We also have introduced the normaliza-
tion factor by putting the path-integral in the absence of the
background field. Since the normalization does not play an
essential role in our discussion, we will omit it below. Using a
zeta function regularization, we obtain the following identity
for an operator O:

ln(O − iε) = −
∫ ∞

0

ds

s
eis(−O+iε) with ε > 0, (97)

where s denotes the so-called proper time. With the choice
of O = 1

2 [−D2 + M2
eff ], this identity enables us to express the

generating functional in terms of the proper time integral as
follows:

iW [A] =
∫ ∞

0

ds

s
e−εse− i

2 M2
eff s Tr(e−isĤ (A) ), (98)

where we introduced the differential operator Ĥ (A) by

Ĥ (A) = ημν

2
[p̂μ − Aμ(x̂)][p̂ν − Aν (x̂)] with p̂μ ≡ −i∂μ.

(99)
One can see that this differential operator is nothing but the
Hamiltonian for one-particle quantum mechanics, where the
associated degree of freedom is called the world-line particle.
The corresponding phase-space path-integral formula is given
by

iW [A] =
∫ ∞

0

ds

s
e−εse− i

2 M2
eff s
∫

x(0)=x(s)
DxμDpμ

× exp

(∫ s

0
dτ [ipμẋμ − iH (x, p;A)]

)
, (100)

where we have imposed the boundary condition x(0) = x(s)
corresponding to the trace operation. Equation (100) gives
a general path-integral formula for the generating functional
in the world-line formalism. The applied background field is
now interpreted as the gauge potential acting on the world-line
particle. Thus, in the world-line formalism, the problem of
evaluating the generating functional under the background
field is translated into the quantum reflection problem with
the corresponding potential.

In the present setup, the nonvanishing gauge field is
A0 = m

2 f 2
t

+ μb(x1 − xref ) and the other backgrounds are ab-
sent. As a result, the phase-space Lagrangian LH ≡ pμẋμ −
H (x, p;A) is given by

LH = p0ẋ0 + p1ẋ1 + pi,⊥ẋi,⊥

+ f 2
t

2

(
p0 − m

2 f 2
t

− μb(x1 − xref )

)2

− f 2
s

2
p2

1 − f 2
s

2
p2

i,⊥. (101)

We can perform most of the path integral as follows.
First, the path integral with respect to the perpendicular
variables are trivialized; namely, after performing the xi,⊥
integration, we obtain pi,⊥ = const, and performing the pi,⊥
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integration just shifts the normalization. Similarly, the x0

integration leads to p0 = const, but we keep the c-number
p0 integration here. In addition, we perform the p1 integra-

tion and shift the p0 integration. After all procedures, we
eventually obtain the simplified formula for the generating
functional,

iW [A] = N ′Ld−1T
∫ ∞

0

ds

s
e−εse− i

2 M2
eff s
∫

d p0

∫
x1(0)=x1(s)

Dx1 exp(iSwl[x
1; p0]), (102)

where we have defined the effective action for the world-line
particle as

Swl[x
1; p0] =

∫ s

0
dt

[
1

2 f 2
s

(ẋ1)2 + f 2
t

2
(p0 − μbx1)2

]
. (103)

Note that the value of the world-line action associated
with the possible classical solution, or the so-called world-
line instanton, controls the nonperturbative contribution to
the generating functional. Thus, the remaining task is to
evaluate the value of the classical action associated with the
world-line instanton.

A direct way to evaluate the value of the classical action
is to use the Hamilton-Jacobi equation with the help of the
saddle-point approximation (recall that the solution of the
Hamilton-Jacobi equation gives the value of the action). The
Hamilton-Jacobi equation in the present setup is given by

∂Swl

∂s
+ Hwl(x

1, p0, p1, s) = 0 and p1 = ∂Swl

∂x1
, (104)

where Hwl denotes the world-line Hamiltonian defined by

Hwl = f 2
s

2
p2

1 − f 2
t

2
(p0 − μbx1)2. (105)

Note that the world-line action enjoys the proper-time trans-
lational invariance, and thus, the Hamiltonian takes a constant
value as Hwl = Ewl = const. As a result, we can solve the
energy equation with respect to p1 as

p1(x1) = ± 1

fs

√
2[Ewl + Vwl(p0; x1)],

with Vwl(p0; x1) ≡ f 2
t

2
(p0 − μbx1)2. (106)

As a last step, we use the stationary phase condition for the
proper time integral, which leads to −M2

eff/2 + ∂Swl/∂s = 0.
By comparing this with the Hamilton-Jacobi equation, we
find the value of the energy given by Ewl = −M2

eff/2. This
indicates classical turning points, at which Ewl + Vwl(p0; x1)
vanishes, appearing on the real axis x1 ∈ R. Then, corre-
sponding classical solutions, satisfying the periodic boundary
condition, has a pure imaginary momentum p1, and thus, the
proper time will also be pure imaginary.

Wrapping up these results, we find the solution of the
Hamilton-Jacobi equation as

Swl(s) = −Ewls + 1

fs

∮
dx1 p1(x1)

= 1

2
M2

eff s + iπM2
eff

fs ftμb
, (107)

where we have used Ewl = −M2
eff/2 and performed the con-

tour integral to proceed to the second line. Recalling the
definition of the effective mass, we eventually find the leading
imaginary part of the generating functional given by

Im W [A] 
 NTV exp

(
− π

fs ftμb

(
M2 + m2

4 f 2
t

))
. (108)

As expected, this agrees with the leading part of Schwinger’s
formula for the constant electric field Ex = μb and the ef-
fective mass M2

eff = M2 + m2

4 f 2
t

with the corrections by the
coefficients of time and space kinetic terms ft and fs. Note
that the ratio of the low-energy coefficients m2/ f 2

t appears
in the formula. As a result, the magnon production rate for
antiferromagnets m2 = 0 gives the canonical Schwinger’s for-
mula with the mass M2 associated to the energy gap of
magnons while that for ferromagnets m2/ f 2

t → ∞ vanishes
as Im W [A] → 0. This reflects the absence of the pair pro-
duction in the nonrelativistic systems (infinite effective mass
limit). Our result Eq. (108) for ferrimagnets with a general
value of m2/ f 2

t gives the interpolation between relativistic and
nonrelativistic charged scalar fields in terms of the ground-
state decay rate.

C. Possible experimental detection via inverse spin Hall effect

Let us discuss a possible way to detect the Schwinger
mechanism of magnons in experiments. The vital point here
is that the Schwinger mechanism of magnons induces the fi-
nite spin current Ji

spin ≡ Ji
a=3 attached to the remaining SO(2)

symmetry. Thus, one can experimentally confirm the magnon
Schwinger mechanism by detecting the spin current in our
setup.

A nice way to detect the spin current is available using an
inverse spin Hall effect [89,90] (see e.g., Ref. [91] and refer-
ences therein for a recent overview on the spin Hall effect).
Let us consider the experimental setup schematically shown
in Fig. 9, in which we attach our magnetic materials to a

Metal

S S S
Magnet

N N N

Metal

e e
A

Jspin
Jel

FIG. 9. A schematic picture of a way to detect the Schwinger
mechanism of magnons using the inverse spin Hall effect.
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nonmagnetic metal equipped with a large spin-orbit coupling
such as Pt. Thanks to the inverse spin Hall effect, the spin
current in magnetic materials induced by the inhomogeneous
magnetic field can be converted to an electric current Ji

el in the
attached nonmagnetic metal. Thus, by measuring the induced
electric current (or voltage) in the metal, one can experimen-
tally confirm the Schwinger mechanism of magnons taking
place in magnetic materials.

We shall estimate the magnitude of the electric current
signal by estimating that of the spin current. The spin current
induced by the magnon Schwinger mechanism is proportional
to the number of created magnon pairs, and thus proportional
to the ground-state decay rate given in Eq. (108). In the
same way with the electric current induced by the ordinary
Schwinger mechanism, one can find the short-time behavior
of the spin current generated by the magnon pair production
as follows (see e.g., Ref. [92] in detail):〈

Ji=x
spin

〉
A = Jpol + Jcond, with

Jpol 
 (μb)3/2e
− π

fs ftμb (M2+ m2

4 f 2
t

)
θ (t ),

Jcond 
 t (μb)2e
− π

fs ftμb (M2+ m2

4 f 2
t

)
θ (t ),

(109)

where we take t = 0 as the initial time, from which we start
to apply the inhomogeneous magnetic field to the collinear
ground state. The constant current Jpol describes a contribution
coming from the pair production itself, while the linearly
growing one Jcond does that from the accelerated motion of
created magnons. In the band theory for electrons, Jpol and
Jcond are called the interband current and intraband current,
respectively. Thus, one possible experimental confirmation
of the magnon Schwinger mechanism is to find the specific
μb (the magnetic field gradient) dependence of the electric
current in the attached metal. Note, however, that the linear
growth of Jpol would saturate by considering (i) the size of
sample magnets along the x direction and (ii) an effect of
impurity scattering, which complicates the μb dependence in
the experimental setup.

It is worth emphasizing an advantage in realizing the pair
production of magnons compared to the Schwinger mech-
anism for electrons and positrons. The main experimental
difficulty in detecting the ordinary Schwinger mechanism re-
sults from the fact that we need to apply electric fields that
are too huge to find measurable effects. This is because the
ground-state decay rate (or the induced electric current) is
exponentially suppressed as e−m2

el/eE with the electron mass
mel and the applied electric field eE . Since the electron has a
definite mass gap that we cannot control, it has still been im-
possible to experimentally realize such a huge electric field. In
contrast, the magnon Schwinger mechanism is controlled by
the gap of magnons, which could take a small value depending
on magnetic materials [see Eqs. (108) and (109)]. If there is
a magnet that has a small enough gap for magnons, it may be
possible to detect the Schwinger mechanism more easily by
applying the inhomogeneous magnetic field.

However, we also note that the typical magnetic material
would have too large of a gap since it is controlled by the
anisotropic potential resulting from the spin-orbit coupling.
For instance, MnF2 develops an antiferromagnetic order at a

low temperature (see e.g., Ref. [93]). The inelastic neutron
scattering experiment [94] shows the gap for magnons is of
order � ≡ M/ ft ∼ 1 meV with its propagating speed cs ≡
fs/ ft ∼ 60 m/s. As a result, the critical value for the magnetic
field gradient bc, at which the dominant exponential factor in
Eq. (109) becomes O(1), is estimated as

�2

csμbc
∼ 1 ⇔ bc ∼ 109 T/cm for MnF2, (110)

which is too difficult to achieve in experiments (we used μ =
gμB with the g-factor g and Bohr magneton μB). Therefore, we
need to find a considerably symmetric antiferromagnet having
a tiny gap (10−4 smaller than that of MnF2) to detect the
magnon pair production with the experimentally accessible
size of magnetic fields. Another possible way to amplify the
experimental signal is to apply a time-dependent magnetic-
field gradient on the top of the constant one since it is known
to enhance the pair production rate [95–101]. It is interest-
ing to investigate such an enhancement mechanism for the
magnon pair production, which is worth pursuing as a future
study.

VI. DISCUSSION AND OUTLOOK

In this paper, we have developed a unified way to imple-
ment various SO(3) symmetry-breaking terms—the magnetic
field, single-ion anisotropy, and DM interaction—into the
low-energy EFT of spin systems. We have also applied the
constructed effective Lagrangian to certain situations where
the symmetry-breaking terms induce nontrivial dynamics. We
have shown that two simple noncollinear ground states (he-
lical and spiral phases) support the translational phonon as
the resulting NG mode while they give a qualitatively differ-
ent low-energy spectrum, such as isotropic versus anisotropic
dispersion relations. The reason for this qualitative difference
was clarified based on the symmetry-breaking pattern. We
have also discussed the analog of the Schwinger mechanism
by evaluating the decay rate of the collinear ground state
induced by the inhomogeneous magnetic field.

While our formulation allows the symmetry-based sys-
tematic construction of the effective Lagrangian, we only
consider its application in simplified setups, where the effect
of the fluctuation is neglected. For example, in analyzing
the helical/spiral phases, we have neglected the effect of the
fluctuation resulting from, e.g., the quantum nature of systems
and/or the gapless NG mode. In fact, our analysis to find the
ground state is based on the tree-level (or mean-field level)
discussion, which could be affected by the fluctuation already
present in the nonlinear sigma model.

Also, the analysis on the Schwinger mechanism for
magnons is performed in the theoretically idealized setup,
where we assume the constant slope for the applied magnetic
field. In experiments, it is easier to realize the magnetic field
periodic in space and time. As we mentioned at the end of
last section, this will also be useful in experimental detections
of the magnon pair production since a time-dependent back-
ground field on the top of the constant one enhances the pair
production rate [95–101]. Besides, applying magnetic fields
periodic in time, realized by laser irradiation, is interesting
in its own right because it could result in a higher-harmonics

134403-18



EFFECTIVE FIELD THEORY OF MAGNONS: CHIRAL … PHYSICAL REVIEW B 104, 134403 (2021)

generation even in magnets [102,103]. The analysis of such a
more realistic and interesting situation is strongly desirable.

Throughout the analysis in Secs. III–V, we rely on the con-
tinuum field theoretical description of spin systems. Since the
underlying model is composed of spins living on the lattice,
there could be a potential deviation due to our continuum
approximation. However, such a deviation would not drasti-
cally affect the main result of the present paper because the
deviation appears in the large momentum regime while we
mainly discuss physics at the low momentum. For example,
we focus on the low-energy spectrum of the gapless excita-
tions in Sec. IV, which is protected by the symmetry-breaking
pattern thanks to the NG theorem. Our formula for the magnon
Schwinger mechanism is also expected to be robust because
the dominant contribution to the pair production rate comes
from the low-momentum region7 of order of the energy gap �.
In fact, one finds the finite momentum contribution is exposed
to a further exponential suppression. This implies that the
low-momentum region, where the corresponding frequency
ω(k) satisfies, e.g., ω(k) � 2�, controls the pair production
rate. Thus, our field theoretical approach gives a good ap-
proximation if the energy spectrum around ω(k) � 2� is well
approximated.

There are also other several interesting prospects based on
the present paper. One direction is to investigate various trans-
port phenomena in spin systems by extending our effective
Lagrangian approach. For instance, despite the experimental
realization of the thermal Hall effect in spin systems, its field-
theoretical description has still been unclear. Our formulation
has a potential advantage to provide a direct connection be-
tween the EFT and the underlying lattice descriptions of spin
systems. However, it is necessary to relax our assumption on
the cubic-type lattice since the thermal Hall effect takes place
in different types of the lattice structure (see e.g., Ref. [104]).
Generalization to such a nontrivial lattice may be important
to study the thermal Hall effect based on the EFT. Besides,
it is also interesting to investigate the transport phenomena
of spin densities in detail, which lead to a potential connec-
tion to the spintronics (see, e.g., Ref. [105] for a review).
While the presence of small explicit breaking terms makes
total spins as approximate conserved charges, its dynamics is
a primary concern of the spintronics. For example, a recent
proposal in Ref. [106] for a mechanical generation of the
DM interaction and the resulting spin current is an interesting
problem. It is worthwhile developing the effective Lagrangian
approach to the spintronics (see also Refs. [107,108] for re-
views discussing the effective Lagrangian approach to the
spintronics).

Another interesting direction is to clarify a possible re-
alization and resulting dynamics of the magnetic skyrmion

7Of course, there is a problem whether the magnetic material would
be stable or not under the applied magnetic field gradient. However,
once we find such a stable material with a tiny gap, the field the-
oretical approach will give a good description for the magnon pair
production.

based on the EFT.8 In (2 + 1)-dimensional cases, the mag-
netic skyrmion represents a nontrivial topologically stable
configuration of the magnetization vector, which results in
the topologically conserved charge. As is the case for the
skyrmion in hadron physics [109–111], it is worth under-
standing what conserved quantity this charge describes. A
natural candidate (for, at least, particular spin systems) is the
electric charge attached to the underlying charge carrier like
an itinerant electron. In such systems, when the ground state
supports the finite local skyrmion charge (like the spiral phase
or skyrmion crystal), there should be an induced electromag-
netic field [36,112]. Thus, the spin could affect the dynamics
of the electromagnetic field through its topological configu-
ration, although it is not an electrically charged object. This
implies a possibility of the interesting coupled dynamics of
the spin and dynamical electromagnetism in a similar manner
with the charge density wave phase of many-electron systems.
We leave these interesting problems as future works.
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APPENDIX: EFFECTIVE LAGRANGIAN FROM COSET
CONSTRUCTION

In this Appendix, we provide another way to construct the
effective Lagrangian Eq. (20); that is, the coset construction
originally developed in the context of the high-energy physics
[113–115] and recently applied to magnons in Ref. [38]. We
assume that the DM interaction is weaker than the potential;
e.g., (

κa
i

)2 � W, B. (A1)

This assumption allows us to start exploring the background
(ground state) as a collinear state with the symmetry-breaking
pattern dictated by the potential and to use the resulting effec-
tive Lagrangian to examine the effect of the DM interaction.

Suppose that the collinear ground state of the spin system
Eq. (1) spontaneously breaks the approximate SO(3) sym-
metry down to SO(2). We are interested in the low-energy

8The effective field theories and NG modes in the presence of a
single magnetic skyrmion line [122] and a single magnetic domain
wall [77] were discussed in the absence of the DM term.
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(long wavelength) behavior of the system, and we can directly
employ the field-theoretical (continuum) description of the
associated pseudo-NG mode. Thus, we have the background
fields Aa

μ and W transforming as the SO(3) gauge and matter
field, respectively, as discussed in the main text. The main
difference is that we assume the symmetry-breaking pattern,
which allows us to directly introduce the NG field in the coset
construction.

Let us now review how the magnon (NG field) is intro-
duced in the effective Lagrangian [38]. First, we divide the
generators of the SO(3) Lie algebra ta = {tα, t3} belonging to
the broken part indices α = 1, 2 and unbroken SO(2) index
a = 3 satisfying

tr(tαt3) = 0, tr(tαtβ ) = gαβ, tr(t3t3) = g33, (A2)

with the Cartan metric gab, which reduces to gab → 2δab

if we choose Eqs. (10). The basic ingredient is the coset
ξ (π ) ∈ SO(3)/SO(2) parametrizing the NG modes, or the
magnons πα , whose representative is, e.g., parametrized
by

ξ (π ) = eiπ , π ≡ παtα, (A3)

using the explicit form given in Eqs. (10). We note that the
local g(x) ∈ SO(3) transformation, by definition, acts on the
(right-)coset element ξ (π ) as

ξ (π ) → ξ (π ′) = g(x)ξ (π )h−1(π, g(x)), (A4)

with h(π, g(x)) ∈ SO(2). We then introduce the gauged
Maurer-Cartan one-form αμ(π ) as

αμ(π ) ≡ i−1ξ−1(π )Dμξ (π ). (A5)

Here, we defined the covariant derivative of the coset,

Dμξ (π ) ≡ ∂μξ (π ) − iAμ(x)ξ (π ), (A6)

with the background SO(3) gauge field Aμ = Aa
μta, whose

transformation rule is given in Eq. (15). With a help of
Eqs. (15) and (A4), we can show that the transformation
rules for projected components of the Maurer-Cartan one-
form αμ‖ ≡ 1

2 tr(αμt3)t3 and αμ⊥ ≡ 1
2

∑
α tr(αμtα )tα are given

by

αμ‖(π ) → αμ‖(π ′) = h(π, g(x))αμ‖(π )h−1(π, g(x))

+ i−1h(π, g(x))∂μh−1(π, g(x)),

αμ⊥(π ) → αμ⊥(π ′) = h(π, g(x))αμ⊥(π )h−1(π, g(x)).

(A7)

The Maurer-Cartan one-form describes the NG field
(magnons), which is an alternative to the normalized
vector na.

We have elucidated the transformation rules of the Maurer-
Cartan one-form and background fields in Eqs. (15), (A4),
and (A7). Then, we can systematically construct the general
effective Lagrangian once we fix the power counting scheme.
As usual, space-time derivatives of the NG field πα (x) re-
sults in higher-order contributions to the low-energy EFT.
We thus consider the leading-order effective Lagrangian up

to terms with second-order derivatives of πα (x). This mo-
tivates us to count background fields as Aa

μ = O(∂μ) and
W = O(∂2

i ). Summarizing these, we will employ the power-
counting scheme,

πα = O
(
∂0
μ

)
, Aa

μ = O(∂μ), W = O
(
∂2

i

)
, (A8)

to construct the leading-order effective Lagrangian.
By the use of the above transformation rule and power-

counting scheme, we are able to write the most general
SO(3)-invariant effective Lagrangian for magnons. Here,
it is important to notice that the spin system under con-
sideration does not respect the Lorentz symmetry, which
means that time and spatial components of αμ⊥ can ap-
pear independently. We thus immediately find invariant
terms tr(α0⊥α0⊥) and δi j tr(αi⊥α j⊥) respecting the spatial
rotation symmetry. Furthermore, noting that the unbroken
SO(2) symmetry is Abelian, we find an additional in-
variant term tr(t3α0‖). This can be explicitly shown that
the general parametrization h(π, g(x)) = eip(π,g(x))t3 leads to
h∂μh−1 = −it3∂μ p(π, x), which means tr(t3α0‖) is invariant
up to a surface term. In addition, a combination of the
coset ξ (x) and the background field W (x) generates an-
other invariant term. Thanks to the relation tr(ξ−1W ξ ) =
tr W = const, we need to keep only one of two invari-
ant terms (ξ−1W ξ )33 δαβ and (ξ−1W ξ )αβ , where indices
denote that for the matrix.9 In short, we have four indepen-
dent invariant terms composed of the gauged Maurer-Cartan
one-form:

tr(α0⊥α0⊥), δi j tr(αi⊥α j⊥), tr(t3α0‖), (ξ−1W ξ )33.

(A9)
Taking account of all these, we write down the general
SO(3)-invariant effective Lagrangian of magnons in the
leading-order derivative expansion (up to two derivatives)
as

L(2)
eff = −m

2
tr(t3α0‖) + f 2

t

4
tr(α0⊥α0⊥)

− f 2
s

4
tr(αi⊥αi⊥) + r(ξ−1W ξ )33. (A10)

Since the coset representative ξ (π ) = eiπ contains an in-
finite number of the magnon field πα (x), this effective
Lagrangian describes the fully interacting model of magnons.
By expanding the coset representative ξ (π ) = eiπ , we ob-
tain the effective Lagrangian Eq. (20) in the main text. One
sees that four low-energy coefficients attached to four in-
variants in Eq. (A9) indeed coincide with those appearing
in the O(3) nonlinear sigma model. As discussed in the
main text, their matching condition are given in Eqs. (27)
and (28).

9There seems to be another invariant term, tr(t3ξ
−1W ξ ). However,

this term with its complex conjugate will vanish, and thus does not
appear in the effective Lagrangian.
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