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Universal semiclassical equations based on the quantum metric for a two-band system
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We derive semiclassical equations of motion for an accelerated wave packet in a two-band system. We
show that these equations can be formulated in terms of the static band geometry described by the quantum
metric. We consider the specific cases of the Rashba Hamiltonian with and without a Zeeman term. The
semiclassical trajectories are in full agreement with the ones found by solving the Schrödinger equation. This
formalism successfully describes the adiabatic limit and the anomalous Hall effect traditionally attributed to
Berry curvature. It also describes the opposite limit of coherent band superposition, giving rise to a spatially
oscillating Zitterbewegung motion, and all intermediate cases. At k = 0, such a wave packet exhibits a circular
trajectory in real space, with its radius given by the square root of the quantum metric. This quantity appears
as a universal length scale, providing a geometrical origin of the Compton wavelength. The quantum metric
semiclassical approach could be extended to an arbitrary number of bands.
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I. INTRODUCTION

General relativity is the first example of a geometrical the-
ory of motion, where the particle trajectories are not governed
by gravitational forces, but are found as the geodesics of
the space-time metric. In a completely different perspective,
the semiclassical theory of electron dynamics in solids was
derived in the 1930s from quantum mechanics [1,2], involving
as a key element the wave-vector-dependent group velocity.
These equations have been corrected in 1999 [3] to include
the impact of the Berry curvature and describe the anomalous
Hall effect (AHE). The AHE was discovered in the 1950s [4],
but the deep understanding of the underlying physics and of its
importance came with its description in terms of geometrical
properties of the quantum space.

Indeed, the geometry of the quantum space has been
actively studied since the 1980s [5–7], bringing the descrip-
tion of the quantum Hall effect [8,9], and the forthcoming
enormous development of topological physics [10–13]. The
geometrical information about the eigenstates of a Hamilto-
nian is contained in the gauge-invariant quantum geometric
tensor, whose symmetric real part defines the quantum metric
(QM) characterizing distances between states [5] in a param-
eter space. Its antisymmetric imaginary part determines the
Berry curvature [6]. The key hypothesis of the Niu-Sundaram
[3,14] equations is the adiabatic approximation, when the
wave packet remains in a single energy band, as in the original
work of Berry [6]. The extension to the situation where several
bands have comparable populations was done in Ref. [15], but
using time-dependent components of the generalized Berry
curvature tensor, which depend on initial conditions and not
only on static band parameters. Multiband Bloch oscillations
with non-Abelian Berry curvature were recently studied in
Ref. [16].

The potential roles of the QM have been more recently
underlined in the calculations in quantum informatics, quan-

tum phase transitions [17], magnetic susceptibility [18,19],
excitonic levels [20], and superfluidity in flat bands [21,22].
The QM is now explicitly accounted for in the design and
engineering of topological systems [23,24], and its integral
is linked with the Chern number [19,25–28]. Experimental
measurements of the QM in different systems also start to
appear [29–31]. In particular, it is well understood that the
QM should appear in the description of transitions between
quantum levels. For example, it allows one to describe small
nonadiabatic corrections to the AHE [18,32,33]. In some
cases, the QM was even found to dominate the dynamics. This
occurs in systems with nonreciprocal directional dichroism
[34] and also in strongly non-Hermitian systems in the vicinity
of the exceptional points, where the evolution can never be
adiabatic [35]. A situation of a particular interest occurs in
spin-orbit-coupled systems [36–39] which can be described
in terms of non-Abelian gauge potentials [40,41] with emer-
gent vectorial charges [42,43]. The resulting Zitterbewegung
(ZBW) motion [44,45] involves a coherent superposition of
several bands. The ZBW is studied theoretically and experi-
mentally in various electronic [46–48], atomic [49–51], and
photonic systems [52–55] including polaritons [56,57]. This
is an appealing situation for its description in terms of QM,
as noticed in Ref. [58], where the QM was shown to be
responsible for a contribution to the effective mass.

In this work, we derive semiclassical equations of motion
in a two-band system using only the static band geometry en-
coded in the QM. The solutions of these new equations are in
complete agreement with the direct numerical solutions of the
Schrödinger equations for all the cases we considered. They
describe the AHE, traditionally attributed to Berry curvature.
They also describe the opposite limit, when the wave packet
is coherently distributed over the two bands, and in particular
the ZBW motion induced by an emergent non-Abelian gauge
field. We show that a wave packet centered at k = 0 exhibits
a circular trajectory in real space, with its radius given by the
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FIG. 1. (a) Bloch sphere representation showing the pseudospin
S, the effective field �, and their polar and azimuthal angles
θ and φ. The angle between the spin and the field is η. (b),
(c) Dispersion along kx of the eigenmodes of the (b) Rashba and
(c) Rashba+Zeeman Hamiltonians. The red arrows show the pseudo-
spin orientation of the modes.

square root of the quantum metric. This quantity appears as
a universal length scale, determining the uncertainty of the
position of a particle involving several bands. It provides a
geometrical origin of the Compton wavelength.

II. THE MODEL

We begin with the Hamilton’s equations of motion for
a wave packet. Working with a two-band system allows us
to use the mapping to the pseudospin S interacting with an
effective magnetic field � [59], with the Hamiltonian given
by H = −h̄� · S/2, and the associated geometry of the Bloch
sphere (Fig. 1). A general superposition of two eigenstates can
be written as

|ψ〉 = c1|ψ1〉 + c2|ψ2〉, (1)

with c1 = cos θs/2e−iφs and c2 = sin θs/2, where θs and φs

are the time-dependent angles, giving the orientation of the
pseudospin on the Bloch sphere. The equations of motion
for the spatial degrees of freedom are therefore accompanied

with the precession equation for the pseudospin describing the
wave packet distribution within the two bands:

ṗ = −∂H

∂r
, ṙ = ∂H

∂ p
, Ṡ = S × �. (2)

Here, r is the spatial coordinate of the wave packet center of
mass, p = h̄k is the center-of-mass momentum of the wave
packet (k is the center-of-mass wave vector). The wave packet
is considered as a classical pointlike particle and its distribu-
tion over the bands is encoded in its pseudospin vector. At
a given moment of time, the effective field is �(k(t )) and the
pseudospin is S(t ), shown in Fig. 1 with violet and red arrows,
respectively. While it is often possible to convert Hamilton’s
equations to geodesics equation in an abstract metric [60], our
goal is rather to elucidate the role of the QM, while keeping
the other coordinates intact.

The first of Eqs. (2) describes the acceleration of the wave
packet due to a spatial gradient of the potential. We will rather
focus on the second of Eqs. (2), describing the group ve-
locity. The Hamilton’s function H corresponds to the energy
E = 〈ψ |Ĥ |ψ〉 of the full wave packet. It depends on the wave
vector both directly, via the band dispersion Ei(k), and indi-
rectly, via the fractions fi = |ci|2. This energy can be rewritten
as E = f1E1 + f2E2 = ( f1 + f2)Ē + ( f2 − f1)h̄� where Ē is
the spinless part of the dispersion and � is the absolute value
of the effective field.

We characterize the pseudospin S and the effective field
� by the respective spherical coordinates θs, φs and θ f , φ f

(see Fig. 1). The fractions fi are determined by the distance
between these two vectors on the Bloch sphere η as f1,2 =
(1 ± cos η)/2, and this distance can be found from the spheri-
cal law of cosines (see Appendix A). Our key idea is to use the
QM as the link between the angles on the Bloch sphere and the
wave vectors. By definition, the QM provides a link between
the quantum distance ds and the distance in reciprocal space:

ds2 = gki,k j dkidk j, (3)

with the QM defined by

gi j = Re

[〈
∂ψ1

∂ki

∣∣∣∣ ∂ψ1

∂k j

〉
−

〈
ψ1

∣∣∣∣ ∂ψ1

∂ki

〉〈
∂ψ1

∂k j

∣∣∣∣ ψ1

〉]
. (4)

The corresponding quantum distance for the displacement dη

on the Bloch sphere is ds2 = (dη)2/4. Ultimately, the equa-
tions of motion read (see Appendix A for details):

h̄k̇ = −∂E

∂r
, Ṡ = S × �, (5)

h̄ṙ = ∂Ē

∂k
− 2

∂ h̄�

∂k
(cos θs cos θ f + sin θs sin θ f cos (φ f − φs))

−h̄�
√

gkk

[
(− cos θs sin θ f + sin θs cos θ f cos(φ f − φs)) − sin θs sin(φ f − φs) sin θ f

( ∂φ f

∂θ f

)]
√

1 + sin2 θ f
( ∂φ f

∂θ f

)2
. (6)

In these expressions, the QM
√

gkk = (
√

gkx,kx ,
√gky,ky )T is that of a single band (the lowest energy band of the doublet). We see

that the QM appears as a overall factor of the corresponding term, entering (6) together with � and thus completely determining
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the scale of the corresponding physical effect. The phys-
ical meaning of this term is the modification of the energy
of the wave packet due to its redistribution over the two
bands with the rotation of the spin, and this is controlled by
the QM.

A similar system of equations can be derived from the
Hamilton’s equations for an arbitrary number of bands. As
in the two-band case, the terms containing the QM appear
from the variation of the fractions ∂ fi/∂k j : the variation of
the overlap integral is determined by the variation of the
length of the corresponding geodesic curve, which is en-
tirely determined by the product of the quantum metric gk,k

and the projection of the displacement δk j on the geodesic’s
tangent vector, according to the well-known theorem from
the differential geometry [61]. We leave this for future
work.

Although this equation does not include the Berry cur-
vature explicitly, it allows us to recover the semiclassical
equations of Ref. [3] with the Berry curvature terms in the
adiabatic limit (see Appendix B). In spite of being written
only in terms of the QM, it entirely describes the AHE drift,
and allows us to go far beyond it, as we show below. In
other words, being derived from the Hamilton’s equations (2)
without any additional approximations, Eqs. (5) and (6) are
valid up to arbitrary order in the field strength, being limited
only by the requirement of wave packet localization [62].
Another advantage of Eqs. (5) and (6) is that they contain only
the static properties of the bands. These equations could also
be extended to account for a magnetic field by including it
into the equations for the momentum and for the pseudospin
dynamics (5) [18,63].

If the Hamiltonian is such that the effective field remains
for all k in the equatorial plane (θ f = π/2, ∂φ f /∂θ f = ∞), as
is the case for the massless Dirac, Rashba, Dresselhaus, and
transverse electric-transverse magnetic (TE-TM) [64] Hamil-
tonians, Eq. (6) is considerably simplified, reducing to

h̄ṙ = ∂E

∂k
+ h̄�

√
gkk sin θs sin(φ f − φs) (7)

with E = Ē + h̄�(cos θs cos θ f + sin θs sin θ f cos(φ f − φs)).
In what follows, we consider a Rashba Hamiltonian exten-
sively studied in electronics, spintronics, and photonics, both
with and without a Zeeman field:

Ĥ = h̄2k2

2m
+ αk · σ + �σz, (8)

where σ is a vector of Pauli matrices, α is the Rashba mag-
nitude, and � the magnitude of the effective Zeeman field.
When � = 0, the eigenvalues are E± = h̄2k2/(2m) ± αk,
plotted in Fig. 1(b). Close to k = 0, the Hamiltonian is analo-
gous to a two-dimensional (2D) massless Dirac Hamiltonian,
with α playing the role of the speed of light c. The bands have
no distributed Berry curvature. A nonzero Zeeman field opens
a gap at k = 0 [Fig. 1(c)], making appear an effective mass
me f f = h̄2�2/α2 (equivalence with a massive Dirac Hamil-
tonian). The corresponding bands show a nonzero distributed
Berry curvature (see Appendix B). We are now going to con-
sider the wave packet motion in these two situations.

III. RESULTS AND DISCUSSION

A. Crossing bands: Rashba SOC (Dirac cone)

The equation of motion (7) writes explicitly

ṙ =
(

h̄k

m
+ α

h̄
cos (φs − φk ) sin θs

)(
cos φk

sin φk

)

+� sin θs sin (φk − φs)

( √
gkxkx√
gkyky

)
, (9)

where φk is the polar angle of the wave vector, to which
the effective field is antiparallel (φ f = φk − π ). This equa-
tion contains only the orientation of the spinor θs, φs and the
center-of-mass wave vector k. The first part of the group ve-
locity contains the spin-independent parabolic dispersion and
a spin-dependent contribution, with the propagation direction
ultimately controlled by the current orientation of the spinor.
The second part of this expression, which includes the QM
gkk, appears because of the explicit time dependence of the
spinor. The x and y projections of the velocity are controlled
by the corresponding projections of the QM.

As an illustration, we consider the case without external
fields (k̇ = 0), with k = k0ex (φk = 0), and the spinor S =
Szez perpendicular to the effective field at t = 0, so θs = 0.
The wave function is projected equally on both bands, and the
pseudospin precession frequency is � = 2αk0/h̄.

In this case, the x projection of the group velocity is con-
stant. The time-dependent trajectory reads

x(t ) = h̄k0

m
t

y(t ) = (1 − cos �t )
√

gkyky = 1 − cos �t

2k0
(10)

because the QM is gkyky = 1/4k2
0 . This oscillating motion due

to the pseudospin precession is the ZBW effect. The magni-
tude of the oscillation along y is given by √gkyky , which acts
as a fundamental characteristic length scale of the problem, as
we will discuss more in details below.

To confirm our analytical results, we perform numer-
ical simulations, solving the time-dependent 2D spinor
Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ (11)

with the Rashba Hamiltonian (8), taking a finite-size Gaussian
wave packet ψ0 = exp(−(r − r0)2/2σ 2) exp(ik0r) of a width
σ in real space (and 1/σ in reciprocal space) centered at a
wave vector k0, with its spinor part given by (1, 0)T (corre-
sponding to θs = 0) as an initial condition. We choose the
simulation parameters typical for polaritonic systems [31]:
α = 1 meV/μm−1, k0 = 1 μm−1, m = 2×10−5m0 (m0 is the
free electron mass), σ = 128 μm. We can observe a truly
excellent agreement with the analytical trajectory (Fig. 2) in a
substantial time window, limited only by the transient nature
of the ZBW due to the finite wave packet size in numerical
simulations [62].

As said in the introduction, the Rashba Hamiltonian can be
described as resulting from the action of a non-Abelian gauge
field [36–39] described by the Yang-Mills Lagrangian [40].
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FIG. 2. Rashba Hamiltonian. Wave packet dynamics from
Schrödinger equation (black solid line) and analytical solution of
semiclassical Eqs. (5) and (6) (red dashed line).

Within this picture, it is also possible to derive a semiclassical
equation of motion, where the acceleration is the result of the
action of a non-Abelian magnetic force acting on (pseudo)-
spin currents, as recently measured in Ref. [45]. As shown in
the Appendix D section, the time derivative of Eq. (9) gives an
expression of the transverse acceleration in terms of the QM,
equivalent to the results of the Yang-Mills theory [37]. This
acceleration appears because of the precession of the spin, or,
in other words, because of the interband transitions described
by the QM. This provides a microscopic mechanism behind
the non-Abelian Lorentz force of the Yang-Mills field, which
can be interpreted as being the consequence of the geometry
of the underlying quantum space.

B. Anticrossing bands: Rashba+Zeeman (massive Dirac)

We now consider the Rashba Hamiltonian combined with
a Zeeman term. The resulting bands are non-degenerate and
show a distributed Berry curvature. A wave packet acceler-
ated in such a system can show either AHE or ZBW, or a
combination of both effects, depending on initial conditions.
Figures 3(a)–3(c) considers the acceleration by a spatial
energy gradient 2×10−3 meV/μm for different initial con-
ditions. We compare the center-of-mass trajectories obtained
by solving the spinor Schrödinger equation (11) and the ones
obtained from the semiclassical equations of motion (6). The
Zeeman splitting is � = 0.5 meV, other parameters as above.
Panel (a) demonstrates the AHE regime, with the initial con-
dition corresponding to an eigenstate of the system (the lowest
energy band at k = 0): the deviation along y is the AHE drift.
The correspondence between the description of the AHE in
terms of Berry curvature and the one based on the use of
the QM is explicitly shown in the Appendix B section. Panel
(b) corresponds to the pure ZBW, with the initial condition
corresponding to the equal fraction of both branches: f1 = f2.
In this case, there is no AHE drift, because the effect of
the Berry curvature is completely canceled by f1 − f2 = 0.
Finally, panel (c) corresponds to a particular case of f1 − f2 =
0.9, allowing us to observe both the AHE drift and the large
oscillations due to the ZBW. Qualitatively similar results
are obtained with a TE-TM spin-orbit coupling (SOC) (see
Appendix E) characterized by a double winding number and
typical for photonic systems. The AHE has been recently
measured in an optical system with TE-TM SOC and Zeeman
splitting [31].

(a)
AHE

(b)
ZBW

(c)
AHE+ZBW

(d)
k-static ZBW

kkR g=

FIG. 3. Rashba+Zeeman Hamiltonian. Wave packet dynamics
from Schrödinger (black solid lines) and semiclassical (red dashed
lines) equations: (a) AHE (single-band initial excitation); (b) ZBW
(equal fractions of both bands); (c) both effects together; (d) cy-
clotronlike orbits at constant k (no potential gradient) with a radius
determined by the metric.

If we consider a wave packet with zero intial wave vector
and zero external force k̇ = 0, the effective field is completely
determined by the Zeeman splitting: θ f = 0. If the spin of the
initial wave packet is in the plane θs = π/2 (and φs = 0 as an
example), the third equation of motion (5) gives that the spin
will remain in the plane (sin θs = 1) and rotate with an angular
frequency � (φs = �t). Equation (6) gives

ẋ = �
√

gkxkx cos �t, ẏ = �
√

gkyky sin �t, (12)

where the QM at k = 0 is given by gkxkx = gkyky = α2/4�2

These equations explicitly show the wave packet rotation in
real space, with a radius determined by the value of the QM
R = √

gkk = α/2�, as illustrated in Fig. 3(d).
Our results show that the QM provides a characteristic

length scale l = √
gmax for the semiclassical behavior. This

is best seen with the example of the Dirac equation, where the
value of the QM at k = 0 is

√
gkk = h̄

mc
, (13)

which is the well-known Compton wavelength λC of the elec-
tron, determining a universal length scale in Physics. Indeed,
it enters the expressions for the classical electron radius, the
Bohr radius, the electron-proton scattering cross section, and
even determines the Planck length. We note that the full Dirac
equation contains four components, and the QM associated
with both the particle-antiparticle and the spin degrees of
freedom is the same, determined by the relativistic effects.

The physical meaning of the Compton wavelength can be
understood with the QM. Qualitatively, it limits the precision
of the measurement of the electron’s position. Indeed, scatter-
ing of a photon with the wavelength λC brings the electron into
a 50% electron-positron superposition, corresponding exactly
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to the case of Fig. 3(d): the electron’s center of mass exhibits a
cyclotron motion with the radius R = √

gkk (0) = λC . This ro-
tation is what determines the uncertainty of its position. Even
for Hamiltonians which do not have a single length scale, the
QM still can be used to determine the scales of the ZBW at
rest or at high velocities, changing from the Compton to the
de Broglie wavelength [46,47]: indeed,

√
gkk ∼ 1/k = h̄/p at

large k.
The maximal value of the trace of the QM is an impor-

tant physical quantity. This maximal value determines the
extension of the metric in the parameter space, that is, the
characteristic scale at which the changes occur (for example,
level crossing), because the integral of the QM (approxi-
mately, the product of the maximal value and the extension)
is often quantized, representing a topological invariant [28]
similar to the Chern number. It determines both the maximal
amplitude of the ZBW oscillations and of the anomalous
Hall drift (even though the latter is an integral quantity). It
determines the spatial extension of the chiral edge state in
topological insulators, controlling the minimal size of topo-
logical lasers and optical isolators. This will be a subject for
future works.

IV. CONCLUSIONS

We derived the semiclassical equations of motion for a
wave packet in a two-band system in terms of the static band
parameters, in particular, the QM. The latter turns out to
determine a universal length scale for all effects beyond the
simple group velocity.
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APPENDIX A: SPHERICAL ANGLES
AND THE QUANTUM METRIC

The equation for the angle η given by the spherical cosine
law reads:

cos η = cos θs cos θ f + sin θs sin θ f cos (φ f − φs). (A1)

The contribution to the spin-dependent part of the energy
stemming from the wave-vector dependence of the coeffi-
cients fi can be found via the wave-vector dependence of the
spherical coordinates θ f , φ f of the effective field:

∂ fi

∂k j
= ∂ fi

∂φ f

∂φ f

∂k j
+ ∂ fi

∂θ f

∂θ f

∂k j
(A2)

and the latter are determined by the metric part of the quantum
geometric tensor [5]. This allows writing

∂θ f

∂ki
= 2

√
gkiki cos ζ ,

∂φ f

∂ki
= 2

√
gkiki

sin ζ

sin θ f
(A3)

with ζ controlled by the evolution of the effective field with ki

as tan ζ = sin θ f (∂φ f /∂θ f )i.
We note that a nonzero Berry curvature requires the effec-

tive field to cover a solid angle on the Bloch sphere, that is,
the effective field should move along different axes, which
means different values of ζ for kx and ky. Different terms will
therefore appear in the equations for the two projections of the
velocity.

APPENDIX B: BERRY CURVATURE
AND QUANTUM METRIC

The one-to-one correspondence between the Berry cur-
vature and the QM in two-band systems was discussed in
Refs. [19,25,26], and this discussion was extended to three-
band systems in Ref. [65]. Given the existence of such
mapping, it is therefore natural that it is possible to write
the semiclassical equations in the adiabatic limit using either
the Berry curvature or the QM. Here, we demonstrate that
the Berry curvature term responsible for the AHE drift gives
exactly the same contribution to the transverse group velocity
as the term written in the equation using the QM.

In the particular case of the Rashba SOC with the Zeeman
splitting we consider that, as an example, the AHE drift occurs
in the y direction. Therefore, we need to study the y projection
of the group velocity. To establish the equivalence between
the equations with the Berry curvature, containing the time
derivative of the wave vector dky/dt and the semiclassical
equations with the QM, we will use the description of the
nonadiabaticity by the QM.

We begin by providing the explicit expressions for
the Berry curvature and the quantum metric for the
Rashba/Zeeman Hamiltonian, equivalent to the massive Dirac
Hamiltonian. The Berry curvature reads

Bz = α2�

2(�2 + α2k2)3/2 (B1)

and the QM reads

gkx,kx = α2
(
�2 + α2k2

y

)
4(�2 + α2k2)2 , gky,ky = α2

(
�2 + α2k2

x

)
4(�2 + α2k2)2 . (B2)

The term of Eq. (6) of the main text responsible for the
transverse anomalous Hall velocity (for a wave packet char-
acterized by a wave vector along x) reads

h̄vy = · · · + h̄�
√

gky,ky sin θs sin(φ f − φs). (B3)

In the quasiadiabatic regime, sin θs ≈ sin θ f = αk/h̄� and
sin(φ f − φs) ≈ η/ sin θ f , which gives

h̄vy = · · · + h̄�
√

gky,kyη. (B4)

The angle η here can be obtained from the wave-vector change
rate dkx/dt using the fact that any nonzero change of the
parameters of the Hamiltonian leads to a finite nonadiabaticity
described by η and given by the quantum metric along the
wave-vector evolution direction [32]:

fNA = gkx,kx

h̄2�2

(
dkx

dt

)2

(B5)
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This nonadiabatic fraction is linked with the angle between
the spin and the effective field η as fNA = η2/4. This allows
us to transform the expression obtained using the QM to the
familiar expression with the Berry curvature:

h̄vy = · · · + 2
√

gyygxx
dkx

dt
= Bz

dkx

dt
, (B6)

where we have used the identity

√
det g = Bz

2
(B7)

valid for all two-band Hamiltonians with a Berry cuvature of a
constant sign [28]. The two approaches indeed give the same
contribution to the transverse velocity.

APPENDIX C: COMPARISON
WITH CULCER’S EQUATIONS

The semiclassical equations of motion for a wave packet
with the center-of-mass position rc and wave vector qc, were
written in Ref. [15]:

h̄q̇c = − ∂E

∂rc
− Btr, (C1)

h̄ṙc = ∂E

∂kc
− Bqqq̇c + Btq, (C2)

ih̄
dci

dt
=

(
Hi j − h̄

〈
ui

∣∣∣∣ i
du j

dt

〉)
c j (C3)

with the coefficients ci determining the composition of the
wave packet within the bands with the numbers i, ui being the
periodic spinor part of the wave packet wave function, Bqq is
the Berry curvature tensor, calculated not for a single band,
but for a superposition of bands, and

Bα
tq = i

(〈
∂u

∂t

∣∣∣∣ ∂u

∂qα

〉
−

〈
∂u

∂qα

∣∣∣∣ ∂u

∂t

〉)
(C4)

is an additional Berry curvature tensor Btq which appears
because of the explicit time dependence u(t ) (absent in the
case of a single band).

APPENDIX D: QUANTUM METRIC
AND THE NON-ABELIAN GAUGE FIELD

A general nonrelativistic Hamiltonian of a massive matter
field (quantum particle) minimally coupled with a non-
Abelian gauge field determined by a vector potential Aa

μ reads
[37,40,41]:

HY M = 1

2m
( p̂ − ηAaσ a)2 + ηAa

t σ
a. (D1)

The coupling constant is η = h̄/2 (the quantum of spin). We
use upper number indices 0 − 3 for Pauli matrices. Comparing
this expression with the Rashba Hamiltonian [Eq. (8) of the
main text], one sees that only two components of the vec-
tor potential are nonzero: A1

x = −mα/η, A2
y = −mα/η. The

non-Abelian nature of the field makes that the constant vector
potential nevertheless gives rise to nonzero field strength ten-
sor. In the case of Rashba SOC, the only nonzero components
are F 3

yx = −F 3
xy = −m2α2/η. This nonzero field is responsible

for an analog of a Lorentz force for a non-Abelian gauge field.

The Yang-Mills theory thus allows us to predict an analog of a
transverse force acting on a spin current in the Rashba Hamil-
tonian. This force is proportional to the field strength and to
the spin current, as can be seen from the second Newton’s law:

m dvμ/dτ = Jν · Fμν. (D2)

The corresponding acceleration is ultimately found as ax =
−2mα2J3

y /h̄2, ay = 2mα2J3
x /h̄2, where J3

x , J3
y are the circular

(spin-up/down) components of the spin current propagating
along x and y, respectively.

We will now compare the predictions of the Yang-Mills
theory with those of the semiclassical equations that we have
derived. In the particular case where the external forces are
absent, the first of the equations of motion (5) of the main
text gives that the central wave vector of the wave packet
is constant: k̇ = 0. The equation (6) of the main text is still
time dependent, so it can be derived once again to find an
analog of the second Newton’s law, similar to Eq. (D2). We
consider a parabolic band extremum characterized by an ef-
fective mass m, and define the z projection of the spin current
as J = h̄2qc cos θs/2m, which allows writing

mr̈ = √
gkk

4α2km

h̄2 ez × J (D3)

making the metric appear explicitly in the expression for the
non-Abelian magneticlike Yang-Mills force. We can therefore
conclude that the QM is at the heart of the microscopic mech-
anism behind the Lorentz-like transverse force acting on a
spin current in the static non-Abelian gauge field described
by Eq. (D2).

The covariant derivative appears in the Lagrangian to en-
sure the fundamental principle of gauge invariance. But the
physical mechanism associated with its microscopic effect is
based on the fact that the group velocity in a spinor system
necessarily includes the QM describing the interband transi-
tions due to the spin dynamics.

APPENDIX E: ESTIMATION OF THE MAXIMAL
VALUES OF THE EFFECTS

We note that the scale of both the AHE and the ZBW is
quite comparable in both configurations (TE-TM or Rashba
SOCs + Zeeman splitting), in what concerns the maximal
lateral deviation, maximal velocity, or maximal acceleration.
In general, the ZBW is larger above a certain wave vector. We
note that the combination of the Rashba SOC with the Zeeman
splitting is equivalent (in what concerns its spinor part) to the
gapped Dirac Hamiltonian. This makes the applicability of our
example even broader.

The pure AHE determined by the Berry curvature requires
adiabatic evolution of the system. The additional group veloc-
ity due to AHE is given by q̇AHE = B × k̇, and if the potential
gradient is constant, the acceleration due to AHE can be found
as q̈AHE = Ḃ × k̇. We consider a wave packet accelerated from
k = 0 along the x axis. The transverse acceleration therefore
can be found as

d2ry

dt2
= dBz

dkx

(
dkx

dt

)2

. (E1)
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To find the maximal acceleration we need to find the maximal
value of dBz/dkx, which occurs at kmax ≈ 0.48

√
�/β, which

gives
(

dBz

dkx

)
max

≈ 1.51
β3/2

�3/2
. (E2)

On the other hand, the maximal value of the acceleration
dkx/dt acceptable for the adiabatic evolution can be obtained
from the expression for the nonadiabatic fraction [32]:

fNA = gkk

�2

(
dkx

dt

)2

. (E3)

Requiring that the nonadiabatic fraction does not exceed 20%
gives the maximal value of the square of the derivative

(
dkx

dt

)2

max

≈ �3

h̄2β
. (E4)

Qualitatively, the same condition can be obtained from the
physical requirement that the energy of the eigenstate should
not change faster than the value of the frequency correspond-
ing to the splitting between the eigenstates.

Putting both expressions together, we find aAHE,max ≈
1.5β1/2�3/2/h̄2. On the other hand, the maximal acceleration
due to the QM depends on the wave vector, which for the
system with TE-TM SOC (and without the Zeeman split-
ting) gives aZBW,max = �2√gyy = 4β2k3/h̄2. Comparing both
expressions, we see that for k > 2−2/3√�/β, the ZBW ac-
celeration is larger than the AHE one, whereas for the wave
vector where the AHE acceleration is maximal, it is approx-

imately twice larger than the ZBW: aAHE,max ≈ 2aZBW(kmax).
The ZBW acceleration can be increased unlimitedly by in-
creasing the wave vector kx.

For the configuration with Rasbha SOC and Zeeman split-
ting, the accelerations are given by aAHE,max ≈ 0.43α�/h̄2

and aZBW,max = 2α2k/h̄2. For the same wave vector kmax =
�/2α (giving the maximal AHE acceleration), one finds
aAHE,max ≈ 0.43aZBW,kmax . The AHE acceleration is therefore
smaller than the ZBW one at this wave vector. However, for
this configuration, it is better to compare the transverse veloc-
ities, and not the accelerations, because the AHE acceleration
is actually reducing the effect (there is a nonzero transverse
velocity at t = 0, which then decays).

The expressions for the maximal velocities give the same
result vAHE,max = vZBW,max = α/2h̄. It is also interesting to
compare the maximal lateral shift in both cases. Both AHE
and ZBW shifts exhibit a divergent behavior on a certain
parameter (�Z for AHE, k0 for ZBW), and can, in principle,
exhibit arbitrarily large values, if these two parameters are
decreased. On the other hand, the experimental observations
are limited by the line broadening � (due to finite lifetime)
and by the wave packet size in real space. For the Rashba
Hamiltonian, the broadening sets a common limit for both
effects: �YAHE/ZBW,max ∼ α/�. The wave packet size also
sets a similar limit: �YAHE/ZBW,max ∼ 1/σk ∼ σr : the maximal
scale of both effects is determined by the wave packet size. For
AHE, this condition means the WP should be smaller than the
region with nonzero Berry curvature, and for ZBW that k0 is
really different from 0. We conclude that while the two effects
occur in completely different regimes (adiabatic vs coherent
oscillations), their scales are actually quite comparable.
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