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Torque-free manipulation of nanoparticle rotations via embedded spins
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Spin angular momentum and mechanical rotation both contribute to the total angular momentum of rigid
bodies, leading to spin-rotational coupling via the Einstein–de Haas and Barnett effects. Here, we show that
the revolutions of symmetric nanorotors can be strongly affected by a small number of intrinsic spins. The
resulting dynamics are observable with freely rotating nanodiamonds with embedded nitrogen-vacancy centers
and persist for realistically shaped near-symmetric particles, opening the door to torque-free schemes to control
their rotations at the quantum level.
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I. INTRODUCTION

Levitating nanoscale particles in ultrahigh vacuum pro-
vides a promising platform for high-mass tests of quantum
physics and for ultraprecise force and torque sensors [1,2].
State-of-the-art experiments with levitated objects include
cooling their center of mass to the quantum ground state [3–5],
controlling their alignment [6–11], and spinning them with
GHz frequencies [12–14]. Rotational cooling has been
achieved recently [15–17], with the quantum regime within
reach [18]. The inherent nonlinearity of rigid body rota-
tions [19,20] gives rise to pronounced quantum interference
phenomena [21,22], rendering the rotational degrees of free-
dom particularly attractive for future quantum applications.

The rotational motion of nanoscale particles is modified
by embedded spins [23,24] due to the Einstein–de Haas [25]
and Barnett effects [26], which express that spin and me-
chanical angular momentum can be interconverted [27–32].
While spin-rotational coupling is of minor importance for the
rotations of macroscopic objects, it opens the door to new
strategies for controlling and detecting nano- to microscale
magnetized rotors [33–36]. Thus far, spin-rotational coupling
has been explored for magnets whose spin angular momen-
tum dominates over the mechanical one [37–39], enabling for
instance the levitation of nonrotating spherical nanomagnets
despite Earnshaw’s theorem [24,40,41].

In this paper we show that only a few embedded spins
can strongly modify the torque-free dynamics of symmetric
nanorotors. This is a result of the nonlinearity of rotations and
of the conservation of total angular momentum. As a concrete
example, this can lead to stabilization or destabilization of the
nanoparticle rotation depending on the relative alignment of
spin and mechanical angular momentum. This strong spin-
rotational coupling is observable with realistically shaped
near-symmetric nanodiamonds containing nitrogen-vacancy
(NV) centers.

Nanodiamonds with embedded NVs have been proposed to
enable superposition tests [42–53], tests of the quantum nature
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FIG. 1. The torque-free rotation of a prolate rotor can be strongly
modified by embedded spins. (a) The particle rotates rapidly around
an axis approximately orthogonal to its symmetry axis n3 while its
embedded spin (magenta vector) is aligned with the body-fixed n2

axis. The conservation of the total angular momentum vector (purple
arrow) and the Barnett/Einstein–de Haas effect can strongly modify
the particle rotations around the symmetry axis, as described by the
angle γ . (b) The spin can for instance be due to nitrogen-vacancy
(NV) centers in a nanodiamond, whose energy levels and simplified
lattice structure are shown in the insets. (c) The presence of the spin
modifies the body-fixed angular momentum trajectories of the free
rotor (S2 = 0) by adding oscillatory trajectories close to the equator.
Depending on the sign of S2 = n2 · S, the spin can trap the rotor
trajectories close to J2 = ±J for S2 ≷ 0, respectively. The resulting
dynamics of the spin axis n2 are governed by an effective potential
(bottom row) of magnitude S2J/I .
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of gravity [54], and might allow high-precision rotation sens-
ing [55–60]. We discuss how strong spin-rotational coupling
can be exploited in future rotational quantum experiments
with nanodiamonds. As a first signature of quantum coher-
ence, we study the breakdown of the hard-magnet regime at
GHz rotation rates due to rotation-induced spin transitions.

II. TORQUE-FREE RIGID BODY ROTATION

We consider the rotation of a rigid body, characterized by
its inertia tensor I with moments of inertia I1,2,3 and principal
axes n1,2,3. In the absence of external torques, the total angular
momentum J = Iω + S is conserved, containing both the me-
chanical angular momentum with velocity vector ω, defined
by dnk/dt = ω × nk , and the embedded spin angular mo-
mentum S. The latter can be related to the magnetic moment
m by S = −h̄m/gsμB, where gs is a material specific factor
and μB is the Bohr magneton. If the body-fixed components
Sk = S · nk are constant, so that the spin S rotates together
with the particle (hard-magnet regime), the nonlinear Euler
equations for the body-fixed components Jk = J · nk are

d

dt
Ji = I j − Ik

IkI j
JjJk − 1

Ik
SkJj + 1

I j
S jJk, (1)

where (i, j, k) is an even permutation of (1,2,3). Spin-
rotational coupling via the Einstein–de Haas and Barnett
effects [25,26] is described by the terms containing the com-
ponents of S. We will next show how these terms can give rise
to strong spin-rotational coupling despite Sk � J = |J|.

III. SYMMETRIC ROTOR

We first study a symmetric rotor with I1 = I2 = I �= I3 ro-
tating rapidly around an axis approximately orthogonal to the
symmetry axis n3 and containing an embedded spin aligned
with the body-fixed n2 axis, i.e., S1 = S3 = 0 with |S2| � J
[see Fig. 1(a)]. In this case the spin can strongly affect the
particle rotations. This can be seen by choosing the space-
fixed axis so that J = Jez, implying that the rotor symmetry
axis approximately revolves with constant speed J/I in the
space-fixed x-y plane (gyroscopic stabilization). The rotations
around the symmetry axis, with angle γ , follow from the
Euler equations (1) by using that J1 � −J cos γ , J2 � J sin γ ,
and J3 � Ieff γ̇ � J , where we abbreviated the effective mo-
ment of inertia Ieff = II3/(I − I3) [23,61] (see Appendix A).
Substituting this into the Euler equation (1) shows that the
dynamics are described by the effectively one-dimensional
Hamiltonian

Heff = p2
γ

2Ieff
− S2J

I
sin γ , (2)

where pγ is the angular momentum for rotations around the
symmetry axis, so that pγ = Ieff γ̇ (see Appendix A). The spin
thus adds an effective potential of magnitude S2J/I to the
rotations around the symmetry axis of the rotor.

The Hamiltonian Eq. (2) describes how the spin affects
the rotations around the symmetry axis. The spin-induced
effective potential vanishes for S2 = 0, meaning that the prin-
cipal axes n1 and n2 rotate uniformly with constant angular
velocity pγ /Ieff around the symmetry axis n3. For finite spin,

the dynamics is similar to that of a physical pendulum in linear
gravity, that is the product of spin S2 and total angular momen-
tum J generate an anharmonic potential acting on the motion
of the angle γ . The physical origin of this effective potential
is the Barnett/Einstein–de Haas effect: The fast rotation of the
particle acts on the spin as a synthetic magnetic field propor-
tional to J/I , forcing the spin to align with the total angular
momentum vector J. Since the spin is rigidly attached to the
particle (hard-magnet regime), this acts back on the rotation
of the particle. Whether the spin axis tends towards the total
angular momentum vector or its opposite direction depends
on whether the rotor is prolate (I > I3), resulting in a positive
effective moment of inertia, or oblate (I < I3), giving rise to
a negative effective moment of inertia. Figure 1(c) shows the
resulting angular momentum trajectories for a prolate rotor for
three different S2.

The Hamiltonian (2) implies that the spin axis n2 in a
prolate rotor will remain close to its initial orientation γ (0) �
π/2 if

S2 � 5

2

( I

I3
− 1

) p2
γ (0)

J
, (3)

resulting in sin γ � 4/5 for all times. This spin-induced sta-
bilization of rotations around the symmetry axis requires no
external torques and works even though S2 � J . Likewise,
if S2 < 0, the spin axis will be destabilized when initially
oriented at γ (0) � π/2. Importantly, this strong influence of
spin on the rotation dynamics persists for realistically shaped
objects, as we will show next.

IV. NEAR-SYMMETRIC ROTOR

Asymmetric rotors exhibit the midaxis instability [61],
rendering rotations around the axis of intermediate moment
of inertia dynamically unstable. Thus even in the absence of
embedded spins, the angle γ experiences an effective poten-
tial. For a near-prolate asymmetric rotor with I1 � I2 > I3, a
straightforward calculation shows that this adds the term (I1 −
I2)J2 sin2 γ /2I1I2 (see Appendix A) to the Hamiltonian (2).
This implies that the spin converts the effective potential to a
trapping potential around γ � π/2 if

S2 � I1 − I2

I1
J, (4)

while simultaneously enhancing the inverse-trapping potential
around γ � 3π/2. This relation in combination with Eq. (3)
demonstrates under which conditions the midaxis rotations of
a near-prolate object can be stabilized despite the instability.
We will show next that this strong spin-rotational coupling
is observable with nanodiamonds containing embedded NV
centers, where |S2| � J [see Fig. 1(b)].

The case of near-oblate rotors (I3 > I2 � I1) follows
straightforwardly by flipping the sign of the effective moment
of inertia.

V. NANODIAMOND WITH NV CENTERS

The Hamiltonian of a nanodiamond rotor with N embed-
ded NV centers is in the absence of external torques given
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by [23,46]

Ĥtot =
3∑

k=1

1

2Ik

(
Ĵk −

N∑
m=1

Ŝ(m)
k

)2

+ D

h̄

N∑
m=1

(n(m) · Ŝ(m) )2, (5)

where D = 2π × 2.87 GHz is the zero-field splitting and n(m)

and Ŝ(m) are the quantization axis and spin operator of the mth
NV center. The distance between the NV centers is assumed
to be large enough so that spin-spin interactions are negligible.
The body-fixed total angular momentum operators Ĵi fulfill the
anomalous commutation relations [Ĵi, Ĵ j] = −ih̄εi jk Ĵk [62],
while the body-fixed spin angular momentum operators Ŝ(m)

i

obey [Ŝ(m)
i , Ŝ(n)

j ] = ih̄εi jkδmnŜ(m)
k [63]. Note that Ĵi and Ŝ(m)

j
commute for every i, j, m [23].

If the mechanical rotation rate is much smaller than the
NV zero-field splitting, J/I � D, the spin eigenstates of
n(m) · Ŝ(m) do not evolve (rotating-wave approximation, see
Appendix B). The particle thus behaves as a hard magnet and
the classical analysis of spin-rotational coupling applies. To
demonstrate that strong spin-rotational coupling can be ob-
served with nanodiamonds we consider a near-prolate particle
whose NV center quantization axes are along the n2 axis,
n(m) · n2 � 1. The particle is initially trapped and rotationally
cooled [18] to maximally align its body-fixed axes with the
space-fixed frame. Once the particle is aligned, the spins are
polarized by a microwave pulse into the desired spin state
and a static magnetic field keeps the rotor in place while it
is angularly accelerated to large angular momentum around
n2. This creates the approximately thermal state [22],

ρ � 1

Z
exp

[
− 1

kBT

(
Ĵ2

1

2I1
+ (Ĵ2 − J )2

2I2
+ Ĵ2

3

2I3

)]
, (6)

where Z is the partition function. The displacement J de-
scribes the initial rapid rotation around the midaxis and
dominates the thermal width J � √

IkkBT . The nanodiamond
is then released and rotates freely. The orientation of n2 can
for instance be read out via the NV states [48,50]. For a large
quantum number (e.g., J/h̄ > 100), the mean value of the
relative orientation 〈e2 · n2〉 between body- and space-fixed
axes is well approximated by the corresponding classical dy-
namics.

The condition Eq. (3) for spin-rotational stabilization of n2

is washed out by the thermal state because the initial angular
momentum pγ (0) becomes normally distributed. Estimating
the initial angular momentum p2

γ (0) by half of the thermal
width I3kBT and neglecting prefactors of order unity, one
obtains

T � S2J

kB(I − I3)
, (7)

where the value of S2 is fixed by the initialization of the NV
spins. Equation (7) can be fulfilled even for S2 as small as h̄
from a single NV center for fast enough rotation.

As a numerical example [Fig. 2(a)], we consider the quan-
tum dynamics of a prolate ellipsoidal nanodiamond with
semiaxes 10 and 11 nm rotating around n2 [i.e., γ (0) =
π/2] at frequency ω/2π = 23.7 MHz. (The choice of size
is limited by numerical constraints.) At the experimentally
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FIG. 2. Examples of how a single NV center modifies the rota-
tion of a symmetric nanodiamond. (a) For a prolate particle rotating
off resonance, J/I � D, the Gaussian decay of the alignment 〈e2 ·
n2〉 � 〈Ĵ2〉/J (green) is suppressed by preparing the NV spin in the
| + 1〉 state (red), and can be converted into a different decay pattern
by the | − 1〉 state (blue). (b) The time evolution of the mean value of
Ĵ2 (purple) and Ŝ2 (green) for a prolate particle rotating on resonance,
shows nonadiabatic transitions when |〈Ĵ2〉| � J and adiabatic dy-
namics otherwise. (c) The effects of rotation-induced spin transitions

are shown via the time-averaged mean angular momentum, 〈Ĵ2〉. For
on-resonance rotation J � ID, the stabilization of a prolate rotor by
the | + 1〉 state breaks down due to spin transitions, leading to a

reduction of 〈Ĵ2〉 (blue). An oblate rotor remains stabilized by the
| − 1〉 state (red) as spin transitions are suppressed.

achievable temperature T = 2 mK [18], the rotor n2 axis is
stabilized close to its initial orientation by a single NV cen-
ter prepared in the | + 1〉 eigenstate. In contrast, initializing
the NV center in the |0〉 state leads to a Gaussian decay
of the alignment 〈e2 · n2〉 due to the thermal width in Ĵ3.
The characteristic decay time follows from Eqs. (1) to be
inversely proportional to the thermal width in J3, τsym =
I3I/(I − I3)

√
I3kBT . Finally, if the NV spin is in the | − 1〉

state, the rotor first quickly flips due to the destabilization,
and then 〈e2 · n2〉 approaches a constant positive value due to
the thermal width and dispersion of the rotor [19].

The degree of symmetry required to observe spin-induced
stabilization is rather demanding for small nanodiamonds
since I1 = I2 is technologically impossible. Equation (4) im-
plies that rod-shaped particles are preferable, as the length of
the approximate symmetry axis contributes to both I1 and I2,
masking small differences between the two short axes. Apart
from this challenge, the rotor asymmetry also has benefits for
observing the spin-induced stabilization. The midaxis flipping
of an asymmetric rotor happens on shorter timescales than for
symmetric objects [22], thus the effect of the spin is observ-
able at earlier times. Requiring the spin angular momentum
to satisfy (4) also means that (7) can be reached at a smaller
J or at a higher temperatures, relaxing the requirements
on rotational cooling. For instance, strong spin-rotational
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coupling can be observed with an ellipsoidal nanodiamond
with semiaxes 10, 11, and 200 nm. At T = 0.1 mK and J/I2 �
2π × 9 kHz, the free dispersion of n2 becomes significant
on the timescale of 0.1 ms. Embedding as many as 800 NV
centers whose quantization axes are approximately parallel
to n2 and initializing them to the state | + 1〉⊗N , can stabi-
lize n2. Likewise, initializing the spins in the | − 1〉⊗N state
destabilizes the rotor. Equation (7) is also the requirement for
stabilizing near-oblate rotors (I3 > I2 � I1), implying S2 < 0.

For small rotation rates, J/I � D, the particle remains in
the hard-magnet regime, so that its rotation dynamics can
be understood classically. However, signatures of quantum
coherent spin transitions can emerge for faster rotations.

VI. ROTATION ON RESONANCE

If the particle rotation rate J/I becomes comparable to the
NV zero-field splitting the rotation can induce spin transi-
tions, leading to a breakdown of the hard-magnet regime. One
manifestation of these quantum coherent spin transitions is
that an initially stabilized rotor can turn unstable on relatively
short timescales. To see this, we consider a near-prolate rotor
initially rotating rapidly around n2, with NV centers whose
quantization axes are along n2 and initialized to | + 1〉, satis-
fying the hard-magnet regime stabilization condition (7). The
energy spacing between the mth NV center in the | + 1(m)〉
state and in the |0(m)〉 state becomes small, 	E+1 = h̄(D −
J/I ) � h̄D, and thus nonadiabatic transitions between these
states are possible on short timescales. This breaks the condi-
tion (7) because 〈S2〉 decreases, forcing 〈J2〉 to also decrease
until the rotations are no longer on resonance with the spin
transitions, suppressing the latter. In contrast, a near-oblate
rotor with J2(0) � ID stays stabilized by preparing the NV in
the | − 1〉 state with quantization axis n2 because the energy
spacing between the | − 1(m)〉 and the |0(m)〉 states remains
large, 	E−1 � 2h̄D, suppressing spin transitions.

Figures 2(b) and 2(c) illustrate the dynamics of a prolate
and an oblate rotor containing one NV center whose quan-
tization axis is parallel to n2. The semiaxes of the prolate
(oblate) rotor are 6 and 7 nm (6.81 and 5.44 nm), chosen such
that their dynamics are equivalent in the hard-magnet regime.
The temperature is set to zero in order to solely concentrate
on the NV transitions. Figure 2(b) shows the dynamics of
the prolate rotor and its embedded NV center for J = ID.
When |〈Ĵ2〉| � J , nonadiabatic NV state transitions are man-
ifested as a sharp change in 〈Ŝ2〉/h̄ while 〈Ĵ2〉/J remains
almost constant. A qualitative semiclassical explanation of
the dynamics combining classical rotation trajectories with
quantum NV states is provided in Appendix C. Figure 2(c)
plots the degree of stabilization as a function of the ratio J/ID
close to resonance. The degree of stabilization is quantified by

the time-averaged mean value 〈Ĵ2〉 = ∫ T0

0 dt〈Ĵ2(t )〉/T0, where
T0 = 150 μs is chosen on the order of NV center T1 time in
nanodiamond. The latter has been measured to be ∼100 μs
at cryogenic temperatures and is expected to be longer for
improved surface qualities [64]. The rotation-induced spin
transitions occur on much shorter timescales, so that the T ∗

2
time poses no limit to the proposed experiment. The reduction

of 〈Ĵ2〉 towards 0 for a prolate rotor indicates the breakdown
of the stabilization while the oblate rotor remains stabilized.

VII. CONCLUSION

In this paper we studied the impact of spin-rotational
coupling on the three-dimensional rotation dynamics of
nanorotors and identified a regime where the torque-free ro-
tational dynamics of a near-symmetric rotor can be modified
strongly by only a few embedded spins. This manifestation
of the Einstein–de Haas and Barnett effects can be observed
with objects that are not ferromagnets, such as nanodiamonds
containing NV centers, as the spin-induced stabilization or
destabilization of their rotations around the symmetry axis.
A quantum signature, which is manifested as the breakdown
of the spin-induced stabilization, is directly observable by
rotating a near-prolate nanodiamond on resonance with the
NVs. Resulting from the angular momentum nature of elec-
tronic spins and the inherent nonlinearity of three-dimensional
rigid body rotations, the predicted phenomena open the door
towards torque-free quantum coherent interactions between
spins and rotation. This might facilitate the generation and
read-out of nonclassical rotation states solely via embedded
spins. For instance, using the quantum control methods devel-
oped for NV states [53,65], one could switch between unstable
and stable rotations to generate and recombine orientational
superpositions via coherent inflation [66].
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APPENDIX A: EFFECTIVE HAMILTONIAN

We use Euler angles in the z-y′-z′′ convention, where the
body-fixed principal axes n1, n2, n3 are related to the space-
fixed axes ex, ey, ez by three rotations: first by α around ez,
then by β around the new ey axis, and finally by γ around the
new ez axis. Choosing n3 as the symmetry axis of the particle,
n2 as the spin quantization axis, and the space frame ez axis
along the direction of J, the total angular momentum along
the rotor principal axes is

J1 = −J sin β cos γ , (A1a)

J2 = J sin β sin γ , (A1b)

J3 = J cos β. (A1c)

Also, Ji = Iiωi + Si, where the mechanical rotation rates ωi

are given by

ω1 = −α̇ sin β cos γ + β̇ sin γ , (A2a)

ω2 = α̇ sin β sin γ + β̇ cos γ , (A2b)

ω3 = α̇ cos β + γ̇ . (A2c)
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For I1 = I2 ≡ I and S1 = S3 = 0, these equations can be
combined to yield

α̇ = J

I
− S2 sin γ

I sin β
, (A3a)

β̇ = −S2

I
cos γ , (A3b)

γ̇ = cos β
I − I3

II3
J + cos β sin γ

sin β

S2

I
. (A3c)

The presence of a spin angular momentum |S2| � J creates
an effective potential for γ . To see this, we take the time
derivative of Eq. (A3c) and use that for a rapid initial rotation
around the spin quantization axis, J2(0) � J , the symmetry
of the rotor guarantees that β � π/2 holds throughout the
dynamics. The equation of motion for γ is thus approximately

γ̈ � I − I3

I2I3
JS2 cos γ , (A4)

resulting in the effective Hamiltonian Eq. (2) once we define
the effective moment of inertia as Ieff = II3/(I − I3).

For a near-symmetric rotor, I1 � I2 > I3 or I1 � I2 < I3,
rapid midaxis rotation still implies β � π/2, yielding

γ̈ � − (I1 − I2)(I1 − I3)

I2
1 I2I3

J2 sin γ cos γ + I1 − I3

I1I2I3
JS2 cos γ ,

(A5)

which is consistent with the relation given before Eq. (4).

APPENDIX B: HARD-MAGNET LIMIT

If the mechanical rotation frequency J/I is much smaller
than D but much larger than Nh̄/Ik , the spin dynamics can
be adiabatically eliminated (rotating-wave approximation) by
transforming into a frame corotating with the zero-field split-
ting. Neglecting terms that oscillate with frequency D yields

Ĥapp =
3∑

k=1

[
Ĵ2

k

2Ik
− Ĵk

Ik

N∑
m=1

(n(m) · nk )(n(m) · Ŝ(m) )

]
, (B1)

FIG. 3. Approximate eigenstates (blue) and eigenenergies (red)
of the semiclassical Hamiltonian (C1) for J1, J3 � J as well as
(a) J2 � J and (b) J2 � −J . The purple arrows indicate possible spin
transitions. The green dot in (a) indicates the initial NV state and in
(b) the occupied states after the adiabatic state change.

where we dropped the contributions Ŝ(m)
k Ŝ(n)

k /Ik since S � J .
For each collective NV eigenstate given by a product of n(m) ·
Ŝ(m) eigenstates with eigenvalues s(m) = 0,±1, the particle ro-
tation is described by the effective hard-magnet Hamiltonian

Ĥeff =
3∑

k=1

1

2Ik
(Ĵk − S̃k )2. (B2)

Here, S̃k = ∑N
m=1(n(m) · nk )h̄s(m). The Heisenberg equations

for Ĵk are the Euler equations (1) in the classical limit.

APPENDIX C: SEMICLASSICAL DYNAMICS
ON RESONANCE

The spin dynamics for rapid rotations can be described by
a semiclassical model, describing the quantum spin dynamics
for parametrically rotating objects. The resulting effective NV
Hamiltonian is

Ĥsemi = −1

I
J1(t )Ŝ1 − 1

I
J2(t )Ŝ2 − 1

I3
J3(t )Ŝ3 + 1

h̄
DŜ2

2, (C1)

where Ji(t ) are the classical angular momentum trajectories.
Expressing the spin-1 operators Si in matrix form gives

Ĥsemi =

⎛
⎜⎜⎝

Dh̄ − h̄
I J2(t ) i√

2
h̄
I J1(t ) − 1√

2
h̄
I3

J3(t ) 0

− i√
2

h̄
I J1(t ) − 1√

2
h̄
I3

J3(t ) 0 i√
2

h̄
I J1(t ) − 1√

2
h̄
I3

J3(t )

0 − 1√
2

ih̄
I J1(t ) − 1√

2
h̄
I3

J3(t ) Dh̄ + h̄
I J2(t )

⎞
⎟⎟⎠. (C2)

The eigenstates of the NV center zero-field splitting DŜ2
2/h̄

are | + 1〉 = (1, 0, 0), |0〉 = (0, 1, 0), and | − 1〉 = (0, 0, 1).
For a prolate rotor (I3 < I) off resonance, J2(0) � J � ID,

the stabilization of the n2 axis requires the NV state to be
| + 1〉 = (1, 0, 0), which is an approximate eigenstate of (C1)
with eigenvalue Dh̄ − h̄J/I . Transitions to other states are
forbidden due to the large energy differences and the small
value of the off-diagonal elements. The hard-magnet regime
is thus valid throughout the dynamics.

If the rotation is fast enough, J � ID, the energies of
the states | + 1〉 and |0〉 = (0, 1, 0) become nearly degener-
ate, inducing nonadiabatic transitions between the two states
[Fig. 3(a)]. This decreases 〈Ŝ2〉, rendering the rotations unsta-
ble due to Eq. (3). This in turn decreases J2, bringing the NV
out of resonance so that the spin follows the rotor adiabatically
in an eigenstate of (C1). As J2 eventually approaches −J , the
NV state has a finite | − 1〉 = (0, 0, 1) component [Fig. 3(b)],
which can transit nonadiabatically to the |0〉 state. The
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nonadiabatic evolution is characterized by a rapid change
of 〈Ŝ2〉 with relatively constant 〈Ĵ2〉 close to ±J [see
Fig. 2(b)], while 〈Ŝ2〉 follows 〈Ĵ2〉 during the adiabatic
evolution.

For an oblate rotor (I3 > I), stabilization of J2(0) � J re-
quires the initial NV state to be | − 1〉. This is an approximate
eigenstate of energy Dh̄ + h̄J/I , which is always detuned
from the other states, precluding nonadiabatic transitions.
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