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Fragility of classical Hamiltonian period doubling to quantum fluctuations
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We add quantum fluctuations to a classical period-doubling Hamiltonian time crystal, replacing the N classical
interacting angular momenta with quantum spins of size l . The full permutation symmetry of the Hamiltonian
allows a mapping to a bosonic model and the application of exact diagonalization for a quite large system size.
In the thermodynamic limit N → ∞ the model is described by a system of Gross-Pitaevskii equations whose
classical-chaos properties closely mirror the finite-N quantum chaos. For N → ∞, and l finite, Rabi oscillations
mark the absence of persistent period doubling, which is recovered for l → ∞ with Rabi-oscillation frequency
tending exponentially to 0. For the chosen initial conditions, we can represent this model in terms of Pauli
matrices and apply the discrete truncated Wigner approximation. For finite l this approximation reproduces
no Rabi oscillations but correctly predicts the absence of period doubling. Our results show the instability of
time-translation symmetry breaking in this classical system even to the smallest quantum fluctuations, because
of tunneling effects.
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I. INTRODUCTION

The experimental discovery [1,2] of Floquet time crystals
a few years after their theoretical prediction has been a real
breakthrough. In analogy to ordinary crystals, time crystals
appear as a consequence of breaking time-translation symme-
try in the system [3–5]. Time crystals were first introduced in
2012 by Wilczek [6]. Following earlier attempts to identify
systems able to display time-translation symmetry breaking,
in 2015, a no go theorem by Watanabe and Oshikawa showed
that this is not possible in the ground state or in thermal
equilibrium [7].

Among many possible nonequilibrium candidates, period-
ically periodically driven (Floquet) systems have proven to
be the most promising realization. Stimulated by the initial
proposals [8,9], a large body of theoretical work has been
performed [10–22]. A common ingredient to all cases is the
presence in the dynamics of a sufficient number of constraints
that introduce ergodicity breaking, thus impeding the system
to reach an effective infinite temperature.

Nearly all the attention, so far, has been devoted to
quantum systems. Only a few notable exceptions [23–26]
consider classical dynamics. Especially interesting is the case
of driven classical many-body Hamiltonian systems, where a
long-lasting prethermal regime has been found [27,28], and
period doubling (or period n-tupling with n > 2) can appear
in the prethermal regime [29,30]. All these systems eventu-
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ally thermalize after a transient, and this fact relies on their
chaotic dynamics. Chaos is the generic situation for a finite
number of coupled classical Hamiltonian systems [31], but
the situation can drastically change in the thermodynamic
limit for long-range interacting systems [31–33]. The phe-
nomenon of subharmonic generation (period doubling) in a
classical Hamiltonian driven many-body system was recently
considered in Ref. [34] and it was termed Hamiltonian syn-
chronization (or classical Floquet time crystals). One question
is if this synchronization phenomenon is stable to fluctu-
ations. In [34] this stability was discussed against thermal
fluctuations, here we explore the stability against quantum
fluctuations.

Besides addressing the problem of stability to fluctuations,
the present work aims to make a first step towards a model
that has a time-crystalline phase both in the classical and
in the quantum regime, so to understand their difference.
Most simply, we substitute the classical angular momenta
with quantum spins of magnitude l and find that, whenever
l is finite, the quantum fluctuations destroy the synchronized
period-doubling motion. It is recovered only in the limit of
infinite spin magnitude l → ∞, when the dynamics becomes
classical again.

In this paper we focus on the case where the interactions
are all-to-all and the correlations are therefore very strong.
Moreover, the kicking exactly flips the spins and we take the
initial state as fully polarized up. If the quantum fluctuations
destroy the period doubling in this most favorable situation,
they will destroy it also in case of imperfect flipping and
faster decaying fluctuations. What we find here is that adding
even the smallest quantum fluctuations (l � 1 finite), one
spoils the time-translation symmetry breaking in this model.
Due to quantum tunneling, some Rabi oscillations incommen-
surate with the driving period add on the period-doubling
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oscillations. The response is no more synchronous with the
driving and there is no more a persistent period-doubling
response, so there is no more time crystal.

The paper is organized as follows. In Sec. II we introduce
a “period-doubling order parameter,” a quantity which first
vanishes at a time increasing with the system size if the system
shows persistent period doubling in the thermodynamic limit.
We add quantum fluctuations to the classical backbone of [34].
We do this in two ways, and we get two quantum models, both
reducing to the classical one when l , a parameter we are going
to describe, tends to infinity (we discuss this limit in some
detail in Appendix A).

In model 1 we simply substitute classical angular momenta
with quantum spins of finite size l and discuss it in Sec. IV.
By using a mapping to a bosonic model [18,35] (Appendix B)
and exact diagonalization for finite system size, we see that the
period-doubling order parameter first vanishes at a time not
scaling with the system size, which marks the destruction of
period doubling. By studying the average level spacing ratio
in Sec. IV A we find that the dynamics leading to this result is
related to quantum chaos.

In Sec. IV B we perform the thermodynamic limit and
show that the system is here described by a system of Gross-
Pitaevskii equations. In that limit we see the period-doubling
order parameter performing Rabi oscillations, so there is no
period doubling. We see that the period of these oscillations
diverges with the spin magnitude l and in the limit of infinite
spin the period doubling is recovered. This is in agreement
with the fact that the quantum fluctuations disappear in this
limit.

In agreement with the finite-size quantum dynamics, the
classical infinite-size Gross-Pitaevskii dynamics is chaotic, as
the largest Lyapunov exponent shows (Sec. IV C), but it is not
fully ergodic and the Rabi oscillations can persist. Studying
the amplitude and the frequency of the Rabi oscillations ver-
sus the parameter K for different values of l , we see that the
curves show a crossing point for K ∼ 1, which corresponds
to a transition from synchronized to trivial behavior in the
classical l → ∞ limit.

Rabi oscillations are related to the ones obtained in [17]
for a single spin system. Coupling many of these systems
with a small coupling K the oscillations are still there but
with a renormalized period; a large coupling on the opposite
leads to the destruction of the Rabi oscillations and to small
chaotic oscillations of the period-doubling order parameter.
The correlations induced by the coupling are never strong
enough to stabilize the period-doubling order parameter to a
persistent finite value, against the quantum fluctuations.

In Sec. V we study model 2, where each classical angular
momentum is substituted by an average of 2l Pauli matrices.
We study this case by means of the discrete truncated Wigner
approximation (DTWA), which we summarize in Sec. V A
and is known to give good results for long-range interac-
tions [36–38]. Also here we find find the disappearance of the
period doubling (Sec. V B): the period-doubling order param-
eter decays as an exponential in time and the decay timescale
does not scale with N . We see that the decay time increases
for increasing value of l as a power law. So, for l → ∞,
where the system behaves classically, the period doubling
persists for an infinite time, as expected. In Appendix C we

discuss a different way to estimate this decay time which gives
consistent results and discuss some technical aspect related to
DTWA.

We remark that, for the chosen initial state, model 2 is
equivalent to the first one but the DTWA gives results in
quantitative agreement only in the limit l → ∞. For l finite
it is only correct in predicting the absence of period doubling
in the limit of large N but provides no Rabi oscillations.

II. THE MODELS

We introduce quantum fluctuations in the model studied
in [34]. It is a chain of N coupled classical angular momenta
undergoing a periodic pulsed driving. Here we will focus on
the case with all-to-all interactions. These ones give rise to the
strongest long-range correlations needed in order to stabilize
a possible period-doubling phase. Indeed, in the classical case
this model shows a phase with persistent period doubling in
the thermodynamic limit, also in the all-to-all case. Adding
the quantum fluctuations, we will show that the period dou-
bling in the all-to-all interacting case disappears. This result
implies the absence of period doubling also for faster decaying
interactions (and smaller long-range correlations). The Hamil-
tonian is

H(t ) =
N∑

i=1

[−2J
(
mz

i

)2 − 2hmx
i

]
+ δτ (t )

N∑
i=1

[
φ mx

i − K

2N

∑
j �=i

mx
i mx

j

]
, (1)

where δτ ≡ ∑
n δ(t − nτ ) [39] and we put a factor N in the de-

nominator in order to ensure extensivity. The mα
j , α = x, y, z

are the components of classical angular momenta which
obey the angular-momentum Poisson brackets {mμ

i , mν
j } =

εμ ν ρδi jm
ρ
j where εμν ρ is the Ricci fully antisymmetric ten-

sor. For K and h small enough and φ in a neighborhood
of π/2 this classical Hamiltonian model shows a persistent
period-doubling behavior [34].

This classical model is such that when K = 0 it is equiva-
lent to a single degree of freedom showing entrainment with
the driving, that is to say it shows a response synchronized
with the one of the driving, with a period-doubled respect to
the driving [17]. When K �= 0 and N is finite, this response
dies after a transient. For a region in the parameter space, the
duration of this transient diverges with the system size going
to infinity [34]. So, for N → ∞, the system shows persistent
collective oscillations with a period double with respect to the
driving, in which all the spins behave in a synchronous way.
This is a form of period-doubling time crystal, as we discuss
in Sec. III.

In order to add quantum fluctuations to this model, we
can quantize the angular-momentum variables replacing them
with quantum spins. The resulting Hamiltonian is

Ĥ (1)(t ) =
N∑

j=1

[
−J

l

(
ŝz

j

)2 − 2hŝx
j

]

+ δτ (t )

[
φ

N∑
j=1

ŝx
i − K

2Nl

N∑
i, j=1

ŝx
i ŝx

j

]
, (2)
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where ŝα
j , α = x, y, z are quantum spins of magnitude l [ŝ2

j =
l (l + 1)] obeying the commutation rules [ŝμ, ŝν] = iεμνρ ŝρ .
We call Ĥ (1)(t ) as model 1. Another possibility, which should
give results physically similar to the first one, is performing
the following substitution:

mα
j → m̂α

j ≡ 1

4l

2l∑
m=1

σ̂ α
j, m. (3)

So we replace the classical angular momenta in Eq. (1) with
an average of 2l Pauli matrices, and then we multiply by 2l .
We call the resulting

Ĥ (2)(t ) =
N∑

i=1

[
− J

4l

2l∑
m,m′=1

σ̂ z
i, mσ̂ z

i, m′ − h
2l∑

m=1

σ̂ x
i, m

]

+ δτ (t )

[
φ

2

2l∑
m=1

σ̂ x
i, m − K

16N l

∑
i, j �=i

2l∑
m,m′=1

σ̂ x
i, mσ̂ x

j, m′

]
(4)

as model 2. The parameter l has the same symbol here and in
model 1 on purpose. Indeed, also m̂α

j are spin variables and
because we choose as initial state the one fully polarized up
[see Eq. (16)], these are spins of size l , as well known from
the rules of addition of angular momenta [40]. So, with our
initialization, the variables ŝα

j of model 1 and the variables
m̂α

j of model 2 are exactly equivalent. In some sense, model
2 is a spin-1/2 representation of the first one, amenable to be
described by means of DTWA.

For any finite l there are quantum fluctuations around the
classical backbone Eq. (1). When l → ∞ the fluctuations
become irrelevant and both models tend to become classi-
cal. This can be seen, for instance, by using exactly the
same methods discussed for the Lipkin-Meshkov-Glick model
in [41,42]. For completeness, we give a sketch of this analysis
in Appendix A.

In the rest of the paper we numerically study the two
models. We study model 1 in Sec. IV and model 2 in Sec. V.
In both cases we will consider the stroboscopic dynamics, that
is to say we will focus on times which are an integer number
of periods t = nτ . More precisely, we will chose the time nτ

as the time immediately before the nth kick. We will show
that whenever there are quantum fluctuations—that is to say
for any finite l—there is no period-doubling phase and in the
limit l → ∞ one recovers the period doubling consistently
with the attaining of the classical limit.

III. PERIOD DOUBLING AND TIME-CRYSTAL BEHAVIOR

In order to make our paper self-contained, we briefly recap
the main ideas about time-crystal behavior, which appears
as a period doubling in the classical limit of our model.
Time-crystal behavior is a synonym for time-translation sym-
metry breaking: a driven system in the thermodynamic limit
shows a response with a frequency multiple with the driv-
ing one. Thereby the discrete time-translation symmetry of
the driving is broken. In order to spot time-translation sym-
metry breaking—or its absence—it is very important to
define precise criteria which are able to distinguish this com-
plex collective phenomenon from analogous single particle

effects. Summarizing the discussion of Refs. [8–10]—where
the relevant criteria and conditions to have a Floquet time
crystal were introduced—we can state that there must exist
an observable Ô and a class of initial states |ψ〉 such that,
considering stroboscopic times t = nτ , the expectation value
in the thermodynamic limit (N → ∞)

f (t ) = lim
N→∞

〈ψ (t )| Ô |ψ (t )〉 (5)

satisfies all of the three conditions:
(I) Time-translation symmetry breaking: f (t + τ ) �= f (t )

while Ĥ (t + τ ) = Ĥ (t ).
(II) Rigidity: f (t ) shows a fixed oscillation period τB (for

instance τB = 2τ , the so-called “period doubling”) without
fine-tuned Hamiltonian parameters.

(III) Persistence: the nontrivial oscillation with fixed pe-
riod τB must persist for infinitely long time, when the
thermodynamic limit N → ∞ in Eq. (5) has been performed.

We will focus here on period doubling τB = 2τ . In sum-
mary, we seek for a quantity—called “order parameter”
in analogy with standard symmetry breaking—such that it
oscillates with frequency 2τ for an infinite time in the ther-
modynamic limit (when the size of the system N tends to
infinity). In our model (models 1 and 2 are essentially equiva-
lent) there are some limits where such a quantity can be found.

For instance, in the limit K → 0, our model re-
duces to the kicked Lipkin-Meshkov-Glick model of [17]
and the order parameter is provided by sN (t ) ≡ liml→∞
1

Nl

∑
j 〈ψ (t )|ŝz

j |ψ (t )〉. Here the role of the system size is
played by l which measures the number of interacting σ̂ j, m′

spins which compose the ŝz
j in the model-2 representation.

Another interesting limit is the l → ∞ limit (with K �= 0).
In this limit the model is classical (see Appendix A) and can
show persisting period doubling in the thermodynamic limit
(in this case N → ∞) [34]. In this case the order parameter is
s(t ) ≡ limN→∞ liml→∞ 1

Nl

∑
j 〈ψ (t )|ŝz

j |ψ (t )〉.
Taking l finite, it is quite natural that, if there were pe-

riod doubling, it would appear in the finite-l version of s(t ),
namely

sl (t ) ≡ lim
N→∞

1

Nl

∑
j

〈ψ (t )|ŝz
j |ψ (t )〉.

In order to see if this quantity shows persisting oscillations
with period 2τ (period doubling), we focus on its finite-N ver-
sion and perform a finite-size scaling in N . We focus therefore
on

O(t ) ≡ (−1)t/τ 〈ψ (t )|Ŝz|ψ (t )〉 /N, (6)

where Ŝz = ∑N
j=1 ŝz

j . We put the multiplying factor (−1)t/τ ,
because a period doubling is expected to imply a change of
sign 〈ψ (t )|Ŝz|ψ (t )〉 at every period [17,34]. Thanks to the
multiplying factor, the period doubling would appear as a
never-vanishing value of O(t ), which is easier to study.

In order to probe if there is persistent period doubling in
the thermodynamic limit, one should check the presence of
the following finite-size scaling: If O(t ) first vanishes after a
time t∗ scaling with N towards infinity, then one has period
doubling [34]. So, in the thermodynamic limit O(t ) never
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FIG. 1. (a)–(c) Evolution of O(t ) with the Hamiltonian Eq. (2) for different values of l and N . We take a set of parameters giving rise to
period doubling in the classical Eq. (1) for N → ∞. For finite l we do not see any period-doubling behavior in the limit of large N . (d) Time
of the first zero-crossing t∗/τ versus N . Numerical parameters: h = 0.1, τ = 0.6, J = 1.0, K = 0.3, φ = π .

vanishes and there is persistent period doubling. In the rest of
the paper we call for conciseness O(t ) the “period-doubling
order parameter,” even if in the light of the discussion above
this is a slight abuse of terminology.

For l finite we will see that t∗ never scales with the system
size, implying the absence of persistent period doubling and
time-crystal behavior.

IV. ANALYSIS OF MODEL 1

The Hamiltonian is given in Eq. (2). In order to probe
the existence of a possible persistent period doubling, we
initialize the system in the state

|ψ (0)〉 = |l, . . . , l〉,
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FIG. 2. Average level spacing ratio r versus K for different values of the parameters. J = 1.
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where all the spins are in an eigenstate of the corresponding
ŝz

j with eigenvalue l . This is the most favorable condition for
the appearance of a persisting period doubling.

We perform the explicit derivation of the mapping in Ap-
pendix B and we find the effective bosonic Hamiltonian to
be

Ĥ (t ) = −J

l

l∑
m=−l

m2 n̂m − h
l−1∑

m=−l

√
l (l + 1) − m(m + 1)(b̂†

m b̂m+1 + H. c.)

+ δτ (t )

⎡⎣φ

2

l−1∑
m=−l

√
l (l + 1) − m(m + 1)(b̂†

m b̂m+1 + H. c.) − K

8Nl

(
l−1∑

m=−l

√
l (l + 1) − m(m + 1)(b̂†

m b̂m+1 + H. c.)

)2
⎤⎦,

(7)

with the constraint
∑l

m=−l n̂m = N and

Ŝz =
l∑

m=−l

m n̂m. (8)

In the bosonic representation the initial state has the form
|ψ (0)〉 = 1√

N!
(b̂†

m)N |0〉. It is very important to remark that
here the bosons jump on a linear chain of length 2l + 1,
while in the clock model they used to jump over a ring. This
difference in topology makes impossible the realization of
the period n-tupling of [18] using spin variables. We choose
parameters where the classical model Eq. (1) shows period
doubling and we study its fate for finite l in Figs. 1(a)–1(c).
Here we plot some examples of stroboscopic evolution of
O(t ) versus t/τ with t = nτ .

We see that, fixing l , O(t ) oscillates. Especially interesting
is the stroboscopic time t∗ when O(t ) crosses 0 for the first
time. If this time increases with the system size N , the period-
doubling oscillations persist in the thermodynamic limit and
there is a period doubling. If this time saturates with N , the
period-doubling oscillations are a transient phenomenon and
there is no period doubling. We plot t∗ versus N for the values
of l we have considered in Fig. 1(d). For l = 1 and l = 3/2,
t∗ saturates quite clearly with N . For l = 2 there is a sudden
drop and also here there is no period doubling. We see from
Fig. 1(d) that t∗ increases with l . This is entirely consistent
with the fact that for l → ∞ the model tends to the classical
limit of [34] where there is a period doubling and O(t ) persists
indefinitely for N → ∞.

A. Quantum chaos

We can study if this dynamics is regular or quantum
chaotic. “Regular” means similar to an integrable model
where the (classical or quantum) dynamics is constrained
by as many local and commuting integrals of motion as de-
grees of freedom [43–45]. “Quantum chaotic” means that the

Hamiltonian is equivalent to random matrix and this leads
in general to thermalization of local observables [46–48]. In
order to probe the regular or quantum-chaotic behavior, we
use the average level spacing ratio, defined as [49]

r ≡ 1

dim H − 2

dim H−2∑
α=1

min(μα+1 − μα,μα+2 − μα+1)

max(μα+1 − μα,μα+2 − μα+1)
,

(9)
where μα are the Floquet levels [50] and H is the relevant
Hilbert subspace (more details below). The μα are obtained
from the eigenstates e−iματ of the time-evolution operator
over one period Û (τ, 0) of the Hamiltonian Eq. (2) and they
are taken in increasing order [51]. If r 
 0.5269 the level-
spacing distribution is of the COE type and the dynamics is
ergodic (the Floquet states are like eigenstates of a random
matrix), while if r 
 0.386 the level-spacing distribution is
of the Poisson type and the model is integrable (see for in-
stance [52]). We can evaluate r for the Hamiltonian in Eq. (7)
provided we restrict to H, the subspace even under the mirror
symmetry m → −m, which is an irreducible eigenspace of
Û (τ, 0) [53]. We can see that r reaches the quantum-chaotic
COE value for l = 1 and K � 2, while for l = 2 the system
shows always quantum chaos (see Fig. 2). This closely mirrors
the classical-chaotic behavior of the corresponding N → ∞
Gross-Pitaevskii equations observed through the Lyapunov
exponent (see Sec. IV C).

In the next subsection we consider the limit N → ∞
and show that the model is described there by a system of
Gross-Pitaevskii equations. In this case we will see persisting
oscillations for O(t ), for any l , and we will argue that they are
Rabi oscillations between the states with angular momenta Nl
and −Nl .

B. Gross-Pitaevskii equations in the N → ∞ limit

We start from the Heisenberg equations for the operators
b̂m, H (t ),

i
d

dt
b̂m, H (t ) = −J

l
m2b̂m, H (t ) − hÂH (t ) + δτ (t )

[
φ

2
ÂH (t ) − K

8Nl
{�̂H (t ), ÂH (t )}

]
, with

Â ≡
√

l (l + 1) − m(m + 1) b̂m+1 +
√

l (l + 1) − m(m − 1) b̂m−1 and

�̂ ≡
l−1∑

m=−l

√
l (l + 1) − m(m + 1)(b̂†

m b̂m+1 + H. c.). (10)
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We can write b̂m = √
N β̂m. We see that

[β̂m, β̂†
m] = 1

N
. (11)

So, in the limit N → ∞, these are classical variables and have vanishing correlations. Using this fact, evaluating the expectation
over the initial state of Eq. (10) [we define β(t ) ≡ 〈ψ (0)|β̂m, H (t )|ψ (0)〉], and performing the limit N → ∞, we get the Gross-
Pitaevskii equations

i
d

dt
βm(t ) = −J

l
m2βm(t ) − h[

√
l (l + 1) − m(m + 1) βm+1(t ) +

√
l (l + 1) − m(m − 1) βm−1(t )]

+ δτ (t )

{
φ

2
− K

2l

[
l−1∑

m′=−l

√
l (l + 1) − m′(m′ + 1)Re [β∗

m′ (t )βm′+1(t )]

]}

× [
√

l (l + 1) − m(m + 1) βm+1(t ) +
√

l (l + 1) − m(m − 1) βm−1(t )], (12)

with βm(t ) ≡ 0 for m < −l or m > l . These equations are
pretty simple to simulate numerically even for quite large
values of l [54] and we do it using fourth order Runge-
Kutta [55]. The initialization is βm(0) = δm l . The expectation
of the operator Ŝz/N [see Eq. (8)] is easily written as

sz(t ) =
l∑

m=−l

m|βm(t )|2. (13)

We show some examples of stroboscopic Gross-Pitaevskii
evolution compared with the finite N cases in Figs. 3(a)–3(c).
For N → ∞ we see very clear Rabi oscillations of O(t )
with no decay. These oscillations come from the resonance
between the state with z angular momentum l (βm = δl, m) and
the one with z angular momentum −l (βm = δ−l, m).

At finite N these states are |ψ↑〉 = 1√
N!

(b̂†
l )N |0〉 and |ψ↓〉 =

1√
N!

(b̂†
−l )

N |0〉 and correspond to z angular momentum Nl and
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FIG. 3. (a)–(c) Stroboscopic evolution of O(t ) versus t/τ for different values of l and N compared with the Gross-Pitaevskii N → ∞
limit (same parameters as in Fig. 1). Notice the Rabi oscillations in this limit which are washed out by quantum effects for N finite. (d) Rabi
frequency of the O(t ) oscillations versus 2l + 1. Numerical parameters: h = 0.1, τ = 0.6, J = 1.0, K = 0.3, φ = π .
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−Nl , respectively. When K, h � 1, we expect that these states
are connected in perturbation theory at order ∼2l + 1, so the
frequency ωRabi of the Rabi oscillations of O(t ) should be of
order [17]

ωRabi ∼
(

max(h, K )

J

)2l+1

= e−(2l+1) log( J
max(h,K ) ). (14)

From our numerics we find exactly this exponential scaling
[see Fig. 3(d)]. We evaluate ωRabi frequency by performing the
Fourier transform of the signal of sz(t ), finding the frequency
ωpeak corresponding to the maximum of the power spectrum,
and then evaluating ωRabi = π − ωpeak. The vanishing of ωRabi

for l → ∞ implies the existence of persisting period-doubling
oscillations in this limit, which is equivalent to the classical
case (see Sec. II). In agreement with that, for the parameters
of Fig. 3(d), the classical case Eq. (1) shows period doubling,
as one knows from Ref. [34]. We further remark that the Rabi
oscillations for uncoupled spins (K = 0) in this same model
have been already observed in Ref. [17].

We consider also the amplitude of the Rabi oscillations
�O. We define them as square deviation of sz(t ) [Eq. (13)]
over time. We call it �O because it is also the mean square
deviation of O(t ), as it is easy to show. In order to make a
comparison between different values of l possible, we con-
sider �O/l . We plot this quantity versus l in Fig. 4(a). For
every l we see a crossing point between the curve for l and the
one for l + 0.5. We see that the crossing moves towards the
right for increasing l and for l = 2 the crossing is at K∗ ∼ 0.7.
For K < K∗ the value of �O/l increases with l , for K > K∗
it decreases. This suggests that there is a phase transition
in the limit l → ∞, as actually occurs [34]. Moreover, also
the curves for ωRabi versus K show a crossing [Fig. 4(b)].
This crossing occurs for K = 1 and there is no contradiction
with the result for the amplitude because in that case K∗
increases with increasing l and K∗ < 1. The crossing in the
Rabi frequency is a strong evidence of a transition in the limit
l → ∞ between a period doubling and a trivial phase, and
corresponds to what is observed in the dynamics of Eq. (1).

C. Largest Lyapunov exponent

We evaluate here the largest Lyapunov exponent, which
is a probe of exponential divergence of nearby trajectories
and therefore a probe of chaotic dynamics [56]. The largest
Lyapunov exponent is approximated as λ(T ), a stroboscopic
average over T periods tending to λ for T → ∞. We com-
pute λ(T ) evaluating the rate of exponential increase in each
period and averaging over periods. In practice, we consider
two points in the phase space with distance d0, we evolve over
a period and consider the value of the distance d1. Then we
move the phase-space point of one of the trajectories along
the segment joining the two so that we get again a distance
d0 � 1, and evolve again for one period getting a distance d2.
Repeating T times, we get a sequence {dn} of distances [57]
and we evaluate

λ(T ) = 1

T

T∑
n=1

ln

(
dn

d0

)
.
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FIG. 4. (a) Amplitude of the Rabi oscillations versus K . (b) ωRabi

versus K for different values of l . Numerical parameters: h =
0.1, τ = 0.6, J = 1.0, φ = π .

Taking T = 2 × 105 we already see convergence of λ(T ) and
show the result in Fig. 5. What is remarkable is that this expo-
nent is always positive, although it can get very small values
(<10−2) for K < 1, marking thereby the existence of chaos.
This classical chaos is fully mirrored by the quantum chaos
occurring for finite N and appearing for any value of K if l is
large enough (see Fig. 2). Only for l = 1 and K < 2 is there a
lack of correspondence between the quantum behavior (not
quantum chaotic) and the classical nonvanishing Lyapunov
exponent. Nevertheless, right at K = 2 the Lyapunov expo-
nent shows a discontinuity mirroring thereby the crossover in
the quantum finite-N behavior.

For small K , the system is chaotic but not ergodic. Indeed,
it can support a regular behavior as the one in Fig. 3. And we
have checked that this behavior is not due to an isolated reg-
ular trajectory: we see the same oscillations even if we take a
slightly different initial state [βm(0) = εδm 0 + √

1 − ε2δm 1],
see Fig. 6. Nevertheless, this is just a finite-time analysis and a
chaotic behavior might manifest at a time exponentially large
in 1/K [58].

The largest Lyapunov exponent plotted in Fig. 5 allows
us to estimate the timescale over which the Gross-Pitaevskii
description is valid for finite N . We see from Eq. (11) that
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FIG. 5. Largest Lyapunov exponent versus K for different val-
ues of l . Numerical parameters: h = 0.1, τ = 0.6, J = 1.0, K =
0.3, φ = π, T = 2 × 105. Initial distance between the two nearby
initial conditions d0 = 10−10.

for a finite-N system the width of the quantum fluctuations of
βm(t ) is at best ∼1/

√
N . Due to chaotic dynamics, this initial

uncertainty increases exponentially in time with rate λ. The
time the uncertainty reaches order 1 is

t ∼ 1

2λ
log N. (15)

After this time, the dynamics is quantum.

V. ANALYSIS OF MODEL 2

We get this model by applying the substitution Eq. (3) into
Eq. (1) and then multiplying the resulting Hamiltonian by 2l .
The resulting Hamiltonian is given in Eq. (23). Similarly to
what we have done above, we define

Ŝz ≡ 1

2

N∑
j=1

2l∑
m=1

σ̂ z
i, m

-1

-0.5
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 1

 1.5

 9000  9200  9400  9600  9800  10000

O
(t

)

t /τ

ε = 0

ε = 10-2

FIG. 6. Same as Fig. 3 (upper left panel) with two slightly dif-
ferent initializations. Numerical parameters: h = 0.1, τ = 0.6, J =
1.0, K = 0.3, φ = π .

and, in order to understand if there is period doubling, we
study the evolution of the period-doubling order parameter
Eq. (6). Our initial state is given by

|ψ (0)〉 = |↑, ↑, . . . , ↑〉. (16)

We notice that for K = 0 this model reduces to the kicked
Lipkin model of Ref. [17]. This model showed period dou-
bling for h and φ − π small enough. In particular, O(t )
showed Rabi oscillations with a frequency ∼(h/J )2l . In the
limit l → ∞ (which in that context was the thermodynamic
limit) the frequency of these oscillations tended to 0 and the
period-doubling order parameter O(t )/l persisted to keep a
finite value up to t → ∞. Now we couple many of these
models with each other by means of the coupling K . As we
have seen in the discussion for model 1, which is equivalent
to this one, this coupling is not strong enough to stabilize the
order parameter to a value different from 0 for any finite l .
At most, if K is small enough, the order parameter still shows
Rabi oscillations with a renormalized frequency.

We study here model 2 by means of the DTWA, an ap-
proximation which has proved to work fine in a long-range
context [36–38]. We see that the DTWA is unable to reproduce
the Rabi oscillations, but correctly gets the fact that there is
no period doubling for finite l in the limit of large N . We get
period doubling, in agreement with the exact dynamics, only
in the classical l → ∞ limit. We briefly outline the DTWA
approach in the next subsection.

A. Discrete truncated Wigner approximation in a nutshell

This is an approximation method especially convenient
for long-range interacting spin models. All the details can
be found in [36–38]. Here we just outline the application to
our case. We start by expanding the expectation of a generic
operator B̂ in a basis of operators in the form

〈B〉t =
∑

β

wβ Bβ(t ), (17)

where wβ ≡ 1
2 Tr[Âβρ̂] is the Wigner function,

Bw
β (t ) = Tr[ÂβB̂(t )] are the Weyl symbols, and B̂(t ) ≡

Û †(t, 0)ÔÛ (t, 0) with Û (t, 0) the time-evolution operator
form 0 to t of the Hamiltonian Eq. (23). We can take a basis
of operators factorized over the sites

Âβ =
⊗
j, m

Aβ j, m , (18)

where we can take over each site [59]

Âβ = 1 + sβ · σ̂
2

, (19)

where sβ can take the values (1 1 1), (−1 1 −1),
(1 −1 −1), and (−1 −1 1) and σ̂ =
(σ̂ x σ̂ y σ̂ z ). The approximation amounts to take the
evolution of Âβ as factorized:

Û (t, 0)ÂβÛ †(t, 0) =
⊗
j, m

Aβ j, m (t ), (20)
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with

Âβ j, m (t ) =
1 + ∑

μ=x, y, z sμ
j, m, β j, m

(t )σ̂ μ
j, m

2
. (21)

The sα
j, m, β j, m

(t ) have as initial values the ones given in Eq. (19), for the corresponding β j, m, and obey the evolution equations

ṡμ
j, m, β j, m

(t ) = −{
sμ

j, m, β j, m
(t ),H(2)

} = 2
∑

ν, ρ=x, y, z

εμνρsρ
j, m, β j, m

(t )
∂H(2)

∂sν
j, m, β j, m

. (22)

where εμνρ is the usual Ricci tensor, the elementary Poisson brackets are {sμ
j, m, β j, m

, sν
i, m′, βi, m′ } = εμ ν ρδi jδm m′sρ

j, m, β j, m
, and we

have defined

H(2) = −
N∑

i=1

[
J

4l

2l∑
m,m′=1

sz
i, m,βi, m

sz
i, m,β j, m′ + h

2l∑
m=1

sx
i, m,βi, m

]
+ δτ (t )

[
φ

2

2l∑
m=1

sx
i, m,βi, m

− K

16N l

∑
i, j �=i

2l∑
m,m′=1

sx
i, m,βi, m

sx
j, m,β j, m

]
. (23)

In our case we can implement a Monte Carlo sampling pro-
cedure to approximate the sum of 4N terms in Eq. (17) in
a numerically feasible way. Being the initial state [Eq. (16)]
given by the density matrix:

ρ̂(0) =
⊗

j

1

2
(A(−1 −1 1) + A(1 1 1)), (24)

in Eq. (17) we have that wβ = 1/2N for all the products of
operators in Eq. (19) containing only β j, m = (1 − 1 − 1) and
β j, m = (1 1 1). So, one can approximate the expectation of
any operator with a Monte Carlo sampling of the uniform
distribution wβ, with the desired accuracy. More specifically,
we focus on the expectation

〈ψ (t )|Ŝz|ψ (t )〉 =
∑

β

wβ

N∑
j=1

2l∑
m=1

sz
i, m, βi, m

(25)

and we evaluate it as the average over nr random initializations
where each s j, β j is initialized with probability 1/2 in the
condition (1 1 1) and probability 1/2 in the condition
(−1 −1 1). Remarkably, the error bars do not scale with
the system size, so this method is feasible also in the case
of large systems [38]. The error bars are evaluated as 1/

√
nr

times the mean square deviation over randomness. In our
analysis we have found that already for nr = 800 we have
a satisfying convergence (see Appendix C). We are going to
apply the DTWA method in the next subsection to study the
period-doubling dynamics of model 2.

B. Results

Consistently with the results found in the case of model
1 (Sec. IV) we find here no period doubling. Indeed the
period-doubling order parameter O(t ) decays to 0 in a finite
time, independent of the system size N [see an example for
l = 3/2 in Fig. 7(a)], for a set of parameters where the clas-
sical model Eq. (1) shows period doubling. As in model 1,
the limit l → ∞ corresponds to the classical case Eq. (1).
We show this fact in Fig. 7(b) where we fix N and show the
stroboscopic evolution of O(t ) versus t/τ for different values
of l . We qualitatively see that O(t ) decay over a longer time
as l increases. We plot for comparison also the stroboscopic
evolution of (−1)t/τ 1

N

∑
j mz

j (t ) in the classical case Eq. (1).

This quantity persists for an infinite time and O(t ) tends to
this curve when l → ∞. We notice that already for l = 3 the
quantum dynamics is very near to the classical one, at least
until t/τ = 4 × 103.

Let us move to study the decay of the period-doubling
order parameter in a more quantitative way. First of all, we
plot O(t )/l versus t/τ with a logarithmic scale along the
vertical axis [see Fig. 8(a)] and we see that O(t )/l decays
exponentially in time. We can find the rate of this decay by

FIG. 7. Dynamics of order parameter for (a) 2l = 3 and (b) dif-
ferent 2l and N = 50. Numerical parameters: h = 0.1, φ = π , K =
0.3, τ = 0.6, and nr = 800.
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FIG. 8. (a) Dynamics of the order parameter as a function of t/τ .
(b) δ exponent as a function of domain length 2l . Numerical param-
eters: N = 50, h = 0.2, φ = π , K = 0.3, τ = 0.6, and nr = 800.

fitting the curve of log O(t ) versus t with a straight line of the
form log[O(t )/l] = A − δ t . We plot δ versus l in Fig. 8(b).
We see that δ decays with l as a power law, δ ∼ 1/lγ . Fit-
ting the bilogarithmic plot with a straight line we find the
decay exponent to be γ 
 2.51. So, extrapolating, we find that
δ → 0 when l → ∞ and so in this limit the classical model
and the period doubling are recovered. In Appendix C we
discuss another method to estimate the decay time of O(t )
which gives similar results.

We remark that model 2 is a different representation of
model 1 for the chosen initialization, as we have discussed
in Sec. II. DTWA therefore gives results which are not quan-
titatively correct (it does not catch any Rabi oscillation) and
become so only in the limit l → ∞. Nevertheless, when l is
finite, this approximation correctly gets the absence of persis-
tent period doubling in the limit of large N .

VI. CONCLUSION

In conclusion we add quantum fluctuations to a classi-
cal and Hamiltonian model of interacting classical angular
momenta showing synchronized period doubling in the
thermodynamic limit. We consider the case of all-to-all in-
teractions where the long-range correlations are stronger and
the synchronized period doubling is most robust in the clas-
sical case. We study the robustness of synchronized period

doubling adding quantum fluctuations in two different ways,
realizing two different quantum models. In both quantum
models we find that the synchronized period doubling is
fragile to quantum fluctuations and disappears. We perform
our analysis by means of the so-called period-doubling order
parameter. When the system shows period doubling in the
thermodynamic limit, the first zero of this order parameter
occurs at at a time t∗ scaling to infinity for increasing system
size. In both quantum models t∗ does not increase with the
system size, and so there is no period doubling, whenever the
quantum fluctuations are significant.

We construct quantum model 1 by replacing the classical
angular momenta with quantum spins of size l . For any fi-
nite l there are quantum fluctuations and we show that the
model becomes classical in the limit l → ∞. We restrict
to the subspace even under all the permutation symmetries
of the Hamiltonian, performing a mapping over a bosonic
model. Due to the moderate Hilbert subspace dimension, we
perform exact diagonalization for quite large system sizes
and do the finite-size scaling of t∗. For all the accessible
values of l , we find no scaling, and so there is no period
doubling.

This result is confirmed in the limit of infinite system
size (N → ∞), where the bosonic model is described by a
system of Gross-Pitaevskii equations. In this limit, the period-
doubling order parameter performs Rabi oscillations related
to the existence of resonant states in the spin model. For
increasing l , these states are connected at higher orders in
perturbation theory and consistently the frequency of the Rabi
oscillations exponentially decreases in l . In particular, for
l → ∞ the Rabi frequency goes to 0, so t∗ tends to infin-
ity, and the classical period doubling is restored, consistently
with the model becoming classical in this limit. Studying the
dependence of the amplitude and the frequency of the Rabi
oscillations on the parameter K , we find that the curves for
different l cross at a point around K ∼ 1. This point corre-
sponds to the transition from synchronized to unsynchronized
behavior in the classical l → ∞ limit.

For any finite N and the accessible values of l , we observe
quantum chaos in this model, as shown by the average level
spacing ratio being Wigner-Dyson. This is true for K � 2 for
l = 1 and for any value of K for l = 2. Analogously, in the
N → ∞ limit, the Gross-Pitaevskii equations show a positive
largest Lyapunov exponent λ (with a discontinuity at K = 2
for l = 1) and then the dynamics are chaotic. The Lyapunov
exponent spans many orders of magnitude as K increases. In
particular, for the values K < 1 corresponding to a synchro-
nized period doubling in the limit l → ∞, we see λ � 10−2

for all the considered values of l . In this case we have a
chaotic but not ergodic dynamics, as we verify by checking
the existence of the Rabi oscillations of the period-doubling
order parameter also for a different initial condition. For any
finite size N , we show that the dynamics is correctly described
by the Gross-Pitaevskii equations up to a time scaling with
log N .

Then we move to introducing model 2. We substitute the
classical angular momenta with sums of 2l Pauli matrices.
We argue that also this model reduces to the classical one in
the limit l → ∞. We find it convenient to study this model
by an approximation method called DTWA, which is known
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to give good results for long-range interacting models, and
describe it in some detail. We focus on a set of parameters
where the classical model shows period doubling and we use
DTWA to study the evolution of the period-doubling order
parameter. We find that it decays to zero as an exponential
and the timescale of this decay does not scale with the system
size, marking the absence of period doubling. Nevertheless,
the timescale of the exponential decay scales as a power law
with l . So, in the limit of l → ∞ there is period doubling,
consistently with the model being classical in this limit. This
model is equivalent to model 1 for the chosen initial condi-
tions, so we see that DTWA provides quantitatively correct
results only for l → ∞. For l finite it is not correct (it does not
provide Rabi oscillations) but correctly predicts the absence of
persistent period doubling in the limit of large N .

Therefore, we find that the period doubling in this model
is fragile to the smallest quantum fluctuations. Prospects of
future research include the exploration of Hamiltonian syn-
chronization in different models, with stronger long-range
correlations, and the study of its stability under quantum and
thermal fluctuations.
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APPENDIX A: LIMIT l → ∞ AS A CLASSICAL LIMIT

Due to the equivalence of the two models for the chosen
initial conditions, we discuss only model 1. Conclusions apply
also to the second one, not in general but for the chosen
initial conditions. The analysis strictly resembles the one
leading to the Gross-Pitaevskii for the bosonic model in the
N → ∞, as we have discussed in Sec. IV B. We rescale the
spin variables as Ŝα

j = 1
l ŝα

j . Their commutator is [Ŝα
j , Ŝ

β
i ] =

i
l ε

αβγ Ŝγ
j δi j , so these variables are classical in the limit

l → ∞. One can write the Heisenberg equations for the Ŝα
j

variables

d

dt
Ŝα

j (t ) = [
Ŝα

j (t ), Ĥ (1)(t )
]
, (A1)

then evaluate the expectation over the initial state and, per-
forming the limit l → ∞, neglect any quantum correlation
due to the vanishing commutator. Performing this calcula-
tion one gets l → ∞ evolution equations for the expectations
of Ŝα

j which exactly coincide with the classical evolution
equations for mα

j (t ) obtained with Eq. (1) using the classical
Poisson brackets.

There is another method, nearer to the analysis of [42],
which we are going to sketch. Take for instance the operator ŝx

j
and apply it to the state |l, m〉 j , the eigenstate with eigenvalue
l (l + 1) of ŝ2

j and eigenvalue m of ŝz
j . One gets [40]

ŝx
j |l, m〉 j = 1

2
(
√

l (l + 1) − m(m + 1)|l, m + 1〉 j

+
√

l (l + 1) − m(m − 1)|l, m − 1〉 j ). (A2)

Defining q j = m/l and using the translation operator of shift
a along q j , exp(a d

dqj
), one finds for l � 1

Ŝx
j = 1

l
ŝx

j |l, m〉 j 

√

1 − q2
j cos

(
1

l

d

dq j

)
|l, m〉 j . (A3)

Defining p̂ j = − i
l

d
dq j

, we see that we have written this object
in terms of two canonical variables, q̂ j and p̂ j whose commu-
tator is [q̂ j, p̂ j] = i/l . In the limit l → ∞, therefore, they are
classical canonical variables obeying the canonical Poisson
bracket {qj, p j} = −1. The classical mα

j can then be obtained

as mx
j = b

√
1 − q2

j cos p j , with b > 0 arbitrary giving the size
of the classical spin. In the same way one gets [42] mz

j = bq2
j

and my
j = b

√
1 − q2

j sin p j . Appropriately fixing b = 1/2 one
gets the classical Hamiltonian Eq. (1). The canonical Poisson
brackets of qj and p j give rise to the angular momentum Pois-
son brackets for the mα

j which are stated immediately below
Eq. (1). In this way one gets back the classical dynamics for
l → ∞.

APPENDIX B: MAPPING ONTO THE BOSONIC MODEL

We can now discuss the bosonic mapping of the notes. This
mapping was introduced in [18,35] for similar infinite-range
models. Let us consider a system of N sites, and let us take
the local spins with value l = 1 for clarity (the generic case
is exactly identical). With l = 1 we can have m = −1, 0, 1.
Because the system is fully symmetric under permutations,
we can restrict to the states even under all the possible N!
permutations. If we call P̂ the sum of all the permutation
operators, we can take as basis of our Hilbert space the
states

|n−1 n0 n1〉

≡ 1√
N! (n−1!n0!n1!)

P̂|(−1 · · · − 1)︸ ︷︷ ︸
n−1

(0 · · · 0)︸ ︷︷ ︸
n0

(1 · · · 1)︸ ︷︷ ︸
n1

〉.

(B1)

There are N sites, so n−1 + n0 + n1 = N . The factor in front
is for normalization, and the

√
N! is there because there are

N! possible permutations. The factors
√

nm! at the denomina-
tor are there for the following reason. Consider for instance
m = 1. Fixing everything else, there are n1! ways of rearrange
the sites with m = 1 and this increases the norm by a factor
n1!. One divides by

√
n1! and the norm is again 1.

Consider for instance the application of the operator Ŝ+ =∑
j ŝ+

j , where ŝ+
j = ŝx

j + iŝy
j . One finds

Ŝ+|n−1 n0 n1〉

= 1√
N! (n−1!n0!n1!)

P̂

×
∑

j

ŝ+
j |(−1 · · · − 1)︸ ︷︷ ︸

n−1

(0 · · · 0)︸ ︷︷ ︸
n0

(1 · · · 1)︸ ︷︷ ︸
n1

〉. (B2)

If for instance ŝ+
j acts over a site with m = −1, one gets a

factor
√

1(1 + 1) = √
2 [40]. Moreover, there are n−1 of these
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sites and they are equivalent due to the permutation operator.
This gives rise to a factor n−1 in front. Moreover, in this way

one decreases n−1 by 1 and increases n0 by 1. One has a
similar situation for m = 0 and m = 1, so

Ŝ+|n−1 n0 n1〉 = 1√
N! (n−1!n0!n1!)

n−1

√
2 P̂|(−1 · · · − 1)︸ ︷︷ ︸

n−1−1

(0 · · · 0)︸ ︷︷ ︸
n0+1

(1 · · · 1)︸ ︷︷ ︸
n1

〉

+ 1√
N! (n−1!n0!n1!)

n0

√
2 P̂|(−1 · · · − 1)︸ ︷︷ ︸

n−1

(0 · · · 0)︸ ︷︷ ︸
n0−1

(1 · · · 1)︸ ︷︷ ︸
n1+1

〉. (B3)

Doing some algebra, one can write

Ŝ+|n−1 n0 n1〉 =
√

n−1(n0 + 1)
√

2√
N! ((n−1 − 1)!(n0 + 1)!n1!)

P̂|(−1 · · · − 1)︸ ︷︷ ︸
n−1−1

(0 · · · 0)︸ ︷︷ ︸
n0+1

(1 · · · 1)︸ ︷︷ ︸
n1

〉

+
√

n0(n1 + 1)
√

2√
N! (n−1!(n0 − 1)!(n1 + 1)!)

P̂|(−1 · · · − 1)︸ ︷︷ ︸
n−1

(0 · · · 0)︸ ︷︷ ︸
n0−1

(1 · · · 1)︸ ︷︷ ︸
n1+1

〉. (B4)

Using the definition (B1) one can write

Ŝ+|n−1 n0 n1〉
=

√
2
√

n−1(n0 + 1)|n−1 − 1, n0 + 1, n1〉
+

√
2
√

n0(n1 + 1)|n−1, n0 − 1, n1 + 1〉. (B5)

For the case of generic l , with a very similar analysis, one can
write

Ŝ+|n−l , . . . , nl〉

=
l−1∑

m=−l

√
l (l + 1) − m(m + 1)

√
nm(nm+1 + 1)

× |n−l , . . . , nm − 1, nm+1 + 1, . . . , nl〉. (B6)

At this point one can interpret the state |n−l , . . . , nl〉 as the
tensor product of bosonic modes with occupation number nm.
Introducing the bosonic creation and destruction operators for
these bosonic modes b̂†

m, b̂m with [b̂m, b̂†
m′ ] = δm m′ one can

immediately write

Ŝ+|n−l , . . . , nl〉

=
l−1∑

m=−l

√
l (l + 1) − m(m + 1) b̂†

m+1b̂m

× |n−l, . . . , nm, nm, . . . , nl〉. (B7)

The nl are promoted to operators n̂m = b̂†
mb̂m, and obey the

constraint
∑l

m=−l n̂m = N , as we have seen before. In conclu-
sion, inside the fully symmetric Hilbert subspace generated by
the states [Eq. (B1) for generic l]

|n−l · · · nl〉 ≡ 1√
N!

∏
m nm!

P̂|(−l · · · − l )︸ ︷︷ ︸
n−l

· · · (l · · · l )︸ ︷︷ ︸
nl

〉,

(B8)

one has the mapping

Ŝ+ =
l−1∑

m=−l

√
l (l + 1) − m(m + 1)b̂†

m+1b̂m. (B9)
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0
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FIG. 9. (a) Decay time of the system as a function of Lbin. (b) De-
cay time of the system as a function of nr . Numerical parameters:
N = 50, h = 0.2, φ = π , K = 0.3, τ = 0.6, and nr = 800.
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Using similar arguments one can prove that

Ŝ− =
l−1∑

m=−l

√
l (l + 1) − m(m − 1)b̂†

mb̂m+1, Ŝz =
l∑

m=−l

n̂m,

(B10)

where Ŝz ≡ ∑
j ŝz

j , Ŝ− ≡ ∑
j ŝ−

j .

APPENDIX C: DIFFERENT ESTIMATE OF
THE DECAY TIME IN DTWA

The exponential decay found in Fig. 8(a) does not last
forever and at some point the period-doubling order parameter
starts oscillating around 0, as we have seen in Fig. 7(a). Let us
call t∗ the first value of the stroboscopic time where the order

parameter vanishes. We define

td = τ

∑nmax
n=1 nO(nτ )∑t∗/τ
n=1 O(nτ )

. (C1)

As we can see in Fig. 9(a), td increases with l as a power
law td ∼ lγ . From a linear fit of the bilogarithmic plot we find
γ 
 2.20, in perfect agreement with the finding of Sec. V B.
The error bars for td come from the error bars for t∗. We
evaluate the latter from the error bar in O(nτ ) (evaluated as
described in Sec. V A) which gives rise to an error in the
time of first vanishing t∗. In Fig. 9(b) we plot td versus nr .
In the cases where we can numerically afford nr > 800, we
see that for nr = 800 we have already attained convergence.
For larger values of l we cannot go beyond that value, but the
clear scaling with l suggests that a satisfying convergence has
been already attained for this value of nr .
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