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Transformation acoustics with bulk media composed of polarized sources
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Active acoustic metamaterials consisting of paired sensor-driver unit cells offer a promising path towards
the practical realization of exciting transformation acoustics devices. The design of these cells is founded in a
microscopic acoustic model that describes materials as collections of subwavelength polarized sources which
respond to the local conditions of pressure and particle velocity. The current ability to express the polarizabilities
that characterize these sources in terms of the effective macroscopic acoustic properties is limited to only
a few simple cases and is not applicable to inhomogeneous bulk media of arbitrary geometries. Here, we
address this challenge and derive general closed-form expressions relating the bulk modulus to the monopole
polarizability and the mass density tensor to the dipole polarizability. Furthermore, we use these expressions
to adapt transformation acoustics to the microscopic model. We demonstrate the accuracy of our approach by
comparing the fields scattered by several devices, including cylindrical cloaks with steep property gradients and
anisotropy, with the fields scattered by the devices’ realizations with polarized sources.
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I. INTRODUCTION

Transformation acoustics has enabled the design of devices
that exhibit remarkable behavior, but in turn have demanding
material property requirements, such as steep gradients and
anisotropy [1–3]. The ability to physically realize these de-
vices is limited, as the prescribed property distributions cannot
be obtained with conventional materials. The development of
passive metamaterials, artificial materials composed of sub-
wavelength engineered unit cells, has expanded the accessible
design space beyond what nature offers. Wide control over
the bulk modulus and mass density, even into the negative
regime, has been demonstrated with passive acoustic meta-
materials composed of cavity resonators [4], tubes with side
holes [5], coated beads [6,7], membranes [8,9], and space-
coiling structures [10,11]. Anisotropy and spatially varying
properties can be achieved by tuning the geometries of these
components [12–15]. However, most passive metamaterials
require resonances to realize the acoustic properties specified
by transformation acoustics. Therefore, they are narrow band
and unsuitable for ubiquitous acoustics applications such as
noise mitigation, sonar, and ultrasound imaging, which re-
quire the manipulation of broadband sound. In addition, the
reliance on resonance, undesirable coupling of properties, and
general challenges in manufacturing are substantial obstacles
to precise control of the properties and constrain the operating
conditions [16–18].

The shortcomings of passive acoustic metamaterials are
reflected in the transformation acoustics devices demonstrated
so far. Despite being one of the most sought after transforma-
tion acoustics structures, omnidirectional cloaking shells have
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only been accomplished in cases of reduced geometric and
material complexity, as in carpet cloaks [19–21], and through
approximations of the prescribed material properties that are
suitable only for devices of less than several wavelengths in
diameter [14,22,23].

Active metamaterials, which feature a programed response
dependent on the external conditions, may provide a path
to overcome many of the inherent constraints of passive
structures. Particularly promising are unit cells consisting of
sensor-driver pairs, which were first conceived for manip-
ulating electromagnetic fields [24], but were later applied
to control acoustic and elastic waves [25–36]. Sensor-driver
cells sense the impinging external field and generate a co-
herent acoustic field in response. Consequently, it has been
shown [33,34] that media based on these types of cells
could be realized by leveraging a microscopic model of mat-
ter or source-driven homogenization theory [37–41]. In this
model, the behavior of a continuous material can be rep-
resented by the collective response of numerous pointlike
sources placed in a background medium and separated by
significantly subwavelength distances. These sources generate
either monopole or dipole fields and are characterized by
their polarizabilities, which relate the source amplitudes to
the local fields. In the case of acoustics of typical materials,
the monopole moment depends on the local acoustic pressure
and the dipole moment depends on the local particle velocity.
The polarizabilities of these sources depend on the macro-
scopic acoustic properties of bulk modulus and mass density,
respectively.

For application in active metamaterials, a sensor-driver
cell is equivalent to a polarized microscopic source, and the
electronic transfer function from the sensor input to the driver
output is proportional to the polarizability. In principle, the
monopole and dipole transfer functions of the active cell
could be tuned independently to yield desired macroscopic
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properties [33–36]. However, one major obstacle here is that
there is no general method for determining the polarizabilities
that correspond to a given set of macroscopic material prop-
erties, especially in scenarios involving inhomogeneous bulk
media of arbitrary geometries. Previous works have mostly
focused on Willis media, with analytical solutions only having
been found in a few limited cases, such as homogeneous
materials implemented with one-dimensional (1D) periodic
lattices [42], homogeneous one cell thick metasurfaces [43],
and subwavelength resonators [43,44].

In this work, we address the challenge of obtaining expres-
sions for the polarizabilities necessary to model bulk media
of arbitrary geometry and macroscopic acoustic properties,
in particular the inhomogeneous, highly anisotropic media
required by transformation acoustics. While we are motivated
by the physical realization of active metamaterials, we focus
here on establishing a more general theory applicable to active
and passive media rather than the specifics of such an imple-
mentation. First, in Sec. II, we develop a model of a unit cell
composed of three collocated polarized sources and analyze
its interactions with the impinging local acoustic field. Then,
we relate the cell’s response to an external plane wave with
the scattered field from a subwavelength anisotropic cylinder.
This leads to expressions for the polarizabilities as functions
of the macroscopic properties of the cylinder and, ultimately,
the effective properties of a homogenized metamaterial con-
sisting of a lattice of cylinders. Although the polarizability
relationships we obtained are for a two-dimensional (2D)
space, the expressions in a three-dimensional (3D) space can
be obtained by substitution of the cylinder-based model with
a sphere-based one. Lastly, we write a system of equations to
determine the source amplitudes of a lattice of unit cells given
the source polarizabilities and the external field. In Sec. III,
we demonstrate the ability to model a finite homogeneous slab
of given bulk modulus and isotropic mass density as a lattice
of unit cells. The results are validated through comparisons
with finite element method (FEM) simulations using COMSOL

MULTIPHYSICS. Finally, in Sec. IV, we adapt the transfor-
mation acoustics equations to directly provide closed-form
expressions for the polarizabilities and simulate several om-
nidirectional free space cloaks, highlighting the capability to
accurately represent the most challenging material properties
prescribed by transformation acoustics.

II. UNIT CELL MODEL

In the microscopic acoustic model [42], a material can be
represented as a lattice of subwavelength sources that each
generate a response to the local conditions based on their
polarizability. Here, we consider square and hexagonal lat-
tices of unit cells in a 2D space, and define a single cell in
an inviscid background fluid as a group of collocated line
sources whose amplitudes depend on the local pressure and
particle velocity. The sources include one monopole and two
dipoles aligned along the Cartesian axes. The dipoles can be
further decomposed as a pair of fully out of phase monopoles
separated by an infinitesimal distance 2δ, as illustrated in
Fig. 1(a). We will show next that this cell structure can realize
the most demanding acoustic material parameters required by

(a)

(b)

(c) (d)

FIG. 1. Diagram of modeling a continuous material as a lattice
of unit cells. (a) The unit cells consist of three polarized sources,
one monopole and two dipoles, in each of the Cartesian directions.
(b) Each cell is equivalent to a subwavelength anisotropic cylinder of
uniform macroscopic bulk modulus κcyl and diagonal mass density
tensor components ρcyl,v with v ∈ {x, y}. (c) The array of cylinders
and background fluid are homogenized as a continuous block of
material with effective macroscopic properties. (d) The relationships
of the mass densities of (b) and (c) obtained in FEM simulations.

transformation acoustics including high mass anisotropy and
large gradient bulk modulus and density profiles.

The response of a unit cell is characterized by a scalar
monopole polarizability α(m) and tensor dipole polarizability
α(d ), which relate the amplitude of the acoustic response to
the local conditions of pressure ploc and particle velocity ūloc,
respectively. Works concerning Willis media include cross po-
larizabilities between the monopole and dipole components,
but we are only concerned with typical media, so they will be
neglected here. Additionally, there are several normalizations
of the monopole and dipole moments that have been previ-
ously used, such as by the macroscopic properties [42] or a
unit volume [43], but we simply consider amplitudes of line
sources to be defined later in Eqs. (3). We write the monopole
amplitude A(m) and dipole amplitudes A(d )

x and A(d )
y dependent

on the local conditions as

A(m) = α(m) ploc,

[
A(d )

x
A(d )

y

]
=

[
α(d )

x 0
0 α(d )

y

][
uloc,x

uloc,y

]
. (1)

As typically considered in the microscopic model, the local
conditions, ploc and ūloc, include the external fields and acous-
tic responses of other cells, but not the response of the cell for
which Eqs. (1) are written. The dipole polarizability tensor
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here is diagonal, indicating that a dipole oriented along the v

axis (where v is either x or y) is sensitive to the particle ve-
locity component along the same v axis, namely the principal
axes of the cell coincide with the Cartesian axes. In the case
where α(d )

x �= α(d )
y , the cell is anisotropic. The nondiagonal

α(d ) will be discussed in Sec. IV.
Our analysis will pursue the following steps. First, as an

intermediary to determine the relationship between the macro-
scopic properties and the microscopic polarizabilities, we will
show that each unit cell scatters sound identically, even in the
near field, to an acoustically small cylinder of radius a � λ,
where λ is the wavelength. This important observation will
allow us to replace the cell sources with a homogeneous
cylinder with mass density and bulk modulus expressed in
terms of the source polarizabilities and lattice geometry. The
equivalency of the sources and cylinder is shown in Fig. 1(b)
at both the lattice and unit cell level. Second, using homoge-
nization techniques, we will relate the properties of cylinders
in a lattice surrounded by background fluid to the properties of
a continuous material, as in Fig. 1(c). Finally, we will directly
determine the polarizabilities from the effective macroscopic
properties.

To compare the behavior of a cell and cylinder, we ana-
lyze the simple case of a plane wave of arbitrary direction
incident on a single unit cell. The relationship found in this
study should then be valid for any general field, including the
complex field scattered by a large lattice of cells, because in
linear acoustics all complex fields can be decomposed into
a superposition of plane waves. Throughout this work we
assume a harmonic regime and e jωt time variation, where ω is
the angular frequency. The pressure pext and particle velocity
ūext of an incident plane wave propagating at the angle ϕ

relative to the x axis are expressed as

pext = P0e− jk0(x cos ϕ+y sin ϕ),

ūext = k̂
P0

z0
e− jk0(x cos ϕ+y sin ϕ), (2)

where P0 is the pressure amplitude and z0 is the characteristic
impedance of the background fluid. The wave vector of this
plane wave is determined by the background fluid wave num-
ber k0 and the unit vector k̂ = x̂ cos ϕ + ŷ sin ϕ, with x̂ and ŷ
being the Cartesian basis vectors.

The general acoustic pressure expressions of the waves
launched by the monopole and dipole sources are written in
terms of Hankel functions [45],

p(m) = A(m)H (2)
0 (k0r),

p(d )
v = A(d )

v

k0δ

[
H (2)

0 (k0rv+) − H (2)
0 (k0rv−)

]

= A(d )
v (2 cos θv )H (2)

1 (k0r), (3)

where r and θv are the polar coordinates of the location where
the fields are evaluated relative to the center of the cell. The
angle θv is relative to the orientation of the dipole pointing
along the v axis with v ∈ {x, y} [see Fig. 1(a)]. The acoustic
pressure launched by the dipole can be written as the summed
pressures of two monopole sources located at ±δ along the
axis, shown in the second line of Eq. (3), or as the simplified
expression shown beneath. Although the simplified version is

enough for the theoretical analysis of this section, the first
form is more useful in the numerical simulations and in view
of the physical realization of the dipoles. In the above expres-
sions, the distances between the monopole sources forming
the dipole and the location where the fields are evaluated are
denoted rv+ and rv−.

The total pressure puc launched by the isolated unit cell
responding to the plane wave given in Eq. (2) can then be
written as the sum of the source components,

puc = p(m) + p(d )
x + p(d )

y , (4)

where the monopole and dipole acoustic pressures are given
by Eq. (3) in which A(m) and A(d )

v are provided by Eq. (1) with
ploc = pext and ūloc = ūext. We parametrize θv in one variable
θ such that θx = θ and θy = θ − π

2 to obtain the expressions
of the monopole and dipole pressures appearing in the above
equation as

p(m) = α(m)P0H (2)
0 (k0r),

p(d )
x = α(d )

x

P0

z0
cos ϕ(2 cos θ )H (2)

1 (k0r),

p(d )
y = α(d )

y

P0

z0
sin ϕ(2 sin θ )H (2)

1 (k0r). (5)

We will now compare puc with the scattered field from the
plane wave of Eq. (2) incident on an anisotropic cylinder of
radius a, relative bulk modulus κcyl, and relative mass density
tensor ρcyl. In this work, the relative material properties are
normalized to the properties of the background fluid. It has
recently been shown that the acoustic pressure scattered by
this anisotropic cylinder can be written as an infinite sum of
Bessel-like functions [46]. For acoustically small cylinders,
where a � λ, only the first three terms corresponding to the
monopole and dipole moments dominate and the scattered
pressure field assumes the closed-form expression

pcyl = B0P0H (2)
0 (k0r)

+ B1,xP0 cos ϕ(2 cos θ )H (2)
1 (k0r)

+ B1,yP0 sin ϕ(2 sin θ )H (2)
1 (k0r), (6)

where

B0 = j(k0a)2 π

4

[
1 − 1

κcyl

]
,

B1,v = (k0a)2 π

4

[
1 − ρcyl,v

1 + ρcyl,v

]
. (7)

Remarkably, the expressions of the coefficients B0, B1,x, and
B1,y for the acoustically small anisotropic cylinder assume the
same exact form as for an acoustically small isotropic cylinder
[47]. In fact, when ρcyl,x = ρcyl,y, Eqs. (6) and (7) reduce to the
expression derived for an isotropic cylinder [47].

By comparing the scattered field expressions for the unit
cell in Eqs. (4) and (5) and subwavelength anisotropic cylinder
in Eq. (6), we can relate the polarizabilities to the coefficients
B0 and B1,v ,

α(m) = B0,

α(d )
v = z0B1,v, (8)
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giving us a direct relationship between the polarizabilities and
the macroscopic cylinder properties.

We have now established that a subwavelength cylinder can
serve as an analog of the unit cell formed by polarized sources
shown in Fig. 1(a). Therefore, an array of these cells scatters
sound like an array of cylinders [Fig. 1(b)]. Because the cylin-
ders are highly subwavelength, the first order approximation
presented in Eq. (6) is sufficient to characterize their response
regardless of their orientation and proximity in an array. Next,
we homogenize the lattice of cylinders and background fluid
such that it is equivalent to a continuous material of relative
effective properties κeff and ρeff,v , as shown in Fig. 1(c).

Since the compliance of mixes of two fluids is the average
of the fluid compliances [46], we obtain a closed-form rela-
tionship between κeff and κcyl, namely

κ−1
cyl = f −1

(
κ−1

eff − 1
) + 1, (9)

where f is the filling fraction. Homogenizing the mass density
is more involved. One standard approach is to send plane
waves in the x and y directions through a lattice of cylinders
and to obtain the effective densities along these axes from
reflection and transmission coefficient simulations [13,48].
This numerical method produces the mapping between the
effective and cylinder mass densities along the x and y axes,

ρcyl,v = g(ρeff,v ), (10)

where v represents any of the Cartesian axes x or y. The
mapping g is shown in Fig. 1(d) with solid lines for two
cylinder lattices (square and hexagonal). We conducted the
simulation in COMSOL with highly subwavelength cylinders
packed at a maximum density in the specified arrangement.
This simulation approach has been described in detail in [13]
and has been used successfully to design and characterize
various metamaterial devices [15,20,29]. A closed-form ex-
pression of the mapping in Eq. (10) can be obtained by fitting
the numerically simulated g [49]. The result is independent of
the cylinder radius, given that the unit cells are subwavelength
and the filling fraction is fixed.

We note that the component ρcyl,v depends only on ρeff,v

and not on the mass density component in the direction per-
pendicular to v. This can be explained by Eqs. (7), where it is
evident that the strength of the dipole along the direction v for
an acoustically small anisotropic cylinder depends only on the
mass density component along v.

Combining Eqs. (7) to (10), we can finally write the polar-
izabilities directly as functions of the effective macroscopic
properties:

α(m) = j f −1(k0a)2 π

4

(
1 − 1

κeff

)
,

α(d )
v = z0(k0a)2 π

4

[
1 − g(ρeff,v )

1 + g(ρeff,v )

]
. (11)

Now, we develop a method for finding the amplitudes of
the numerous interacting sources in the lattice that represents a
continuous material. The response of a single source is derived
from both the external waves and the contributions of all of the
other sources. The amplitudes of the sources in the ith unit cell

in a set of N total cells can be written as

A(m)
i = α

(m)
i

⎡
⎢⎢⎢⎣pext +

N∑
n = 1
n �= i

(
p(m)

n + p(d )
n,x + p(d )

n,y

)
⎤
⎥⎥⎥⎦,

A(d )
i,v = α

(d )
i,v

⎡
⎢⎢⎢⎣uext,v +

N∑
n = 1
n �= i

(
u(m)

n,v + u(d )
n,xv + u(d )

n,yv

)
⎤
⎥⎥⎥⎦, (12)

where p(m)
n , p(d )

n,x, and p(d )
n,y are the acoustic pressures produced

by the monopole and dipoles oriented along the x and y di-
rections of the nth cell at the position of the ith cell. They
are given by Eqs. (3), in which r is the distance between
the centers of the ith and nth cell. Similarly, u(m)

n,v represents
the v component of the particle velocities produced by the
monopole source and u(d )

n,wv represents the v component of the
particle velocity produced by the dipole oriented along the w

axis of the nth cell at the position of the ith cell. Here, both
v and w can be either of the x and y axes. The expressions of
these velocities are given below:

u(m)
n,v = A(m)

n

jz0
(r̂ · v̂)H (2)

1 (k0r),

u(d )
n,wv = jA(d )

n,w

k0z0

{
(r̂ · v̂)k0 cos θw

[
H (2)

0 (k0r) − H (2)
2 (k0r)

]

− (θ̂w · v̂)
2

r
sin θw

[
H (2)

1 (k0r)
]}

. (13)

In these equations, the v component of the particle velocity
is found from the dot product of the Cartesian basis vector v̂

with the source velocity vector, which is expressed using the
polar basis vectors r̂ and θ̂w.

This allows for a system of equations to be written from
which all of the source amplitudes can be solved for given
their polarizabilities and the external impinging field. A gen-
eral expression of this system is

Ek =
3N∑
j=1

Ck jA j, (14)

where Ck j is a square matrix of dimension 3N that encom-
passes the source interactions, Ek is a column matrix of the
external field sensed at each source, and Aj is a column
matrix of the source amplitudes we want to determine. The
source amplitudes are ordered such that every set of three
(one monopole and two dipoles) corresponds to the same unit
cell. Consequently, 3×3 submatrices along the diagonal of Ck j

represent interactions of sources within the same unit cell. In
our model, we assume that there is no intracell feedback or,
in other words, the response of a cell is not coupled with its
own field. As a result, these submatrices will each be set as
the identity matrix.

In summary, a continuous material of arbitrary geometry
with effective properties κeff and ρeff can be modeled by an
array of subwavelength-spaced unit cells. Once the appropri-
ate polarizabilities are calculated via Eqs. (11), the system
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FIG. 2. Scattering from a plane wave obliquely incident on acoustically short and tall slabs (outlined in black) of κeff = 3 and ρeff = 2 is
compared between an FEM and source model simulation. The amplitudes of the sources in the cell lattice are shown for slab sections of equal
dimension. The error of the source model scattered field amplitude is plotted relative to the maximum pressure in the simulated region.

of equations shown in Eq. (14) can be solved to determine
the response to a given external field. Our demonstrations of
this approach will utilize both square and hexagonal lattices
of cells, but any unit cell with sufficiently subwavelength
dimension is viable. We will demonstrate the modeling of
continuous media with rectangular and circular geometries.

III. HOMOGENEOUS ISOTROPIC SLAB

To evaluate our source model and the relationship we
found between their polarizabilities and macroscopic acoustic
properties, we compared our simulations of scattered pressure
fields using an array of unit cells to FEM simulations of a
continuous material. For the source model, the scattered field
is the sum of all the source responses with amplitudes found
from solving the system in Eq. (14). In the FEM simulation, it
is simply the total field subtracted by the incident field.

Our first demonstration is a plane wave incident on a
homogeneous isotropic slab. Oblique incidence of 30◦ was
chosen so that both dipole orientations would be excited and
the relative material properties κeff = 3 and ρeff = 2 were se-
lected to produce significant reflected and transmitted waves.
The geometry was defined in terms of the wavelength λ

of the plane wave in the background fluid. We examined
two slab geometries, both of width w = 0.6λ, but differing
heights of h = 2λ and h = 8λ so that scattering dominated by
diffraction/edge effects could be compared to more uniform
scattering. The slabs were modeled by cells with highly sub-
wavelength spacing of λ/50 in a square array. Because the
slab is homogeneous, all of the unit cells share the same set

of polarizabilities and, because the mass density is isotropic,
α(d )

x = α(d )
y .

The scattered fields in a 6λ by 6λ region found from both
simulation methods are shown on the left in Fig. 2. The
scattered fields generated by the source model closely match
those found through the FEM solution of the wave equation
for both geometries. This indicates that the dimension of the
unit cell was sufficiently small to model the geometry and
physics and that the polarizabilities were accurate represen-
tations of the macroscopic properties. The error is quantified
in the rightmost plots of Fig. 2, shown as the difference in
the pressure amplitudes of the FEM and source model results
relative to the maximum amplitude in the domain. The high
error points within the slab are a result of samples very near
to the sources, where the pressure approaches infinity. Other
error can be attributed to the approximations made when
deriving the scattering by a cylinder from an incident plane
wave. Namely, the response was assumed to be first order and
for a highly subwavelength cylinder. While the tested unit cell
dimension of λ/50 is subwavelength, it is not small enough
for there to be no noticeable mismatch between the actual and
approximated fields, especially when the error is compounded
by the interactions among all of the cells. Nevertheless, the
difference manifests in amplitude but not in phase and it is
expected to be much smaller than the differences imposed by
typical fabrication tolerances. Another way to view the error is
by checking for the conservation of energy. We calculated the
difference between the acoustic power entering and leaving
the source model simulation domain relative to the incident
power. The short slab had a 1.7% gain in power and the
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tall slab had a 3.2% gain. This clarifies that there is indeed
inaccuracy due to the approximated scattered fields rather than
wrongly chosen polarizabilities for the desired macroscopic
acoustic properties. Even so, with the intent of engineering
application and physical realization, the approximations that
were made and the chosen cell dimension are still a strong
demonstration of the model’s capabilities.

In the middle of Fig. 2 are plots of the source amplitudes in
the center 2λ tall sections of both slabs. Each pixel represents
a single source, with its position in the cell lattice defined
by its row and column. The amplitude distributions help to
visualize how the acoustic behavior is dominated by edge
effects in the shorter slab, but approaches uniformity in the
center of the taller slab.

While the results shown in this section are for only one
set of material properties in the vicinity of the background
fluid, this is not the limit of the capability of the source model.
The scattered fields can be solved for more complex property
distributions, as will be demonstrated for an acoustic cloak in
the following section.

IV. TRANSFORMATION ACOUSTICS AND CLOAKING

Transformation acoustics enables the derivation of the
bulk modulus and mass density distributions necessary to
physically replicate the effects of a desired coordinate trans-
formation. In view of the emerging active metamaterials with
sensor-driver unit cells, it is useful to develop an adaptation of
transformation acoustics to directly solve for the polarizabili-
ties, rather than the macroscopic acoustic properties. We start
with a general coordinate transformation given as

(x′, y′, z′) = (x′(x, y, z), y′(x, y, z), z′(x, y, z)),

J =

⎡
⎢⎢⎣

∂x′
∂x

∂x′
∂y

∂x′
∂z

∂y′
∂x

∂y′
∂y

∂y′
∂z

∂z′
∂x

∂z′
∂y

∂z′
∂z

⎤
⎥⎥⎦, (15)

where the new primed coordinates are functions of the original
nonprimed coordinates and J is the Jacobian matrix of the
transformation. Using the linear acoustic constitutive relations
for an inviscid fluid, we can then solve for the bulk modulus
and mass density tensor necessary to replicate this transfor-
mation in the original coordinate system as

κ ′ = |J|−1κ,

ρ′ = |J|−1JT ρJ, (16)

where |J| is the determinant of the Jacobian and JT is its
transpose [50]. For the source model, we assume an isotropic
background fluid. Therefore, the mass density before trans-
formation is simply ρ = ρ0I, where I is the identity matrix.
Equation (16) can now be rewritten in terms of the relative
effective properties as

κ ′
eff = |J|−1,

ρ′
eff = |J|−1JT J = Ĵ, (17)

with Ĵ being defined for conciseness. Finally, we express these
effective material properties in the principal axes, such that the
mass density and Jacobian tensors are diagonal. Employing

the superscript star (∗) to represent a tensor evaluated in a
coordinate system in which the tensor is diagonal (i.e., the
principal axis system), we use Eqs. (11) to substitute the
polarizabilities for the macroscopic properties. Consequently,
the transformation acoustics expressions become

α(m) = j f −1(k0a)2 π

4
(1 − |J|),

α(d )
v = z0(k0a)2 π

4

[
1 − g(Ĵ∗

v )

1 + g(Ĵ∗
v )

]
. (18)

Therefore, each diagonal element of the dipole polarizability
tensor indexed by v is solved for independently.

A free space cylindrical cloaking shell is a good trans-
formation acoustics device to demonstrate the capability
of microscopic modeling, as steep property gradients and
anisotropy are required. One set of solutions can be found
from a coordinate transformation in the radial direction from
r to r′ [2],

r′ = R2 − R1

R2
r + R1, φ′ = φ, (19)

where R1 is the inner radius and R2 is the outer radius of the
shell. The resultant radially varying mass density and inverse
bulk modulus are according to Eq. (16) and [2]

ρ ′
r = r′

r′ − R1
, ρ ′

φ = r′ − R1

r′ ,

(κ ′)−1 =
(

R2

R2 − R1

)2 r′ − R1

r′ . (20)

The density is anisotropic, with principal components ρ ′
r in

the radial direction and ρ ′
φ in the tangential direction.

Since these material properties are already determined in
the principal axes, we can directly apply Eqs. (18) to obtain
the polarizabilities along the principal axes in which |J| =
(κ ′)−1, Ĵ∗

r = ρ ′
r , and Ĵ∗

φ = ρ ′
φ , according to Eq. (17).

In view of the numerical simulations that follow, we ex-
press the dipole polarizability tensor in a Cartesian system of
coordinates (x′, y′) by properly rotating the polar coordinates
by angle φ [51,52]. We obtain the nondiagonal dipole polariz-
ability tensor

α̂(d ) = Q−1α(d )Q, Q =
[

cos φ sin φ

− sin φ cos φ

]
, (21)

where Q is the rotation matrix. The physical significance of
the nondiagonal elements of α̂(d ) is that the dipoles are not
aligned along the principal directions of anisotropy and must
be sensitive to the particle velocity in all directions, not just
along their axes.

The acoustic cloak was simulated using the same source
model as the slab simulation of the previous section, but with
anisotropic and spatially varying polarizabilities. The chosen
geometry was a scatterer of radius R1 = 0.6λ encapsulated
by a cloak of radius R2 = 2R1, both modeled with hexago-
nally packed source cells [see Fig. 1(a)] spaced λ/50 apart.
This packing method was employed to better approximate
the curved geometry. A scatterer with κeff = 50 and ρeff = 50
was selected so that there would be high contrast between
the cloaked and uncloaked pressure fields. The position of the
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(a) (b)

(c)

(e) (f )

(d)

FIG. 3. Demonstration of the source modeling of a cloaked scat-
terer in a background plane wave in the x direction. The cloak and
scatterer are represented with source cells marked by solid circles
with spacing of λ/50 for (a) the full geometry and (b) a zoomed in
view. The total pressure is shown for (c) the scatterer and (d) the
cloaked scatterer. The normalized scattered pressure magnitude is
also shown for (e) the scatterer and (f) the cloaked scatterer.

source cells used to model the scatterer (blue) and cloak (red)
are shown with solid circles in Figs. 3(a) and 3(b).

The results of the simulation for an incident plane wave in
the x direction are displayed in Figs. 3(c)–3(f). In Fig. 3(c),
the total pressure field for the uncloaked scatterer is shown.
A high amplitude reflection region and low amplitude trans-
mission region are clearly visible, with radial scattering above
and below. In contrast, only the background plane wave is
present outside the cloaking shell in Fig. 3(b). The absence of
scattering indicates that the prescribed anisotropy and steep
material gradients were accurately represented. Also support-
ing this is the high curvature of the waves around the inner
cloak boundary, which should be expected for the density
approaching infinity. In Figs. 3(e) and 3(f), the normalized
amplitudes of just the scattered fields are plotted to highlight
the effectiveness of the cloak.

It should be expected that the performance deteriorates as
the lattice period of the source cell medium and/or the material
parameter gradients increase with respect to the wavelength
of the external field. This effect was assessed by varying

FIG. 4. Polar plots of the scattered pressure from a cloaked scat-
terer at a radius of 20λ for varying (a) cloak thickness and (b) unit
cell dimension.

the cloak thickness and unit cell dimension. The results are
shown in Fig. 4 as polar plots of the scattered field am-
plitudes at r = 20λ. Decreasing the thickness of the cloak
steepens the property gradients and reduces the number of
cells if spacing is held constant. This results in a highly
discretized property curve and a less effective cloak, as shown
by the scattered pressure trend in Fig. 4(a). Additionally, a
thin cloak may be more heavily impacted by boundary ef-
fects, as seen in other homogenized media such as wired
electromagnetic metamaterials [53,54]. The polarizabilities of
the sources on the boundaries of the structure could poten-
tially be adjusted to account for this and better match the
desired material properties. The number of unit cells can be
reduced directly by increasing the unit cell dimension, with
similar effect on the performance, as shown in Fig. 4(b).
The relationships used to calculate the polarizabilities will
lose accuracy as the dimension approaches the scale of the
wavelength.

An alternate method of studying the effects of the source
model is to design a cloak for a single incident wave frequency
f0 and then evaluate its performance over a frequency range.
We used the geometry shown in Fig. 3 and as a performance
metric chose the ratio of the scattered power with the cloak
Pcloaked to that without the cloak P0. While the macroscopic
material properties are independent of the incident frequency
(assuming no dispersion), the source polarizability amplitudes
are not, as their calculation in Eq. (11) includes a k0 term.
We examined cloak performance for both the cases of con-
stant polarizabilities designed for f0 and varying, frequency
dependent polarizabilities. The results are plotted in Fig. 5. It
is clear from the steep increase in scattering that, for a cloak to
operate outside a very narrow frequency band, it is necessary
for the polarizabilities to vary, as their amplitude must depend
on frequency. When this is true, the performance approaches
the ideal zero scattering as the unit cell dimension becomes
increasingly small compared to the wavelength and the first
order approximation employed in our derivations becomes
more accurate. It should also be noted that the frequency
independence of the required polarizability phases violates
causality and practical implementation will be constrained to
some bandwidth. In general, the parametric studies shown
in Figs. 4 and 5 provide useful guidelines for the physical
realization of such a cloak with active unit cells and insight
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FIG. 5. Cloak performance, quantified by the cloaked scattered
power relative to the uncloaked scattered power, is plotted as a
function of the frequency of the incident plane wave. The cloak
geometry was fixed, but the polarizabilities were either constant or
varying with frequency.

into how the performance will compare to the ideal continuous
design.

V. CONCLUSION

We derived an analytical method to relate the polariz-
abilities of media composed of polarized sources separated
by significantly subwavelength distances to the macroscopic
acoustic properties of acoustically equivalent continuous ma-
terials. We considered bulk transformation acoustics media in
which the high mass density anisotropy and the steep gradi-
ents of bulk modulus and mass density are accurately modeled
by collections of unit cells composed of one monopole and
two dipole sources whose amplitude and phase is determined
by the local acoustic pressure and particle velocity. The po-
larizabilities of a single cell were first solved for in terms
of the relative bulk modulus κcyl and mass density ρcyl of a

subwavelength cylinder by equating the expressions for the
scattered fields from an incident plane wave. The cylinder
properties necessary for the desired effective properties κeff

and ρeff were then found from the homogenization of an array
of cylinders placed in a background fluid. Finally, the set of
polarizabilities could be determined directly from the effective
properties.

Remarkably, the source polarizabilities inside each cell are
related through closed-form expressions to the local effective
macroscopic material properties in the equivalent continu-
ous medium. This enabled the application of the source
model to transformation acoustics and derivations of the
source polarizabilities directly from the underlying coordinate
transformations.

The source model was validated by comparing the acous-
tic fields scattered by several continuous homogeneous and
inhomogeneous media and obtained in numerical simula-
tions performed with COMSOL MULTIPHYSICS with the fields
scattered by the media realizations with source lattices. In par-
ticular, a free space cloak was modeled to exhibit the ability
to accurately represent steep material property gradients and
anisotropy. The simulated cloak produced almost no scattered
field, indicating that the material properties and geometry
were accurately represented.

The relationships between the polarizabilities and macro-
scopic acoustic properties presented in this work will help
to enable the development of new active metamaterials using
the sensor-driver architecture. With a suitable physical imple-
mentation, the effective bulk modulus and mass density tensor
should be independently controllable in each unit cell across
2D and 3D bulk geometries. Ultimately, this would provide a
path towards realizing general reconfigurable acoustic devices
and exciting applications of transformation acoustics such as
cloaking.
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