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Theory for coherent control of longitudinal optical phonons in GaAs using
polarized optical pulses with relative phase locking
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A theoretical model for the coherent control of longitudinal optical phonons in GaAs (001) by double-pulse
excitation was derived using a simplified band model and the allowed and forbidden Raman scattering. The
time evolution of the electron-phonon states was calculated with the density-matrix formalism and second-order
perturbation. The amplitude of the longitudinal optical phonons controlled by the two pulses was obtained as
a function of the delay between the pulses for several polarization conditions. For parallel-polarized pulses,
electronic and phonon interference fringes were predicted, which were independent of the crystal orientation and
the ratio between the allowed and forbidden Raman scattering intensities. For orthogonally polarized pulses, only
phonon interference fringes were obtained at an angle of π/4 from the [100] direction. When one of the pulses
was along the [100] direction, electronic interference fringes were induced by the allowed Raman scattering,
although the pump pulses do not interfere themselves.
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I. INTRODUCTION

Coherent control is the technique of manipulating quan-
tum states in materials using optical pulses [1–3]. This is
widely used to manipulate electronic, vibrational, and ro-
tational states of atoms and molecules [4–8], and excitons,
spins, and phonons in the solid state [9–15]. Optical phonons
can be coherently excited and monitored using ultrashort op-
tical pulses via transient reflectivity or transmissivity using
a pump-and-probe technique [16–21]. In this technique, the
amplitude of the phonons is controlled using a train of optical
pulses or a pulse-shaping technique [22–26] via constructive
or destructive interference between the induced phonons. Fur-
thermore, by applying a relative phase of the optical pulses
to solid materials, not only phonon interference but also
electronic interference can be observed via a quantum-path
interference [27].

In our previous works we investigated the coherent con-
trol of longitudinal optical (LO) phonons in an n-type GaAs
single crystal with a (001) surface using relative phase-locked
femtosecond double pulses under parallel and perpendicular
polarization [27,28]. Using parallel-polarized pump pulses,
we observed fine interference fringes of electronic coherence
with fast oscillations as well as phonon interference for a
longer time than for the optical interference between pump
pulses [27]. The generation paths were distinguished from
the interference fringe patterns. By contrast, for perpendic-
ularly polarized pump pulses, only phonon interference was
observed [28]. This polarization effect can be qualitatively
explained using a quantum-mechanical model.
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Coherent phonons in GaAs have been widely stud-
ied [17,19,23,29,30]. There are two processes that contribute
to the generation of LO phonons in GaAs in the opaque
regime. The main process for generating LO phonons in GaAs
(especially for n-doped and p-doped samples) is considered
to be the transient depletion field screening [19], which is a
type of space charge field-induced process. The initial field
distribution is suppressed by the opposite drift of the optically
induced electrons and holes, and the accompanying depolar-
ization field acts as the nonlinear driving term for the coherent
phonons [17]. A stimulated Raman process is another genera-
tion mechanism which is different from the transient depletion
field screening process and is also discussed to contribute for
nondoped GaAs [30].

The stimulated Raman process also includes two interac-
tions. One is a short-range interaction, which is induced by
the deformation-potential interaction, and the other is a long-
range interaction, such as the Fröhlich interaction [29,30]. The
creation and annihilation of phonons by light scattering via
the short-range interaction is expressed with dipole-allowed
components in a Raman tensor. An ultrashort optical pulse can
induce impulsive stimulated Raman scattering (ISRS) to gen-
erate optical phonons. Furthermore, the long-range interaction
can be treated as the dipole-forbidden components in the
Raman tensor [30,31]. The dipole-allowed Raman tensor for
LO phonon scattering in a zinc-blende crystal with the (001)
surface is an off-diagonal tensor. Then, the electronic polariza-
tion rotates with an angle of π/2 during phonon generation.
This suggests an interesting possibility that the electronic
states interact with light pulses differently depending on the
polarization direction. It would be possible to detect this
Raman-induced rotation of the electronic polarization through
the ultrafast interferometric pump-probe measurements with
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polarization- and delay-controlled double pulses. On the other
hand, for the transient depletion field screening process, the
field is perpendicular to the surface and an isotropic po-
larization dependence for generation of the LO phonons is
reported [17,29].

Theoretical calculations for the generation and detection of
coherent excited phonons have been performed using several
models, in which the lattice oscillation is treated classically
or quantum mechanically [16,18,19,32–38]. Recently we de-
veloped a quantum-mechanical model with classical optical
fields for the coherent control of the amplitude of optical
phonons induced by two pulses and applied this to GaAs and
diamond crystals [27,28,39]. In these previous works, the ef-
fects of polarization correlation between the two pump pulses
was not studied in sufficient detail. Thus, in the present work,
we focus our attention on the problem of the polarization ef-
fects of relative-phase-locked double pulses. As a first step in
this direction, we study theoretically the quantum mechanical
aspects of the interference fringes for the polarization- and
delay-controlled double-pulse excitation of coherent phonons.
For the sake of concreteness, we study the coherent control
of LO phonons in a GaAs crystal with the (001) surface,
using a simplified band model and a total Raman tensor that
includes the allowed and forbidden components. The allowed
and forbidden Raman components coexist in GaAs and their
relative contribution can be controlled by the doping rate. This
makes GaAs an interesting test material to evaluate the effects
of quantum-path interference. We calculate the amplitude of
the LO phonons and quantitatively discuss the phonon and
electronic interference behaviors depending on the polariza-
tion angles of the pump pulses.

II. MODEL

A. Hamiltonian

We consider the generation of the LO phonons, which
propagate along the z axis in a GaAs crystal with a (001)
surface upon irradiation of two pump pulses that also prop-
agate along the z axis; we identify the [001] axis as the z axis.
The electronic states are assumed to be the electronic ground
state (|g〉) and the two-excited-state bands (|ex, k〉, and |ey, k〉),
which are polarized along the x and y axes, respectively, with
the wave number k and are degenerate in energy. We set the x
axis along the [100] crystal axis and the y axis along the [010]
axis. We use a single-electron approximation in the model.
The Hamiltonian of the electron-phonon coupled states is
given by

H = He + HL + HeL, (1)

He = εg |g〉 〈g| +
∑

k

εk (|ex, k〉 〈ex, k| + |ey, k〉 〈ey, k|), (2)

HL = h̄ωb†b, (3)

HeL = αh̄ω
∑

k

(|ex, k〉 〈ey, k| + |ey, k〉 〈ex, k|)(b† + b)

+β h̄ω
∑

k

(|ex, k〉 〈ex, k| + |ey, k〉 〈ey, k|)(b† + b),

(4)

where ω is the phonon frequency, and εg, εk are the energies
of the ground and excited levels, respectively [28]. The oper-
ators b†, b are the creation and annihilation operators for LO
phonons at the � point, respectively. In the electron-phonon
Hamiltonian HeL, the terms proportional to α and β represent
the respective interactions for allowed and forbidden Raman
scattering, and the total Raman tensor for LO phonons in
GaAs is given by

R =
⎛
⎝Rβ Rα 0

Rα Rβ 0
0 0 Rβ

⎞
⎠, (5)

where Rα and Rβ are the polarization rates of the allowed
and forbidden Raman scattering, respectively [31,40]. When
the light propagates along the z axis, only the xx, yy, xy,
and yx planes are relevant. The allowed Raman scattering is
due to the deformation-potential interaction, and the forbidden
Raman scattering is due to the intraband Fröhlich and Franz-
Keldysh [30]. The values α and β are proportional to Rα and
Rβ , respectively.

Within the rotating-wave approximation, the interaction
Hamiltonian between light and electrons is expressed by

HI = E1(t )
∑

k

(μk |e1, k〉 〈g| e−i�0t + H.c.)

+ E2(t )
∑

k

(μk |e2, k〉 〈g| e−i�0(t−t12 ) + H.c.), (6)

in which μk is the transition dipole moment, �0 is the fre-
quency of the pump pulse, and t12 is the delay between
pump pulses 1 and 2. Here H.c. represents the Hermitian
conjugate terms, and |e1, k〉 and |e2, k〉 represent the excited
state determined by the polarization of pump pulses 1 and 2,
respectively:

|e1, k〉 = cos θ |ex, k〉 + sin θ |ey, k〉, (7)

|e2, k〉 = cos(θ + ϕ) |ex, k〉 + sin(θ + ϕ)|ey, k〉, (8)

where θ is the angle between pump pulse 1 and the x axis,
and ϕ is the relative angle between pump pulses 1 and 2, as
shown in Fig. 1. E1(t ) and E2(t ) are the optical electric field
of pump pulses 1 and 2, respectively, and are expressed by
E1(t ) = E0 f (t ) and E2(t ) = E0 f (t − t12). The function f (t )
is the Gaussian pulse envelope, which is defined by

f (t ) = 1√
πσ�0

exp

(
− t2

σ 2

)
, (9)

where E0 is the amplitude of the electric field and σ is the
pulse width.

In this model we consider the process by which coherent
phonons are generated under resonant excitation to slightly
above the band edge of GaAs. It should be noted that the band
gap depends on the temperature [41] as well as on the doping
rate [42]. We introduce the effective response function F (t )
phenomenologically, which describes the electronic transition
rate to the energy region relevant to the resonant Raman
scattering. Formally, F (t ) is written as

F (t ) =
∑

k

|μk|2e− i
h̄ (εk−εg)t−η|t |/h̄ (η = 0+), (10)
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FIG. 1. Electric polarization of pulses 1 and 2 and the crystalline
axes [100] and [010], which designate the x and y directions, respec-
tively. θ is the angle between the polarization of pulse 1 and the [100]
axis, and ϕ is the angle between the polarization of pulses 1 and 2.

in which μk is the effective transition dipole moment from the
ground state to |ex, k〉 and |ey, k〉 in the excited states. In actual
calculations we adopt a simple form,

F (t ) ∝ |μ|2 exp (−i�ct − �|t |), (11)

where �c is the central frequency and � is the electronic
phase relaxation rate in the conduction band. The main origin
of the phase relaxation is the inhomogeneous width in the
conduction band as described by the summation in Eq. (10).
The Fourier transformation of Eq. (11) is a Lorenzian function
Ieff(�) = I0(�/π )/[(� − �c)2 + �2], which corresponds to
an effective density of states relevant to ISRS with a center
energy of h̄�c and a bandwidth of h̄�.

B. Transition paths for generating phonons via ISRS process

We adopt the density-matrix formalism to derive the
generation amplitude of coherent phonons by solving the
time-dependent Schrödinger equation with the second-order
perturbation. The change of the amplitude R of the reflectiv-
ity is proportional to the expectation value of the LO phonon
coordinate Q = √

h̄/2ω(b + b†).
Figure 2 presents double-sided Feynman diagrams for the

generation of LO phonons by ISRS with two pump pulses.
The initial state in the ket vector is assumed to be the
electronic ground state with the zero-phonon state |g, 0〉 =
|g〉 ⊗ |0〉, and the final state is |g, 1〉 = |g〉 ⊗ |1〉. The kets
|e1, 0〉, |e′

1, 1〉, |e2, 0〉, |e′
2, 1〉 denote the electronic excited

states induced by pulses 1 and 2 with zero- and one-phonon
states, respectively. In Fig. 2, t1 and t2 denote the times
at which the system interacts with the electric field of the
pump pulse, and τ denotes the time at which the phonon is
created. Photoexcitation and deexcitation processes occur at
t1 and t2, respectively. Phonon creation is assumed to occur
at an arbitrary time in the electronic states (t1 � τ � t2).
Electronic excitation and deexcitation occur within a pulse
in paths 1 and 2, and occur in different pulses in paths 3
and 4. For the ISRS, after interacting with the pump pulses,
the final electron-phonon state is |g, 1〉 〈g, 0| or |g, 0〉 〈g, 1|. In
the phonon-creation process, the polarization of the electronic
state changes via the allowed Raman components (|ex〉 → |ey〉

FIG. 2. Double-sided Feynman diagrams for generating LO
phonons by pulses 1 and 2. The red and blue curves illustrate the
Gaussian shapes of pulses 1 and 2, respectively. The open circles
mark the time when electronic excitation and deexcitation are in-
duced by the optical electric field. The solid circle marks the moment
when a phonon is generated.

or |ey〉 → |ex〉) but does not change via the forbidden Raman
components (|ex〉 → |ex〉 or |ey〉 → |ey〉). When the polariza-
tions of the pulses are taken into account, the amplitude of
the LO phonons is expressed by a coherent superposition
of the contributions from the allowed and forbidden Raman
scattering processes.

The time evolution of the density operator ρop(t ) is given
by the second-order perturbation calculation, and the expec-
tation value of the LO phonon amplitude is expressed by
Tr[Qρop(t )]. The relevant part of the density operator ρop(t )
is written as ρop(t ) = ρ(t )|g, 1〉〈g, 0| where ρ(t ) is expressed
by the sum for each transition path ρi(t ) as

ρ(t ) =
4∑

i=1

ρi(t ),

as shown in Fig 2. For each path i (i = 1, 2, 3, 4), ρi(t ) is given
by

ρ1(t ) = (α sin 2θ + β )P11(t ), (12)

ρ2(t ) = {α sin 2(θ + ϕ) + β}P22(t ), (13)

ρ3(t ) = {α sin (2θ + ϕ) + β cos ϕ}P12(t ), (14)

ρ4(t ) = {α sin (2θ + ϕ) + β cos ϕ}P21(t ), (15)
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in which

Pi j (t ) =
(

E0

h̄

)2

e−iωt
∑

k

|μk|2
∫ t

−∞
dt2

∫ t2

−∞
dt1

× fi(t1) f ∗
j (t2)e− i

h̄ (εk−h̄�0 )(t2−t1 )

× e− η

h̄ |t2−t1|(eiωt2 − eiωt1 ), (16)

where (i, j = 1 or 2), and the envelope functions are f1(t ) =
f (t ) and f2(t ) = f (t − t12)ei�0t12 . In Eq. (16), t is the obser-
vation time, which is much later than the time at which the
double pulses are irradiated. Therefore, the upper limit of the
integral can be replaced by ∞. Furthermore, introducing a
pair of variables (s, u), which are defined as s = (t1 + t2)/2,
u = t2 − t1, the integration over s can be carried out. (Details
of the calculation are shown in Appendix A.) Thus, we find
that Pi j (t ) is given as a function of the pump-pump delay t12

as

P11(t ) = e−iωt L(0), (17)

P22(t ) = e−iω(t−t12 )L(0), (18)

P12(t ) = e−iω(t−t12/2)e−i�0t12 L(t12), (19)

P21(t ) = e−iω(t−t12/2)ei�0t12 L(−t12), (20)

except for a common constant factor, and

L(x) = 2i
∫ ∞

0
du e− (u−x)2

2σ2 sin

(
ωu

2

)
ei�0uF (u). (21)

The above formulas are the central results of the present
work. They predict that the t12 dependence of the phonon
amplitude will be composed of two types of quantum-path
interference. One is the temporal interference expressed by
Pi j (t ), and the other is the geometrical interference given by
the θ and ϕ dependence in the prefactors of Pi j (t ). Note that
the amplitudes of the ISRS using relative-phase-locked double
pulses carry the memory of the phases of the pump pulse by
which the electron is excited and deexcited. This is explicitly
exhibited in the phase factors in Pi j shown in Eqs. (17)–(20).
The amplitudes due to paths 1 and 2 do not depend on the
phase factor �0t12, whereas those from paths 3 and 4 carry
the factor �0t12, which is imprinted on the electron coher-
ence. Path 4 may be called an anomalous path, because this
term represents the process in which the electron is excited
by the delayed pulse and deexcited by the advanced pulse.
Therefore, the contribution from path 4 is limited to the small
time-delay region at which the two pulses overlap in the time
domain.

C. Transition paths for generating phonons
via space-charge field

A vibronic Raman interaction and a surface space-charge
field have been discussed as a driving force for coherent
phonons in semiconductors. In particular, suppression of a
surface space-charge field is the decisive source term for
driving the coherent phonons in III-V semiconductors [17].
The initial field distribution is suppressed by the opposite
drift of the optically induced electrons and holes, and the

FIG. 3. Double sided Feynman diagrams for generation of coher-
ent phonons via suppression of the surface space-charge field.

accompanying depolarization field acts as the nonlinear
driving term for the coherent phonons [17]. According to
this mechanism, the driving term depends on an optically
induced carrier density n̄, which is obtained by populations
in the electronic excited state (|e〉 〈e|) in the present
model. The density operators for the population in the
electronic excited state with phonon polarization (|e, 1〉 〈e, 0|
and |e, 0〉 〈e, 1|) can be expressed as: |e, 1〉 〈e, 0| =
[γ Esch̄ωμkE0 f (t )e−i�0t |e, 1〉〈g, 0|] × |g, 0〉 〈e, 0|, where γ is
a strength of interaction and Esc is the space-charge field
strength.

Figure 3 shows double sided Feynman diagrams of this
interaction, in which t2 > t1. The phonon is created at time
τ , at which the electronic transition occurs via the dipole
interaction and the population in the electronic excited state is
created. The phonon cannot be created by the first interaction
at t1, which is different from the impulsive absorption case.

The density matrix with the second-order perturbation is
obtained as

ρi j (t ) = γ Esc

(
E0

h̄

)2

e−iωt
∑

k

|μk|2

×
∫ t

−∞
dt2

∫ t2

−∞
dt1 f ∗

i (t1) f j (t2)e
i
h̄ (εk−h̄�0 )(t2−t1 )

× e− η

h̄ |t2−t1| eiωt2 |e, 1〉 〈e, 0| + H.c., (22)

where f1(t ) = f (t ) and f2(t ) = f (t − t12)ei�0t12 . The upper
limit (t) of the integral for t1 and t2 can be approximately
replaced by ∞ for t � t2.

III. RESULTS AND DISCUSSION

In the actual calculations we considered a pair of relative-
phase-locked femtosecond pulses (pulses 1 and 2) directed
along the z axis of the (001) surface of a GaAs crystal.
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The width of each pulse was σ = 30 fs, and the center
energy of each pulse was h̄�0 = 1.55 eV, which is above
the band gap (1.52 eV). The frequency of the LO phonons
was set to 8.8 THz (h̄ω = 0.036 eV). The energy of the
electronic ground state εg was set to zero. For the effective re-
sponse function F (t ), we assumed �c = �0 and � = 0.0455
(fs)−1. This decay constant value corresponds to an energy
of 0.03 eV (h̄� = 0.03 eV). The lifetime corresponding to
the decay constant is approximately 22 fs. This may be
shorter than the population lifetimes which are measured by
using angle-resolved-photoelectron spectroscopy (ARPES)
experiments [43,44] (e.g., population lifetime of 165 fs at
pump-photon energy of 1.7 eV for p-type GaAs (110) [43]).
The previous ARPES experiments were not actually measur-
ing the same lifetimes as what is in the present model. This
choice of parameter values also reproduced the experimental
line shape of the fringe pattern in n-GaAs at 90 K for the
double-pulse pumping by parallel polarization case [27]. The
electronic coherence in the excited state decays with the decay
constant � (see details in the Appendix B). We could not
find a significant shift in an initial coherent-phonon phase due
to the lifetime in the previous single-pulse-excitation experi-
ments [27], although the lifetime dependence [45] is predicted
for very short pulse excitation. We neglected the decay of
phonons in this work.

The values of α and β depend on the doping rate in GaAs.
In an intrinsic GaAs, a ratio of β/α = 6 was used as an
example. For n-doped GaAs, the allowed Raman scattering
is negligible.

In the following parts of this section, we show the general
features of the interference fringes in the coherent LO phonon
generated by the allowed and forbidden ISRS processes as
a function of the angles θ and ϕ, and the delay t12. For
the predictions of the signals expected in real materials, we
show results with β/α = 6 for intrinsic GaAs, and α = 0
for n-doped GaAs. The amplitude of the LO phonons was
obtained by calculating Tr[Qρ(t12)] with Eqs. (16)–(20) and
taking the absolute values. The electronic and phononic inter-
ferences were evaluated from a plot of the phonon amplitude
as a function of the delay t12 between pulses. The calcula-
tions show that the interference pattern changes depending
on the polarization angle (i.e., θ or ϕ). The results for the
typical polarization conditions are shown in the following
subsections.

A. Parallel-polarized pulses (ϕ = 0)

Figure 4 shows the calculated amplitude of LO phonons
with β/α = 6 for parallel-polarized pulses with ϕ = 0 and
θ = 0 as a function of the pulse delay t12. There is a slow
oscillation (∼115-fs period) owing to phonon interference
and a fast oscillation (∼2.7-fs period) owing to electronic
interference. Under the parallel-polarized condition (ϕ = 0),
all transition paths have the same factor (α sin 2θ + β) of the
effect of the Raman tensor according to Eqs (11)–(14). Then
the interference pattern is independent of the values α and
β. This means that the interference patterns for intrinsic and
n-type GaAs are the same. In fact, the interference fringes in
Fig. 4 agree well with our previously reported experimental
results for n-type GaAs (001) [27]. In addition, a change of

FIG. 4. (a) Amplitude of LO phonons induced by the parallel-
polarized pulses (θ = 0) as a function of the pump-pump delay t12.
(b) Intensity of optical pulses 1 and 2. The vertical axis is normalized
such that the maximum value is 1.

the angle θ , while keeping the relative angle at 0 deg, does not
change the interference pattern.

The amplitude of the interference fringes with fast os-
cillations, which indicate electronic coherence, decreased
until approximately 50 fs and thereafter increased (i.e., col-
lapse and revival). Electron coherence is caused by paths
3 and 4. However, path 4 may contribute only at t12 ≈ 0,
where the two pulses overlap. At longer time delays, only
path 3 contributes to the electronic interference. Then the
amplitude of the phonon oscillation is given by the abso-
lute value of P11(t ) + P22(t ) + P12(t ), which is approximately
proportional to |1 + exp[iω0t12] + exp[−i�0t12]|, as can be
seen from Eqs. (16)–(18). Note that the rapid oscillation
due to the electronic interference appears only through the
cross term with the slow component 1 + exp[iω0t12] of the
phonon interference. Therefore, we attribute the collapse
and revival of the electronic interference at about t12 ≈ 50
fs is the result of the destructive phonon interference at a
half-period.

B. Orthogonally polarized pulses (ϕ = π/2)

The interference of the LO phonons generated by the or-
thogonally polarized pulses with ϕ = π/2 depends on the
angle θ (Figs. 5 and 6).
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FIG. 5. Amplitude of the LO phonons induced by the orthogo-
nally polarized pulses (ϕ = π/2 and θ = π/4) as a function of the
delay t12. (a) The red and blue curves show the amplitude of phonons
induced by the allowed and forbidden Raman scattering, respectively.
(b) Phonons induced via the total Raman tensor with β/α = 6. The
vertical axis is normalized such that the maximum value is 1.

1. At the θ = π/4 orientation

Setting ϕ = π/2 and θ = π/4 in Eqs (11)–(14), we find

ρ1(t ) = (α + β )P11(t ), (23)

ρ2(t ) = (−α + β )P22(t ), (24)

ρ3(t ) = 0, (25)

ρ4(t ) = 0. (26)

Therefore, only the slow oscillation due to the phonon inter-
ference is observed in this geometry. The terms from paths 3
and 4 have opposite signs and their sum becomes zero. Then
LO phonons are generated via only paths 1 and 2, and those
generated by pulses 1 and 2 interfere constructively for the
forbidden Raman term, and destructively for the allowed com-
ponent at each period of the delay t12, as shown in Fig. 5(a).
These features are explained as below.

From Eqs. (21)–(24), the density matrix ρ(t ) is obtained
as ρ(t ) = α[P11(t ) − P22(t )] + β[P11(t ) + P22(t )]. Therefore,
in the allowed and forbidden Raman scattering, phonons are
added and subtracted by pulses 1 and 2, respectively. Thus, the

FIG. 6. Amplitude of the LO phonons induced by the orthog-
onally polarized pulses (ϕ = π/2 and θ = 0) as a function of the
delay t12. (a) The red and blue curves show the amplitude of phonons
induced by the allowed and forbidden Raman scattering, respectively.
(b) Phonons induced via the total Raman tensor with β/α = 6. The
vertical axis is normalized such that the maximum value is 1.

LO phonons induced by the allowed Raman components by
pulses 1 and 2 have opposite phases, such that they interfere
destructively at each half-cycle. By contrast, those induced by
the forbidden components have the same phase, such that they
interfere constructively.

Figure 5(b) shows the LO phonons induced via the total
Raman scattering with β/α = 6. Only the slow oscillation due
to the phonon interference is found. An interesting feature is
found at t12 = 60 fs, which corresponds to t12

∼= π/ω. The
phonon amplitude does not decrease to zero in the destructive
interference of phonons. This is because of the contribution of
the allowed Raman scattering.

2. At the θ = 0 orientation

For ϕ = π/2 and θ = 0 we find

ρ1(t ) = βP11(t ), (27)

ρ2(t ) = βP22(t ), (28)

ρ3(t ) = αP12, (29)

ρ4(t ) = αP21. (30)
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FIG. 7. Amplitude of LO phonons induced by pulses with a
relative polarization angle of π/4 with (a) θ = 0 and (b) θ = π/2.
The vertical axis is normalized such that the maximum value is 1.

In this geometry, only phonon interference is induced by
the forbidden Raman scattering, and electronic interference
is induced by the allowed scattering on paths 3 and 4, as
shown in Fig. 6. The amplitude of the LO phonons induced
via forbidden Raman scattering at θ = 0 is the same as that
at θ = π/4. By contrast, the amplitude of the LO phonons
induced via the allowed Raman scattering shows interference
fringes with fast oscillation at a frequency of 2�0 owing
to electronic interference during the overlap between pulses.
Figure 6(b) shows the amplitude of the LO phonons induced
via both the allowed and forbidden Raman scattering with
β/α = 6. The interference fringes have a fast oscillation with
a frequency of �0. However, the superposition of the results
from each Raman tensor is different from the interference
fringes in Fig. 6(b), because there is no contribution from
the cross terms due to the quantum-path interference. Further-
more, Figs. 6(a) and 6(b) show the difference of the rapidly
oscillating electronic interference fringes. These oscillate at
2�0 for allowed Raman scattering only [Fig. 6(a)] and at �0

for both allowed and forbidden scattering [Fig. 6(b)]. These
features can be explained as below.

In the condition (ϕ = π/2, θ = 0), the allowed Raman
scattering [Fig. 6(a)] generates LO phonons via paths 3 and 4.
Paths 3 and 4 induce factors of exp(−i�0t12) and exp(i�0t12),
respectively.

FIG. 8. Phonon amplitude as a function of t12 for the space-
charge model. The dephasing rate � is set to be 0.03 eV. The vertical
axis is normalized such that the maximum value is 1.

When the double pulses overlap at t12 ∼ 0, the phonon
amplitude is roughly proportional to | exp(−i�0t12) +
exp(i�0t12)|, resulting in the 2�0 oscillation. As the delay
time increases, the contribution of path 4 decreases rapidly,
so that the rapid oscillation disappears. By contrast, the co-
existence of allowed and forbidden Raman scattering induces
phonon interference via paths 1 and 2. The contribution for
the slow oscillation is treated as a constant (e.g., denoted
as A). The absolute value of the sum |A + exp(−i�0t12) +
exp(i�0t12)| causes the dominant �0 oscillation because the
value of A (the contribution of the β term) is much larger than
unity by assumption.

C. Pulses with a relative polarization angle of π/4 (ϕ = π/4)

Figure 7 shows the calculated amplitude of LO phonons
with β/α = 6 for pulses with a relative polarization angle of
π/4 as a function of the pulse delay t12. The electronic and
phonon interference fringes are found at θ = 0 and θ = π/2.
In contrast with the parallel-polarized pulses, the fringe pat-
tern is slightly dependent on θ . For example, the amplitude of
the electronic interference at t12 ≈ 50 fs for θ = π/2 is larger
than that at θ = 0. The interference fringes in this polarization
condition can be understood as the superposition of interfer-
ence by the parallel- and orthogonally polarized pulses.

In the model we used the single-electron approximation.
This might be reasonable for the ISRS process and the cal-
culated results well represent the experimental results for the
parallel condition [27]. The multielectron effects, for exam-
ple the relaxation by electron-electron interactions, might be
considered for an absorption process.

D. Case of the mechanism with space-charge field

Figure 8 shows the amplitude of the coherent phonons
generated by the double pulse with parallelly polarized-pulse
excitation via the suppression of the space-charge field as a
function of the pump-pump delay (t12). The dephasing rate �

was set to be 0.03 eV. The interference fringe with a period of
2.7 fs also shows a collapse and revival feature as that via the
ISRS process with a large β. However, the amplitude of the
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phonons at timing when the electronic interference collapse
(approximately 60 fs) is smaller than that via the ISRS pro-
cess. The interference fringes obtained for the space-charge
fields with � = 0.03 eV is similar to that for the ISRS with
� = 0.06 eV (shown in Appendix B). The polarization depen-
dence of the amplitude of LO phonons are same as that for the
large β case for the ISRS process because the electron-phonon
interaction is isotropic.

IV. CONCLUSION

We derived a theoretic model for the coherent control of
LO phonons in GaAs (001) by relative-phase locked and po-
larization controlled double-pulse excitation. By considering
the the impulsive stimulated Raman scattering processes both
for the allowed and forbidden transitions, a variety of the
interference fringe patterns in the delay-time dependence of
the LO phonon amplitude were predicted theoretically. These
features are results of the quantum-path interference in the
time domain working together with the additional degrees of
freedom of the polarization of photons.

In the present work we adopted a model of GaAs as the
simplest test material in this subject. Since the Raman scat-
tering in solids is directly related to the microscopic origin of
the interactions between the local deformations of solids and
the electronic structures, the effect of the optical polarization
plays a quite important role in the generation and detection
processes of the coherent phonons. This is especially true in
the case of coherent phonons in the materials with asymmetric
interaction modes, for example bismuth, which has more than
two optical phonon modes and electronic states and includes
Jahn-Teller interactions [46]. The experimental and theoret-
ical studies of the coherent phonons will be further extended
by taking account of the polarization correlation working with
the phase-locked double pulse excitation method.
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APPENDIX A: THE PERTURBATIVE SOLUTION
OF THE DENSITY OPERATOR

We show details of the perturbation calculation of the den-
sity operator in ISRS process and derivation of Eqs. (16)–(20).
In the interaction picture, the time evolution of the electron-
phonon couples state |ψ (t )〉 is given by

ih̄
d

dt
|ψ̃ (t )〉 = H̃I (t )|ψ̃ (t )〉, (A1)

in which |ψ̃ (t )〉 ≡ exp[iHt/h̄] |ψ (t )〉 and H̃I (t ) =
eiH/h̄HI (t )e−iH/h̄ with a wave function |ψ (t )〉 in the
Schrödinger picture. The equation in Eq. (A1) is formally
solved as

|ψ̃ (t )〉 = exp+

[
− i

h̄

∫ t

−∞
H̃I (τ )dτ

]
|ψ̃ (−∞)〉. (A2)

The initial state is assumed as |ψ̃ (−∞)〉 = |g, 0〉. We
calculated the integral with the second-order perturbative ex-
pansion.

The time evolution of the density operator by ISRS is
expressed by the double-sided Feynman diagrams (Fig. 2).
Here we describe the calculation for the path 1 as an example.
For convenience, the excited electronic states are denoted as
|e1, k〉 → |e1〉 and |e2, k〉 → |e2〉. In the case of path 1, the
photoexcitation and deexcitation processes of the electronic
states are caused by pulse 1.

At time t1, the dipole interaction with pulse 1 induces
photoexcitation process (|g, 0〉 → |e1, 0〉), and at time τ , the
phonon is created (|e1, 0〉 → |e′

1, 1〉) due to electron-phonon
interaction. By the interaction, polarization of the electronic
state is changed by the terms (|ex〉 〈ey| and |ey〉 〈ex|) or
preserved by the terms (|ex〉 〈ex| and |ey〉 〈ey|). At time t2, the
dipole interaction induces deexcitation process of the elec-
tronic state (|e′

1, 1〉 → |g, 1〉).
Then the density operator ρ1(t ) was obtained as

ρ1(t ) = i(α sin 2θ + β )
∑

k

(
μkE0

h̄

)2

ωe−iωt
∫ t2

t1

dτ

×
∫ t

−∞
dt2

∫ t2

−∞
dt1 f (t1) f (t2)e− i

h̄ (εk−h̄�0 )(t2−t1 )

× e− η

h̄ |t2−t1|eiωτ |g, 1〉 〈g, 0|. (A3)

Since the only term involved in the integration of time τ is
eiωτ , we calculate

∫ t2
t1

eiωt dτ and get

ρ1(t ) = (α sin 2θ + β )

(
E0

h̄

)2

e−iωt
∑

k

|μk|2

×
∫ t

−∞
dt2

∫ t2

−∞
dt1 f (t1) f (t2)e− i

h̄ (εk−h̄�0 )(t2−t1 )

× e− η

h̄ |t2−t1|(eiωt2 − eiωt1
) |g, 1〉 〈g, 0|

= (α sin 2θ + β )P11(t ). (A4)

The term α sin 2θ + β comes from 〈e1|e′
1〉:

〈e1|e′
1〉 = α(sin θ cos θ + sin θ cos θ ) + β(cos2 θ + sin2 θ )

= α sin 2θ + β. (A5)

At a long time delay t from the pump pulses, the upper
limit of the integral can be replaced by ∞. We performed
the integration by substitution with t1 = s − u/2, t2 = s +
u/2. Using these parameters, we rewrite the terms f (t1) f (t2)
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and eiωt2 − eiωt1 as

f (t1) f (t2) = 1

πσ 2�2
0

exp

(
−2s2

σ 2
− u2

2σ 2

)
, (A6)

eiωt2 − eiωt1 = 2ieiωs sin

(
ωu

2

)
, (A7)

and get the function P11(t ) as a function of s and u:

P11(t ) = 2iAe−iωt
∑

k

|μk|2
∫ ∞

−∞
ds exp

(
−2s2

σ 2

)
eiωs

×
∫ ∞

0
du exp

(
− u2

2σ 2

)
e− i

h̄ εkuei�0ue− η

h̄ |u|

× sin

(
ωu

2

)
|g, 1〉〈g, 0|, (A8)

where A = [E0/(
√

πσ�0h̄)]2. The integration over s is a
Gaussian integral, which gives a common constant [G =√

π/2σ 2 exp(−σ 2ω2/8)] for each path. Therefore, we sum-
marize the common constant factor as B = AG, which yields
the equation

P11(t ) = Be−iωt 2i
∫ ∞

0
du exp

(
− u2

2σ 2

)
sin

(
ωu

2

)
ei�uF (u)

= Be−iωt L(0). (A9)

APPENDIX B: � DEPENDENCE

We calculated the amplitude of LO phonons with β/α = 6
for parallel-polarized pulses with φ = 0 and θ = 0 as a func-
tion of the pulse delay t12 and several � values [h̄� = 0.01,
0.02, and 0.06 (eV)], as shown in Fig. 9. With increasing de-
cay constant �, the electronic coherence decreased at a faster
rate. The electronic interference fringes show the collapse at
time tc and revival. The amplitude of the LO phonons at tc
decreases with increasing �.

FIG. 9. Amplitude of LO phonons for parallel polarization
for different decay constants: (a) h̄� = 0.01, (b) h̄� = 0.02, and
(c) h̄� = 0.06 (eV). The vertical axis is normalized such that the
maximum value is 1.
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