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Non-Hermitian systems with parity-time (PT ) symmetry have attracted increasing interest due to their
intriguing properties and associated applications. Inspired by that, we propose here an acoustic anti-parity-time
(A-PT ) symmetric structure with metamaterials featuring balanced positive and negative indices, together
with equal gain/loss. According to the derived scattering matrix, we demonstrate its extraordinary scattering
properties. For example, the spontaneous phase transition of the scattering matrix is observed, by simply
modulating the frequency, gain/loss, or geometric width. In the absence of gain/loss, the A-PT symmetric
structure degrades into a pair of complementary media, resulting in bidirectional total transmission. At the zero
and pole of the scattering matrix, the structure behaves as an acoustic coherent perfect absorber and equivalent
laser, respectively, which can perfectly absorb two-port coherent incident waves and radiate two coherent output
waves with extensive and equal amplitudes. Different from that in the PT symmetric structure, these three
effects based on the A-PT symmetric structure are all achieved in the symmetric phase of the scattering matrix,
resulting in the symmetric intensity distributions. Besides, the coherent perfect absorption and lasing modes
of the A-PT symmetric structure are continuous and symmetric in the parameter space, which may facilitate
further experimental realizations. The proposed A-PT symmetric structure provides an alternative method to
demonstrate the physics of the non-Hermitian Hamiltonian, and may offer an alternative approach to design
acoustic functional devices such as absorbers, sensors, and amplifiers.
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I. INTRODUCTION

Recently, non-Hermitian systems, such as the famous
parity-time (PT ) symmetric structure, have attracted increas-
ing interest due to their intriguing properties and associated
applications. In 1998, Bender and Boettcher proved that
non-Hermitian Hamiltonian with PT symmetry, defined by
[PT , H ] = 0, could have a real energy spectrum up to a
critical value of the imaginary part of the potential parameter
[1]. At the critical value, which is referred to later as an
exceptional point, the PT symmetry will be broken spon-
taneously, resulting in a spontaneous phase transition from
symmetric phase to symmetry-broken phase, where the spec-
trum becomes complex. The concept of PT symmetry was
further introduced into the fields of optics and acoustics based
on the analogy between the Schrödinger equation in quantum
mechanics and the classical wave equation [2–18]. PT sym-
metric systems, which were realized based on balanced gain
and loss [2–13] or loss alone [14–18], exhibited numerous
interesting and unusual phenomena, such as power oscilla-
tions [2–4], simultaneous coherent perfect absorption (CPA)
and lasing [5–8], anisotropic transmission resonances [9],
topological states [10,16], one-way cloaking [11], invisible

*weiqi@njnu.edu.cn
†wudajian@njnu.edu.cn

sensing [12], phonon lasing [13], optical transparency [14],
asymmetric transport [15], and unidirectional focusing [17].

As another striking non-Hermitian Hamiltonian, anti-
parity-time (A-PT ) symmetry, defined by {PT , H} = 0, may
facilitate the experiments since it requires either gain or loss
[19–28]. A-PT symmetric systems were proposed based on
positive and negative index materials [19], cold-atom lattices
[20], flying atoms [21], nonlinear structure [22], coupled
waveguide systems [23–25], electrical circuit resonators [26],
and opposite convection flows [27]. Such systems lead to
various intriguing effects, such as continuous lasing spectrum
[19], constant refraction [23], chiral mode conversion [24],
energy difference conserving dynamics [26], and coherent
switch [28]. However, there have not been many reports of
acoustic A-PT symmetric structure. On the other hand, meta-
materials have been widely demonstrated to control acoustic
waves, but previous efforts were mostly based on modulating
the real parts of the constitutive parameters [29–49]. The
acoustic A-PT symmetric structure, if it is realized based on
metamaterials, may extend the study of metamaterials into the
realm of complex constitutive parameters.

In this paper, we propose a one-dimensional (1D) acoustic
A-PT symmetric structure with metamaterials, which fea-
tures balanced positive and negative indices, together with
equal gain/loss, namely, a complex refractive index satisfying
n(x) = −n∗(−x). The transfer matrix method is employed
to derive the acoustic propagation and scattering matrix of
the A-PT symmetric structure. By modulating the structure
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FIG. 1. Schematic diagram of a 1D acoustic anti-parity-time
(A-PT ) symmetric structure, consisting of a pair of positive-index
material (PIM) and negative-index material (NIM) immersed in a
passive background medium (the leftmost and rightmost regions).
The PIM and NIM have the same width d . The black lines indicate
the hard walls of the structure.

parameters such as frequency, gain/loss, or geometric width,
we observe a spontaneous phase transition, between a sym-
metric scattering phase and a symmetry-broken phase, for the
scattering matrix at the exceptional point. The A-PT symmet-
ric structure works as a pair of complementary media [50,51]
in the absence of gain/loss, leading to the bidirectional total
transmission. At the zero of the scattering matrix, the structure
works as an acoustic coherent perfect absorber, which can per-
fectly absorb two-port coherent incident waves with specific
amplitude and phase relationships. At the pole of the scat-
tering matrix, the structure behaves as an acoustic equivalent
laser that radiates two coherent output waves with equal and
extensive amplitudes. Unlike the PT symmetric structure, the
CPA and lasing modes of the A-PT symmetric structure are
continuous and symmetric in the parameter space, which may
facilitate further experimental realizations.

II. STRUCTURE CONFIGURATION

A 1D acoustic A-PT symmetric structure could be re-
alized with a complex refractive index satisfying n(x) =
−n∗(−x), together with a real mass density distribution
ρ(x) = −ρ(−x). It can be generally implemented with com-
plex acoustic constitutive parameters that feature balanced
positive index and negative index, together with equal gain or
loss. Figure 1 shows the schematic diagram of a 1D acoustic
A-PT symmetric structure, consisting of a pair of positive-
index material (PIM) and negative-index material (NIM)
immersed in a passive background medium (the leftmost and
rightmost regions). The PIM and NIM have the same width d .
Here, the background medium is taken to be air with a density
of ρ0 = 1.21 kg/m3 and a velocity of c0= 343m/s. The effec-
tive mass densities of the PIM and NIM are ρ0 and −ρ0, while
their refractive indices are α + iδ and −α + iδ, respectively.
Here, α is a real and positive parameter. The real parameter δ

denotes the gain or loss of the PIM/NIM, where positive δ cor-
responds to gain and negative δ corresponds to loss. Though
the acoustic gain has not yet been found in natural materials, it
can be effectively realized in artificially constructed structures
based on approaches using acoustic active control [12]. The
effective complex refractive index of the proposed acoustic

structure then reads n(x) = {α + iδ, − d < x < 0
−α + iδ, 0 < x < d , satisfying the re-

quirement for the A-PT symmetry, namely, n(x) = −n∗(−x).
Thus, the proposal can be regarded as a 1D acoustic A-PT
symmetric structure.

By comparing the 1D acoustic wave equation [see Eq. (A1)
in Appendix A] with the time independent Schrödinger
equation [52], one could express the acoustic equivalent
Hamiltonian as H = −(d2/dx2) + k2

0[1 − n2(x)]. For the pro-
posed acoustic A-PT symmetric structure, where n(x) =
−n∗(−x), the corresponding Hamiltonian is invariant under
PT operation. However, the scattering property of the pro-
posal, as discussed in the following, is different from that of
the PT symmetric systems [5–9], where n(x) = n∗(−x), due
to the different continuous properties for the pressure field
and its spatial derivation. Specifically, for the proposed A-PT
symmetric structure, the spatial derivation of the pressure field
changes abruptly at the boundaries of the PIM and NIM, due
to the opposite sign of the mass densities of the PIM and
NIM, although the pressure field is still continuous at the
boundaries.

III. DERIVATION OF SCATTERING MATRIX

In the following, we study acoustic wave propagation in
the A-PT symmetric structure based on the transfer matrix
method. In a stable state for continuous plane wave inci-
dence, as shown in Fig. 1, each interface of the structure can
be regarded as a secondary plane wave source, which emits
forward (propagating to right) and backward (propagating to
left) propagating waves. For plane harmonic acoustic waves
propagating upon the A-PT symmetric structure, the pressure
field (p) in the background medium can be expressed as

p(x) =
{

Aeik0(x+d ) + Be−ik0(x+d ), x < −d
Ceik0(x−d ) + De−ik0(x−d ), x > d

. (1)

Here, k0 is the wave number for the background medium, A
and B are the amplitudes of the backward and forward propa-
gating waves within the left background medium, and C and D
are the amplitudes of the backward and forward propagating
waves within the right background medium, respectively. The
time variation is omitted here for convenience.

To further derive the propagation formula for acoustic
waves, we introduce a transfer matrix to describe the cor-
relation between the acoustic fields in the left and right
background media as

[
A
B

]
= M

[
C
D

]
. (2)

Here, M =
[

M1,1 M1,2
M2,1 M2,2

]
defines the transfer matrix of the

A-PT symmetric system. In order to derive the transfer
matrix, we employ the continuity conditions of the acous-
tic pressure and normal velocity at the interfaces (located
at x = –d, 0, and d) between the background medium and
the PIM/NIM. The four elementary components (M1,1, M1,2,
M2,1, and M2,2) of the transfer matrix M can be deduced,
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respectively, as (see Appendix A)

M1,1 = 1

4(α2 + δ2)

[
4δ2 cos γ − 2δ(−α2 − δ2 + 1) sin γ + α(α2 + δ2 + 2α + 1)eχ + α(−α2 − δ2 + 2α − 1)e−χ

]
,

M1,2 = 1

4(α2 + δ2)

[
4iαδ cos γ − 2δ(−α2 − δ2 − 1) sin γ + α(α2 + δ2 − 2iδ − 1)eχ + α(−α2 − δ2 − 2iδ + 1)e−χ

]
,

M2,1 = 1

4(α2 + δ2)

[
4iαδ cos γ − 2δ(α2 + δ2 + 1) sin γ + α(−α2 − δ2 − 2iδ + 1)eχ + α(α2 + δ2 − 2iδ − 1)e−χ

]
,

M2,2 = 1

4(α2 + δ2)

[
4δ2 cos γ − 2δ(α2 + δ2 − 1) sin γ + α(−α2 − δ2 + 2α − 1)eχ + α(α2 + δ2 + 2α + 1)e−χ

]
. (3)

Here, χ = 2δk0d and γ = 2αk0d . It is straightforward to find
that

Im(M1,1) = Im(M2,2) = 0, M1,2 = −M∗
2,1, det(M ) = 1.

(4)
It is worth pointingout that the equation det(M ) = 1 orig-

inates from reciprocity [53], which can be proved as follows.
For the case of single left (labeled L) or right (labeled R)
incidence, where the respective boundary condition B = 0
or C = 0 is imposed, the complex transmission (tL or tR)
and reflection (rL or rR) coefficients of the A-PT symmetric
structure can be expressed in terms of the components of the
transfer matrix M as

tL = M1,1M2,2 − M1,2M2,1

M2,2
, tR = 1

M2,2
,

rL = M1,2

M2,2
, rR = −M2,1

M2,2
. (5)

Acoustic reciprocity holds for the proposed system, since
there is no nonlinearity, moving media, spatiotemporal
modulation, and bianisotropy [54]. Reciprocity guarantees
symmetrical relations between field quantities when sources
and receivers are interchanged. For the proposed system,
therefore, acoustic reciprocity straightforwardly leads to tL =
tR. By inserting Eq. (5) into tL = tR, one can finally obtain
M1,1M2,2 − M1,2M2,1 = 1, namely, det(M ) = 1.

Equation (5), together with acoustic reciprocity, states that
the acoustic transmissions of the A-PT symmetric structure
under left and right incidence are always equal, independent
of the incident direction. Hereafter, they are uniformly de-
noted as t = tL = tR = 1/M2,2. However, the reflections for
left and right incidence are different from each other in gen-
eral. By inserting Eq. (3) into Eq. (5), the transmission and
reflections can then be explicitly expressed. Equations (4) and
(5) can further lead to

Im(t ) = 0, rL = r∗
R, (6)

which are nothing else but the intrinsic properties of a 1D
A-PT symmetric structure (see Appendix B). For the case
of one-port incidence, the pure real-valued t indicates that
the transmitted wave is either in phase or antiphase with the
incident wave, while rL = r∗

R states that the left and right
reflections are equal in amplitude but with opposite phase.
Namely, the left reflectance (RL = |rL|2) and right reflectance
(RR = |rR|2) are equal, so they are uniformly denoted as the

reflectance:

R = RL = RR = |rL(R)|2. (7)

It is different for the PT symmetric structure, where the
amplitudes of the left and right reflections are usually unequal
and their phase difference is 0 or π , and the transmission
coefficient is usually complex [5–8].

Based on the transmission (t) and reflections (rL and rR),
the scattering matrix S of the A-PT symmetric structure,
which relates the two outgoing waves and the two incoming
waves through

[A
D

] = S
[B

C

]
, can be further deduced as

S =
[

rL t
t rR

]
. (8)

IV. SCATTERING PROPERTIES

Equation (5) states that the transmission and reflections
are dependent on the variables d , δ, and the circular fre-
quency (ω) of the acoustic wave. Therefore, there are three
approaches to adjusting the scattering properties: tailoring
the gain/loss of the materials, tuning the frequency of the
incident acoustic wave, and scaling the structure geometric
size. The third approach is more practical because the first
two approaches suffer from the material dispersion. In this
paper, we mainly discuss the effect of the variation of these
three parameters on the scattering characteristics of the A-PT
symmetric structure. To verify the validity of the analytical
results, numerical simulations based on the finite element
method are also carried out to demonstrate the pressure field
distributions of the system. The height of the structure does
not influence the acoustic scattering, and it is set to 2 m in all
numerical simulations.

A. Spontaneous phase transition of the scattering matrix

The scattering matrix described by Eq. (8) has two eigen-
values as

λ± = Re(rL ) ±
√

t2 − Im2(rL ), (9)

and the corresponding two eigenvectors are


± =
[

B±
C±

]
=

[ −t
iIm(rL ) ∓

√
t2 − Im2(rL )

]
. (10)
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Each eigenvector of the S matrix corresponds to a scattering
eigenstate, where two particular coherent waves with am-
plitudes of B+ (or B−) and C+ (or C−) are simultaneously
incident on the structure from the left and right sides, respec-
tively, and the amplitudes of the two scattered waves are λ+B+
(or λ−B−) and λ+C+ (or λ−C−) [9]. For a scattering eigen-
state, the corresponding eigenvalue quantitatively describes
how the incident waves are scattered, since the ratio between
the amplitudes of the scattered and incident waves is |λ±|.
Therefore, |λ±| could be referred to as the scattering strengths
for the eigenstates.

Equations (9) and (10) suggest two phases for both
the eigenvalues and eigenvectors of the scattering matrix,
which correspond to two different scattering behaviors. When
|t | > |Im(rL )|, each eigenvector is PT symmetric itself, i.e.,
PT 
± ∝ 
±, so the eigenstates are in the PT symmetric
scattering phase. Besides, the intensities of the two incidences
in a scattering eigenstate are equal, namely, |B±/C±| = 1.
In this phase, the eigenvalues λ± are both real but unequal
(bifurcate). Real eigenvalues indicate that the two symmetric
incidences are either damped or amplified without any phase
added during the scattering process of an eigenstate. More-
over, unequal eigenvalues indicate that the incidences are
damped/amplified with different strengths for the two eigen-
states. The other phase, where |t | < |Im(rL )|, is then referred
to as the PT symmetry-broken phase, since PT 
± ∝ 
∓,
i.e., the PT operation transforms one eigenvector into the
other. Here, the intensities of the two incidences in a scatter-
ing eigenstate are different, namely, |B+/C+| = |C−/B−| �= 1,
and the eigenvalues λ± are complex and conjugated (λ+ =
λ∗

−). In the symmetry-broken phase, the scattering strengths
|λ±| are equal due to the conjugated relation of the eigenval-
ues, so the incidences are damped/amplified with the same
strength for the two eigenstates. During the scattering process
of an eigenstate in this phase, the two asymmetric inci-
dences are scattered with an additional phase arg(λ±). At
|t | = |Im(rL )|, which is referred to as an exceptional point, a
spontaneous phase transition occurs for both the eigenvalues
and eigenvectors of the scattering matrix. Phase transition
for eigenstates is also observed in other A-PT symmetric
systems [23,24].

As an example, we suppose a structure with parameters
α = 1.243 and δ = 0.0932 (corresponding to gain), and adjust
the product of circular frequency and geometric width (ωd) to
explore the spontaneous phase transition process. Figures 2(a)
and 2(c) show the resulting scattering strengths |λ±| and
|B±/C±| versus ωd. When ωd < 6160, |λ±| are different and
|B±/C±| are unitary, implying that the scattering matrix is
in the symmetric phase. However, when ωd > 6160, |λ±|
are the same and |B±/C±| are nonunitary, indicating that the
scattering matrix is under the symmetry-broken phase. The
spontaneous phase transition occurs at the exceptional point
ωd = 6160, where the absolute values of the eigenvalues meet
and bifurcate. It can be observed that there are two sharp peaks
(at ωd = 4080) for the curves of |λ±|, where two eigenvalues
both tend to infinity, corresponding to the acoustic equivalent
lasing mode. In this case, the point ωd = 4080 is called the
pole of the scattering matrix.

As another example, we only flip the sign of δ while keep-
ing other structure parameters constant. Namely, α = 1.243

FIG. 2. Analytical results of (a), (b) the eigenvalues and (c)
|B±/C±| versus ωd. The blue solid (red dotted) line shows |λ−|
(|λ+|). Here, α = 1.243 in all cases. In (a), (b), δ = 0.0932 and δ =
–0.0932, respectively. The vertical dashed lines indicate the locations
of ωd = 4080 and ωd = 6160, corresponding to the pole/zero and
exceptional point, respectively.

and δ = –0.0932 (corresponding to loss). Figures 2(b) and
2(c) show the resulting scattering strengths |λ±| and |B±/C±|
versus ωd. The phase transition between the symmetric phase
and the symmetry-broken phase can also be observed at ωd =
6160. Case ωd < 6160 corresponds to the symmetric phase,
while case ωd > 6160 corresponds to the symmetry-broken
phase. Therefore, the spontaneous phase transition process
for δ = –0.0932 [see Figs. 2(b) and 2(c)] is the same as that
for δ = 0.0932 [see Figs. 2(a) and 2(c)], and the exceptional
points are both at ωd = 6160. As shown in Fig. 2(c), the ratios
|B±/C±| for δ = ±0.0932 are the same, because the ratios
|B±/C±|, according to Eq. (10), are dependent on |δ|. How-
ever, there is a valley, instead of the peaks for δ = 0.0932, for
the scattering strength curves at ωd = 4080, corresponding to
an acoustic CPA mode. In this case, the point ωd = 4080 is
called the zero of the scattering matrix.

We further explore the phase transition process of the
scattering matrix in the ωd-δ parameter space, as shown in
Fig. 3(a). The white region corresponds to the symmetric
scattering phase, while the gray regions correspond to the
symmetry-broken phase. The boundaries between the white
and gray regions indicate the phase transition. When the
gain/loss δ is small and the frequency is low, the scattering
matrix is in the symmetric phase. When the gain/loss δ is
large and the frequency is high, the scattering matrix is in
the symmetry-broken phase. Therefore, for a fixed frequency,
larger gain/loss always leads to the symmetry-broken phase.

134110-4



ACOUSTIC ANTI-PARITY-TIME SYMMETRIC … PHYSICAL REVIEW B 104, 134110 (2021)

FIG. 3. Phase diagram of the scattering matrix. The blue dotted line, black solid line, and red dotted line represent the bidirectional total
transmission, CPA mode, and lasing mode solutions for the A-PT symmetric structure, respectively. In (a), α = 1.243; in (b), δ = 0.0932.

For a fixed gain/loss, higher frequency favors the symmetry-
broken phase. Moreover, it is interesting to find out that the
phase diagram of the scattering matrix is symmetric to δ = 0.
In the formula, this symmetric behavior originates from the
phase transition being determined by the quantitative relation-
ship between |t | and |Im(rL )|, which is further determined
by |δ|. In physics, if we flip the sign of δ, namely, replace
the local gain with loss (and vice versa), and keep other
structure parameters constant, the system undergoes nothing
else but a time reversal. Therefore, the phase of the scatter-
ing matrix remains unchanged. Figure 3(b) depicts the phase
diagram in the ωd–α parameter space. The phase bound-
ary features a sawtooth profile. Roughly speaking, increasing
α shifts the phase boundary toward high frequency. At a
fixed ωd, the symmetry-broken phase lies in the range of
smaller α, while the symmetric phase lies in the range of
larger α.

The amplitudes and phases of the transmission and re-
flection are also investigated based on Eqs. (3) and (5). The
model parameters are the same as that in Fig. 2(a); namely,
α = 1.243 and δ = 0.0932. Figures 4(a) and 4(b) plot the
transmittance (T = |t |2) and reflectance R in logarithm versus
ωd, where a sharp peak located at the pole (namely, ωd =
4080) can be observed for both T and R. The peaks are all
located at ωd = 4080 for the curves of eigenvalues, transmit-
tance, and reflectance, as shown in Figs. 2(a), 4(a), and 4(b),
respectively. At the phase transition point (at ωd = 6160), no
particular property is found for T and R. Figures 4(c) and 4(d)
show the phases of the left/right reflection and transmission
coefficients versus ωd. At the pole, there is a π jump in phase
for all reflection and transmission coefficients. Due to the
abrupt change of phase, the delay times for all reflection and
transmission coefficients show a delta function behavior as
the variable ωd is varied. Therefore, at the pole, the reflected
and transmitted waves can be trapped for a long time and
get amplified extremely by the local gain of the structure,
finally resulting in the acoustic equivalent lasing, where the
transmittance and reflectance both tend to infinity, as shown
in Figs. 4(a) and 4(b). Besides, the phases of two reflections
are opposite to each other, and the phase of transmission is
either 0 or π .

B. Bidirectional total transmission

Local gain/loss is important in an A-PT symmetric struc-
ture containing PIM and NIM. There is a special case where
the local gain/loss is zero (namely, δ = 0). Equations (3) and
(5) suggest that, when δ = 0, the transmission t and reflections

FIG. 4. Analytical results for (a) the transmittance T, (b) re-
flectance R, (c) phase of left/right reflection, and (d) phase of
transmission versus ωd. Here, α = 1.243 and δ = 0.0932. The ver-
tical dashed line indicates the location of ωd = 4080, corresponding
to a lasing mode.
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FIG. 5. Analytical results for the transmittance (blue solid line)
and reflectance (red dashed line) varying with ωd for different δ.
Here, α = 1.243. In (a)–(c), δ = 0.01, 0.001, and 0, respectively.

(rR and rL) degrade into

t = 1, rL = rR = 0, (11)

which are independent of d and ω. Equation (11) indicates
a bidirectional total transmission without any reflection, no
matter what the other parameters (such as the working fre-
quency, incident direction, and width of PIM and NIM) are.
In this case, the PIM and NIM form a pair of complementary
media, where they can be defined as the original medium
and complementary medium (and vice versa), respectively.
Acoustic wave propagation in the original and complementary
medium is bilaterally symmetrical about the interface. The
complementary medium can completely cancel the evolution
of acoustic waves in passing through the original medium.
Acoustically, the presence of the original medium is totally
“canceled” by the complementary medium. The acoustic wave
propagates through the structure just as if there is no PIM
and NIM, so the amplitude and phase of the transmitted wave
are exactly the same as those of the incident wave (namely,
t = 1). In the ωd–δ parameter space, the case δ = 0 is shown
by the blue dotted line in Fig. 3(a), where it is found that the
structure always works in the symmetric phase of the scatter-
ing matrix. Therefore, it is expected to be a symmetric field
distribution. This bidirectional total transmission induced by
the complementary medium is different from the transparency
effect of PT symmetric structure, where the unidirectional
transparency found at the exceptional point and the bidirec-
tional transparency induced by the Fabry-Perot resonance can
only work at specific frequencies and structural parameters
[5–8].

As an example, we set α = 1.243. Figures 5(a)–5(c) plot
the variation of transmittance and reflectance for δ = 0.01,
0.001, and 0, respectively. Figure 5(a) demonstrates that the

FIG. 6. Bidirectional total transmission achieved under one-port
incidence. Simulated pressure field distributions (upper panels) and
pressure amplitude distributions (lower panels) at the upper boundary
of the A-PT symmetric structure under (a) left and (b) right inci-
dences, respectively. Here, d = 2.04 m, α = 1.243, and δ = 0. The
amplitude and circular frequency of the incident waves are 1 Pa and
ω = 2000 rad/s. The vertical dashed lines indicate the boundaries
between the PIM, NIM, and background medium.

transmittance and reflectance undergo a great variation with
increasing ωd for δ = 0.01. For δ = 0.001, the variation range
of transmittance decreases, as shown in Fig. 5(b). When δ =
0, a unity transmittance and a zero reflectance are found in
the entire frequency range, as shown in Fig. 5(c). Further-
more, we demonstrate the bidirectional total transmission with
numerical simulations, as shown in Fig. 6. Here, α = 1.243,
δ = 0, d = 2.04 m, and ω = 2000 rad/s. It is found that the
pressure amplitudes in the left and right background media
are both 1 Pa in Figs. 6(a) and 6(b), which are equal to the
incident amplitude (1 Pa). Besides, the pressure amplitude
fields are symmetric to x = 0. The amplitude and phase of the
transmitted wave are exactly the same as those of the incident
wave regardless of incident direction, which verifies the effect
of bidirectional total transmission.

C. Continuous coherent perfect absorption spectrum

An acoustic CPA mode occurs when two outgoing waves
of the structure disappear; i.e., A = D = 0. Based on Eq. (2),
then, the condition of achieving CPA can be concluded as

M1,1= 0, B = M2,1C. (12)

The condition M1,1= 0 describes the structural parameters
which the A-PT symmetric structure should meet, and the
condition B = M2,1C determines the amplitude and phase re-
lationships of the two counterpropagating coherent incident
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waves. The solutions of M1,1= 0 correspond to the zeros of
the scattering matrix. According to Eq. (3), M1,1 is pure real,
so M1,1= 0 is a real function. When the parameters ωd and α

are fixed, there is always a δ that satisfies M1,1= 0. Besides,
the δ solution of M1,1= 0 is negative, indicating the required
loss in the PIM/NIM. Namely, there always exists a negative δ

where the A-PT symmetric structure can work as a coherent
perfect absorber. Therefore, the CPA mode solutions for the
A-PT symmetric structure are continuous in the parameter
space, as shown by the black solid line in Fig. 3(a). It is found
that the CPA mode takes place only in the symmetric phase
of the scattering matrix. According to Eq. (4), when M1,1= 0,
we can further obtain

|M2,1|= 1. (13)

Equation (13) indicates that, to excite the CPA mode, the
amplitudes of two coherent incidences must be equal. Besides,
the required phase difference between the two coherent inci-
dences is arg(M2,1), which may cover the entire range [0, 2π ].

The property of the incidences for the CPA mode achieved
in A-PT symmetric structure is different from that in the
positive-index medium with loss [55], the zero-index medium
with both gain and loss (ZIMGL) [56], and the PT symmetric
structure [5–8]. The systems in the first two cases are both
mirror symmetric, so the CPA is obtained under two coherent
incidences with equal intensity and a phase difference 0 or
π . Besides, the CPA mode spectrum for the positive-index
medium with loss is discrete in parameter space [55]. For
the ZIMGL in Ref. [56], loss and gain are both uniformly
distributed in space, but appear in different constitutive pa-
rameters of the medium. For a 1D PT symmetric structure
with similar arrangement, the four elementary components of
the transfer matrix M′ follow the properties as [5–9]

Re(M ′
1,2) = Re(M ′

2,1) = 0, M
′∗
2,2 = M ′

1,1. (14)

Since M ′
2,1 is pure imaginary, the relative phase difference

between the two incidences for the CPA mode achieved in
PT symmetric structure is either π/2 or −π/2. The ampli-
tudes of the two incidences are usually different. M ′

1,1= 0 is
a complex function, so the CPA mode solutions for the PT
symmetric structure are discrete in parameter space. Besides,
the CPA mode is achieved in the symmetry-broken phase of
the scattering matrix. On the contrary, the continuous CPA
mode spectrum of the proposed A-PT symmetric structure
may facilitate the experimental realization of acoustic CPA.

We simulate an example to achieve CPA by setting d =
2.04 m, ω = 2000 rad/s, α = 1.243, and δ = –0.0932. There-
fore, the element M1,1 ≈ 0, satisfying Eq. (12). Then the
element M2,1 = 0.9311 + 0.3665i, so the phase angle of M2,1

is 0.1194π . Therefore, in the simulation, two incident waves
have an amplitude of 1 Pa, a circular frequency of 2000
rad/s, and a phase difference of 0.1194π , impinging on the A-
PT symmetric structure from the right and left, respectively.
Figure 7 shows the pressure field distribution and the am-
plitude distribution at the upper boundary of the A-PT
symmetric structure. It is found that the amplitude distribution
is symmetric to x = 0, since the system works in the symmet-
ric phase of the scattering matrix. The pressure amplitudes
in the left and right background media are both 1 Pa, which

FIG. 7. Acoustic CPA achieved in the A-PT symmetric struc-
ture. (a) Simulated pressure field distribution and (b) pressure
amplitude distribution at the upper boundary of the A-PT symmetric
structure, under the incidence of two-port coherent waves with equal
amplitude of 1 Pa and a phase difference of 0.1194π . Here, d =
2.04 m, α = 1.243, δ = –0.0932, and ω = 2000 rad/s. The vertical
dashed lines indicate the boundaries between the PIM, NIM, and
background medium.

are equal to the amplitude of the incidence, implying that
the two coherent incident waves are totally absorbed by the
A-PT symmetric structure without any scattering. Therefore,
the A-PT symmetric structure does behave as an acoustic
coherent perfect absorber.

D. Continuous lasing spectrum

For a lasing mode, the boundary conditions B = C = 0
should be applied, so one can find the condition of achieving
lasing as

M2,2= 0. (15)

M2,2 = 0 further leads to diverged transmittance and re-
flectance; i.e., T → ∞ and R → ∞. The solutions of M2,2= 0
are referred to as the poles of the scattering matrix, describing
the required parameters of the A-PT symmetric structure.
According to Eq. (3), M2,2 is pure real, so M2,2= 0 is a real
function. Therefore, the lasing mode solutions for the A-PT
symmetric structure are continuous in the parameter space,
as shown by the red dashed line in Fig. 3(a). The continuous
CPA and lasing spectra are symmetric to δ = 0, since CPA is
a time-reversed counterpart of lasing. The lasing mode takes
place only in the symmetric phase of the scattering matrix.
When other parameters such as ωd and α of the structure
are fixed, there is always a δ that satisfies M2,2= 0. Besides,
the δ solution of M2,2= 0 is positive, indicating the required
gain. Namely, there always exists a positive threshold value δ

where the A-PT symmetric structure can work as a laser. By
inserting Eq. (15) and B = C = 0 into Eqs. (2) and (4), one
can obtain |M1,2|= 1 and A = M1,2D. Therefore, the lasing
mode based on the A-PT symmetric structure generates two
coherent outgoing waves with an equally extensive amplitude
and a phase difference arg(M1,2). It is worth nothing that the
lasing mode achieved here is different from that in the PT
symmetric case. According to Eq. (14), M ′

2,2= 0 is a complex
function, so the lasing mode solutions for the PT symmetric
structure are discrete in the parameter space. Besides, the
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FIG. 8. Acoustic lasing achieved under one-port incidence. Sim-
ulated pressure field distributions (upper panels) and pressure
amplitude/phase distributions (lower panels) at the upper bound-
ary of the A-PT symmetric structure under (a) left and (b) right
incidences, respectively. In the lower panels, the black solid (red
dashed) line depicts the amplitude (phase) of the pressure field. Here,
d = 2.04 m, α = 1.243, and δ = 0.0932. The amplitude and circular
frequency of the incident waves are 1 Pa and ω = 2000 rad/s. The
vertical dashed lines indicate the boundaries between the PIM, NIM,
and background medium.

lasing mode is achieved in the symmetry-broken phase for the
PT symmetric structure, so the corresponding two outgoing
waves usually differ in amplitude.

We show the characteristics of acoustic lasing with numer-
ical simulations in the following. The structural parameters
are set as d = 2.04 m, ω = 2000 rad/s, α = 1.243, and δ =
0.0932, so that the element M2,2 ≈ 0, satisfying Eq. (15). A
plane wave with amplitude of 1 Pa is incident on the A-PT
symmetric structure from the left and right sides, respectively.
Figures 8(a) and 8(b) show the corresponding pressure fields
(upper panels) and the pressure amplitude distributions (lower
panels) at the upper boundary of the structure. In both cases,
the pressure amplitudes in the left and right background media
are about 3520 Pa, which is much larger than the amplitude of
the incident wave (1 Pa). It can be found that the amplitudes
of the pressure fields are roughly symmetric to x = 0, but
the phases of the pressure fields are not symmetric. This is
because the two outgoing waves of the lasing mode have an
equally extensive amplitude but a phase difference arg(M1,2).
The quite strong fields in the background medium verify the
functionality of the acoustic laser.

V. CONCLUSION

We propose an acoustic A-PT symmetric structure with
a pair of positive and negative index metamaterials, which

features balanced positive and negative indices, together with
equal gain/loss. According to the derived scattering matrix,
we observe the spontaneous phase transition for the scattering
matrix, by simply modulating the frequency, local gain/loss,
or geometric width. In the absence of gain/loss, the A-PT
symmetric structure degrades into a pair of complementary
media, resulting in the bidirectional total transmission. At the
zero or pole of the scattering matrix, the structure behaves as
a coherent perfect absorber or a laser, respectively, which can
perfectly absorb two-port coherent incident waves or radiate
two coherent output waves with extensive intensity. Different
from that in the PT symmetric structure, these effects are all
achieved in the symmetric phase, resulting in the symmetric
intensity distributions. Besides, the CPA and lasing mode
spectrums of the A-PT symmetric structure are continuous
and symmetric in the parameter space, which may facilitate
the experimental realizations. The proposed A-PT symmetric
structure provides an alternative method to demonstrate the
physics of non-Hermitian Hamiltonian, and may offer an al-
ternative approach to design acoustic functional devices such
as absorber, sensors, and amplifiers.
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APPENDIX A: DERIVATION OF TRANSFER MATRIX M

For linear and harmonic acoustic waves propagating in a
1D structure, where all field quantities have a time variation
e−iωt with ω being the angular frequency, the spatial distri-
bution of sound pressure p(x) satisfies the 1D acoustic wave
equation

d2 p(x)

dx2
+

(
ω

c0

)2

n2(x)p(x) = 0. (A1)

Here, c0 is the acoustic velocity of the background medium,
and n(x) is the acoustic refractive index.

Consider a 1D acoustic multilayered structure consisting
of N layers of media, which is immersed in a background
medium with a density of ρ0 and a velocity of c0. The thick-
ness, density, and refractive index of the jth layer are d j =
x j − x j−1, ρ j , and n j , respectively, where x j−1 and x j denote
the coordinates of the left and right boundaries of the jth layer.
All these media are homogeneous and isotropic. Among them,
the 0th and (N + 1)-th layers are left and right background
media.

The total field within each medium could be regarded as
a superposition of forward and backward propagating waves.
Therefore, the pressure field (p) within the jth layer can be
expressed as

p j (x) = a je
ik j (x−x j ) + b je

−ik j (x−x j ), (A2)

where k j is the wave number for the jth layer; a j and b j

are the amplitudes of the backward and forward propagating
wave components, respectively. The scattering model of this
multilayered structure could be similarly arranged as Fig. 1.
Particularly, the pressure field in the background medium is
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expressed as

p0(x) = Aeik0(x−x0 ) + Be−ik0(x−x0 ), x < x0,

pN+1(x) = Ceik0(x−xN ) + De−ik0(x−xN ), x > xN , (A3)

Here, k0 is the wave number for the background medium,
A and B are the amplitudes of the backward and forward
propagating waves within the left background medium, and
C and D are the amplitudes of the backward and forward
propagating waves within the right background medium, re-
spectively. Accordingly, the normal velocity field (v) in each
medium can be expressed as

v j (x) = i

ωρ j

∂ p j (x)

∂x
. (A4)

The continuous conditions of acoustic pressure and normal
velocity fields at the interface x j lead to

p j (x j ) = p j+1(x j ).

v j (x j ) = v j+1(x j ). (A5)

By inserting Eqs. (A2) and (A4) into Eq. (A5), one can obtain[
a j

b j

]
= Mj

[
a j+1

b j+1

]
, (A6)

where

Mj = 1

2

[
1 + Z j

Z j+1
1 − Z j

Z j+1

1 − Z j

Z j+1
1 + Z j

Z j+1

][
e−ik j+1d j+1 0

0 eik j+1d j+1

]
. (A7)

Here, Zj = ρ j c0

n j
is the acoustic impedance for the jth layer

medium. By straightly iterating Eqs. (A6) and (A7), the acous-
tic fields in the left and right background media can be related
by [

A
B

]
= M

[
C
D

]
, (A8)

where the transfer matrix M =
[

M1,1 M1,2
M2,1 M2,2

]
finally reads

M = 1

2

(
N−1∏
j=0

Mj

)[
1 + ZN

ZN+1
1 − ZN

ZN+1

1 − ZN
ZN+1

1 + ZN
ZN+1

]
. (A9)

Equation (A9) describes the transfer matrix M for a general
multilayered structure, and the transmission and reflection
coefficients of the structure can be further expressed in terms
of the components of M. The transfer matrix method could
also deal with an inhomogeneous medium, since an inho-
mogeneous medium can be approximated with multilayered
homogeneous media.

As for the proposed A-PT symmetric structure shown
in Fig. 1, N = 2, ρ1 = ρ0, ρ2 = −ρ0, n1 = α + iδ, n2 =
−α + iδ, and d1 = d2 = d . By inserting these parameters into
Eq. (A9), one can obtain

M = 1

8

[
1 + Z0

Z1
1 − Z0

Z1

1 − Z0
Z1

1 + Z0
Z1

][
e−ik1d 0

0 eik1d

][
1 + Z1

Z2
1 − Z1

Z2

1 − Z1
Z2

1 + Z1
Z2

]

×
[

e−ik2d 0

0 eik2d

][
1 + Z2

Z0
1 − Z2

Z0

1 − Z2
Z0

1 + Z2
Z0

]
. (A10)

Here, k1 = (α + iδ)k0, k2 = (−α + iδ)k0, Z0 = ρ0c0, Z1 =
Z0

α+iδ , and Z2 = Z0
α−iδ . Simplifying Eq. (A10) leads to the ex-

plicit expression of M, as shown by Eq. (3).

APPENDIX B: DERIVATION OF EQ. (6)

Consider a 1D general acoustic A-PT symmetric struc-
ture, consisting of N layers of homogeneous and isotropic
media, immersed in a background medium with density ρ0

and velocity c0. The complex refractive index profile of the
A-PT symmetric structure could be arbitrary but satisfies
n(x) = −n∗(−x). The density of the A-PT symmetric struc-
ture is real and satisfies ρ(x) = −ρ(−x). With a similar
arrangement as Fig. 1, the transfer matrix M (at a real angular
frequency ω) of the general A-PT symmetric structure could
be obtained as Eq. (A9).

Now we carry out an operation,

ρ j → −ρ j, n j → −n∗
j . (B1)

Namely, we flip the sign of the density and replace the refrac-
tive index into its negative complex conjugate for each layer
(labeled j) of the general A-PT symmetric structure. Then,
the original transfer matrix M becomes its complex conjugate,
namely,

M → M∗. (B2)

This is because, under the operation of Eq. (B1), all the matrix
Mj [Eq. (A7)] and acoustic impedance Zj , which are used to
derive M as shown by Eq. (A9), become their corresponding
complex conjugates. Since the transmission and reflection
coefficients are expressed in terms of the components of M, as
shown by Eq. (5), these coefficients also become their corre-
sponding complex conjugates under the operation of Eq. (B1),
namely,

tL → t∗
L, tR → t∗

R, rL → r∗
L, rR → r∗

R. (B3)

It is noted that for the 1D A-PT symmetric structure satis-
fying n(x) = −n∗(−x) and ρ(x) = −ρ(−x), the operation of
Eq. (B1) is equivalent to flipping the structure in the left-right
direction. Therefore, this operation also leads to

tL → tR, tR → tL, rL → rR, rR → rL. (B4)

Comparing Eqs. (B3) and (B4), one can find

tL = t∗
R, rL = r∗

R. (B5)

Equation (B5) and t = tL = tR, guaranteed by acoustic reci-
procity, finally lead to Im(t ) = 0 and rL = r∗

R, as shown by
Eq. (6).
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