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Disorder classification of the vibrational spectra of modern glasses
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Using the coherent-potential approximation in heterogeneous-elasticity theory with a log-normal distribution
of elastic constants for the description of the Raman spectrum and the temperature dependence of the specific
heat, we are able to reconstruct the vibrational density of states and characteristic descriptors of the elastic
heterogeneity of a wide range of glassy materials. These descriptors are the nonaffine contribution to the shear
modulus, the mean-square fluctuation of the local elasticity, and its correlation length. They enable a physical
classification scheme for disorder in modern, industrially relevant glass materials. We apply our procedure to
a broad range of real-world glass compositions, including metallic, oxide, chalcogenide, hybrid, and polymer
glasses. Universal relationships between the descriptors on the one side, and the height and frequency position
of the boson peak, the Poisson ratio and the liquid fragility index on the other side are established.
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In contrast to crystalline materials, glasses exhibit ape-
riodic heterogeneity in local density, chemical composition,
and structural rigidity. This complicates the extraction of
structure-property correlations and predictive tools for exper-
imental materials design or classification. On the other hand,
statistical information may be obtained from the vibrational
spectrum of the materials, which can be probed by Raman
light scattering and by measuring the temperature dependence
of the specific heat. Here we use a mean-field theory which
links the vibrational spectrum to the statistics of elastic het-
erogeneity, to characterize glasses according to their disorder
strength and the characteristic correlation length of spatial
elastic fluctuations. These descriptors are shown to be related
to the elastic properties of the glass and the temperature
dependence of the viscosity of the melt (“glass fragility”)
and may therefore be helpful for designing new materials for
specific applications.

The extraordinary spatial homogeneity of glassy materi-
als underlies their many applications, as it leads to, e.g.,
optical transparency, characteristic fracture patterns, distinct
mechanisms of charge, heat and sound transport, or specific
solvation behavior. In turn, the ultimate limit of all of these
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properties lies in the length scale below which material homo-
geneity is broken. Following the curious observation that the
density of a glass is usually lower than that of its crystalline
counterpart (when chemical compositions were equivalent)
early hypotheses of network formation [1] and excess free
volume [2,3] were formulated for different classes of glass.
These led to the qualitative paradigm of glass structure, where
aperiodic heterogeneity in the atomic packing density, in net-
work rigidity and/or in the distribution of chemical species,
constitutes the primary difference to a crystalline lattice. Al-
though the process by which a supercooled liquid acquires the
rigid glassy state remains poorly understood [4,5], such types
of structural heterogeneity have been related to the heteroge-
neous dynamics of the liquid [6], liquid fragility [7], and the
nonergodicity factor [8].

However, across all types of glass, quantitative descriptors
for structural heterogeneity have been elusive, due to the in-
ability to describe glass structure beyond short length scales.
As a result of structural disorder, the fundamental tool for un-
derstanding crystal properties, namely the lattice symmetry, is
not available for glasses. Instead, empirical or semiempirical
regression models are frequently used for property predic-
tions. For example, the elasticity of multicomponent glasses
is often described through mean-field regression analysis of
bond energy density [9,10]. Although useful in their simplic-
ity, such practical approaches ignore localization phenomena
and nonaffinity, which are common to disordered materials
across the broadest range of length scales [11] and material
chemistries [12]. For example, for brittle glasses with strongly
covalent bonding, heterogeneous network topology has been
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identified to mediate nanoscale ductility [13] and macroscopic
plasticity [14,15].

It turned out that an important property of glasses is the
presence of random spatial fluctuations of local elastic con-
stants. It was shown that such heterogeneous elasticity is
intimately related to the occurrence of nonaffine displace-
ments [16–20]. In metallic glasses, a parameter denoted
flexibility volume was extracted from the spatial distribution
of the atomic mean-square displacement as probed by com-
putational simulation [21]. For two- and three-dimensional
Lennard-Jones glasses, correlated particle displacements with
a correlation length of 20–30 interparticle spacings were
found [18]. Similar observations were made in a computer-
generated model of amorphous silica [19].

When compared to crystals, the vibrational density of
states (VDoS) of glasses exhibits an anomalous excess in the
THz regime, which forms a maximum if the VDoS is divided
by the square of the frequency (“boson peak”) [22–24]. The
VDoS is directly accessible by means of inelastic nuclear [25]
and incoherent neutron scattering [26], but only indirectly by
inelastic coherent neutron [23,24,27], x-ray [28–30], and Ra-
man [14,31–33] scattering. Further information on the VDoS
in the THz regime can be obtained from the temperature (T )
dependence of the specific heat C(T ) [34,35], where the boson
peak is observed if plotted as C(T )/T 3. The possible origin
of the boson peak has been discussed rather controversely
[36–40]. However, many groups nowadays agree that in most
cases spatial fluctuations of the local elastic moduli cause
this anomaly [41–43], hence, studies of the THz vibrational
anomaly in the VDoS, in principle, provide access to the
descriptors of spatial elastic fluctuations.

The boson-peak related anomalies, including a character-
istic shoulder in the temperature dependence of the thermal
conductivity, can be rather successfully explained and de-
scribed by heterogeneous-elasticity theory (HET) [44]. Com-
bined with the self-consistent Born approximation (SCBA),
a relation of the excess VDoS with the sound attenuation
coefficient was established [45] and the results were tested in
detail against extensive molecular-dynamics simulations [41].
In the latter study it was also shown that the decrease of the
value of the shear modulus with respect to the average one
is due to nonaffine elasticity, and that HET accounts for this
effect.

As HET describes microscopically the vibrational dynam-
ics of a glass, all spectroscopic data can be expressed in
terms of the wave-number-dependent dynamic susceptibili-
ties, which are obtained from the statistics of the fluctuating
elastic constants. In particular, the Raman spectra are given
as wave-number integrals of these susceptibilities [31]. There-
fore, by means of HET, it is possible to unambiguously extract
the VDoS from Raman data [31,33,46]. This procedure has
been demonstrated to be more reliable than using a phe-
nomenological frequency-dependent coupling constant C(ω),
as is widely done in the literature [14,31,32].

However, within SCBA the description of the elastic dis-
order is restricted to weak and Gaussian fluctuations. As this
is not sufficient for the description of a very broad range of
disordered materials, HET has been generalized by means of
the coherent-potential approximation (CPA) [36,47]. Within
CPA an arbitrary distribution of local elastic constants can

be implemented, and there is no restriction to weak disorder.
However, a systematic analysis of a broad class of glasses by
means of HET-CPA has not yet been conducted.

We now present the results of a disorder classification of
modern glasses using HET-CPA with a log-normal distribu-
tion density of spatially fluctuating elastic constants. This
variant of HET features specific descriptors of the statistics
of the shear modulus, namely the variance, the geometric
mean, and the coarse-graining size, which is proportional to
the correlation length of the fluctuations. Using the scaling
properties of the CPA we obtain a relation between the first
two quantities, which reduces the descriptors to the disor-
der parameter σ 2 and the coarse-graining wave number ke.
Evaluating the vibrational spectra of a large number of glassy
materials we obtain correlations of these descriptors with the
boson peak frequency, the boson peak height, the Poisson
ratio, and the liquid fragility index. We achieve this goal
with experimental input from THz Raman spectroscopy and
low-temperature heat capacity, covering all known classes of
glass, from metallic to nonmetallic, chalcogenide, polymeric,
and hybrid materials.

I. THEORY

A. HET-CPA

Within HET-CPA the spatially fluctuating local shear mod-
uli G(ri ) ≡ Gi are converted to a macroscopic complex,
frequency-dependent modulus G(z) (z = ω + iε, ω = 2πν is
the angular frequency) by the self-consistent CPA equation〈

Gi − G(z)

1 + 1
3

[
Gi − G(z)

]
�(ke, z)

〉
P

= 0. (1)

The (arithmetic) average 〈· · · 〉P is performed with a log-
normal distribution density

P(Gi, G0, σ ) = 1

σ
√

2π

1

Gi
exp

{
− 1

2σ 2
[ln(Gi/G0)]2

}
. (2)

We chose this distribution because (i) it excludes negative
values of Gi, and (ii) for weak disorder σ 2 � 1 it reduces
to a Gaussian distribution1 (see Fig. 1), but for σ 2 values
around and larger than 1 it accounts for a broad range of
non-Gaussian disorder. This latter feature is not shared by
other strong-disorder distributions [47].

G0 and σ 2 are the first two descriptors of our classifica-
tion. G0 is the geometric mean of the Gi, also called “typical
value,” which is for this distribution equal to the median.
σ 2 = ln {1 + Var[Gi]/〈Gi〉2

P} is the disorder parameter, re-
lated in the indicated way to the relative variance. �(z) is the
susceptibility function, which is a linear combination of the
longitudinal and transverse local susceptibilities χL,T (ke, z),

�(z) = 3

k3
e

∫ ke

0
dkk4

[
4

3

1

−z2 + k2v2
L(z)

+ 2
1

−z2 + k2v2
T (z)

]

= 4

3
χL(ke, z) + 2χT (ke, z). (3)

1We note that for weak disorder the CPA [47] reduces to the self-
consistent Born approximation (SCBA) [41,44], which is based on
Gaussian elastic heterogeneity.
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FIG. 1. (a) Distribution P(Gi, G0, σ ) for some archetypal
glasses. The labels indicate the characteristic value of G0. (b) Ratio
of the shear modulus Gexpt and the typical shear modulus G0 vs the
disorder parameter σ 2 (symbols). Curved red line: G(0)/G0 vs σ 2 for
f (κ =2) = 0.8 according to the CPA relation (A10). Straight dashed
lines: Low-disorder CPA relation (6) for several values of f . The
shaded area indicates the accessible region within the limits of f (κ ).

The upper wave-number cutoff ke is the third descriptor of
our classification. ke = 3

√
2π2/Vc is related to the minimum

possible coarse-graining volume Vc for obtaining statisti-
cally independent local shear moduli Gi [47]. Therefore, ke

is inversely proportional to the correlation length2ξG of the
fluctuating elastic constants3 Gi. The complex frequency-
dependent sound velocities are given by

ρvT (z)2 = G(z), ρvL(z)2 = Kexpt + 4

3
G(z). (4)

Here ρ = MN/V is the mass density, M is the molecular mass,
N is the number of molecules, V is the sample volume, and
Kexpt is the experimentally determined bulk modulus. In our
model the fluctuations of the local bulk moduli are considered
to be negligible [36,41].

It is easily checked from Eq. (3) that the relation
χL,T (k, 0) = vL,T (0)−2 holds. Therefore, in the static ω = 0
limit the descriptor ke becomes irrelevant. The zero-frequency
limit of the frequency-dependent sound velocities are the
experimentally measured sound velocities vT = vT (0) =√

G(0)/ρ = √
Gexpt/ρ, vL = vL(0) =

√
[Kexpt + 4

3 Gexpt]/ρ.
These quantities, together with ρ, are used as input for our fit
procedure for obtaining the material descriptors. The dynami-
cal input are the Raman spectra and the temperature dependent

2In a CPA version for correlated spatial fluctuations [48] the inte-
gral up to ke is replaced by an integral over the Green’s functions
times a k dependent function f (k), which is proportional to the the
Fourier transform of the correlation function C(k) of the fluctuating
quantity. For correlation functions C(r), which are exponentially
decaying, f (k) is equal to 1 for small k values and then drops
monotonically towards 0 near ke.

3Comparing our obtained value of ke = 0.345 Å−1 for SiO2 with
the correlation length ξG = 33 Å obtained in a SiO2 simulation [19]
we have keξG = 11.4 as a proportionality factor.

specific heat. Within HET-CPA these vibrational spectra are
obtained from the dynamic sound velocities vL,T (z), which are
related to G(z) via relation (4) [see the Appendix]. The latter
is calculated self-consistently from the CPA equations (1), (3),
and (4) with the condition G(0) = Gexpt, using the log-normal
distribution [2]. The output are the descriptors G0, σ 2, and
ke. We emphasize that these descriptors have a well-defined
physical meaning.

B. Static descriptors and nonaffinity

Before we discuss the material characterizations obtained
by our fit procedure, we now establish a relation between
the first two descriptors G0, σ 2, and Gexpt. As shown in
the Appendix, the CPA equation [Eq. (A10)] for the ratio
G(0)/G0 = Gexpt/G0 does not depend further on G0, so this
ratio is a function of σ 2 with the parameter

f (κ ) = 1

3

(
2 + 4

4 + 3κ

)
, κ = Kexpt

Gexpt
, (5)

which varies very slowly with the ratio κ between the limits
f (∞) = 2/3 and f (0) = 1. As further shown in the Ap-
pendix, in the small σ 2 limit the relation between Gexpt/G0

and σ 2 takes the form

Gexpt

G0
= 1 − σ 2

(
f (κ ) − 1

2

)
≡ 1 − n. (6)

It has been demonstrated [41,43] that the lowering of the
macroscopic shear modulus with respect to the local average
is due to nonaffine elasticity. Therefore we call n (which
increases almost linearly with σ 2) the nonaffine parameter.
Then, relation (6), or its exact counterpart, Eq. (A10), com-
bine the parameters G0 and σ 2 into a single descriptor, i.e., σ 2

or n.

II. RESULTS

A. Nonaffinity and ratio Kexpt/Gexpt

In Fig. 1 we have plotted the ratio Gexpt/G0 = 1 − n vs σ 2

as obtained for a wide range of glassy materials. The full red
line corresponds to the exact relation (A10) with f (κ ) = 0.8,
which corresponds to κ = 2, being a representative value for
most of our materials. We further see from Fig. 1 that the CPA
line for f = 0.8 closely follows the straight dashed line given
by Eq. (6) for f = 0.75 in the regime σ 2 < 1, i.e., for low
disorder strength.

B. Spectral properties and the correlation length

We now turn to the discussion of the influence of disorder
on the spectral properties of glasses. We use the term “boson
peak”4 relating to the prominent maximum of the reduced
VDoS g(ω)/gD(ω) with gD(ω) = 3ω2/ω3

D . The Debye fre-
quency is given by ωD = kDvD, where kD = 3

√
6π2N/V is the

Debye wave number and vD = vT [ 1
3 (2 + [κ + 4

3 ]−3/2)]
−1/3

is
the Debye velocity. It has been demonstrated in the literature

4Very often in the literature the peak in the reduced Raman spec-
trum is also called boson peak, which causes some confusion.
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FIG. 2. Example of the CPA fit procedure for vitreous glyc-
erol. The parametric descriptors G0, σ 2, and ke are provided in the
Supplemental Material Table S3 [49]. (a) The CPA fit is shown
for the isobaric heat capacity Cp with experimental data extracted
from Ref. [50]. (b) The reduced Raman spectra IVV,V H/ω[n(ω) + 1]
extracted from HET-CPA for VV and VH geometries, respectively,
with experimental data from Ref. [51] (175 K) and using the de-
polarization ratio of Kojima [52]. (c) The resulting reduced VDoS
g(ω)/gD(ω) = g(ω)ω3

D/3ω2 are shown: Blue line: VDoS obtained
from the Cp data of (a), black line: VDoS obtained from the Raman
spectra of (b). Symbols: VDoS data obtained by inelastic neutron
scattering [53]. The dashed red line indicates the Debye level 3/ω3

D.

that the boson peak frequency ωb coincides with the so-called
Ioffe-Regel frequency at which the disorder-induced mean-
free path becomes equal to the transverse-acoustic wavelength
[41,42]. In the frequency range above ωb the disorder domi-
nates the vibrational spectrum

In Fig. 2 we demonstrate our fitting procedure for the
archetypal example of glycerol. In Figs. 2(a) and 2(b) we
plot the the reduced specific heat C(T )/T 3 and the reduced
Raman intensity IVV,V H (ω)/ω[n(ω) + 1] (see the Appendix)
together with the corresponding CPA fits. It is remarkable
that the VDoSs obtained from the two data sets [displayed in
Fig. 2(c)] almost agree with each other. Furthermore, there is
a fair agreement with the VDoS data obtained by incoherent
inelastic neutron scattering [53].

In Fig. 3 we have plotted the boson peak frequency ωb vs
the characteristic frequency ω0 = kev0, related to the descrip-
tors ke and G0 = ρv2

0 . We see that a precise linear relationship

ωb = 0.333 ω0 (7)

is obtained. Because ω0 ∝ ξ−1
G , we verify that the Ioffe-Regel

crossover from wavelike vibrations to disorder dominated
ones happens when the wavelength becomes of the order of
the correlation length ξG. In other words, if the mesoscopic
transverse sound velocity v0 is used to convert from the length
scale to the frequency scale, ξG determines the boson peak
frequency.
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FIG. 3. Frequency positions of the maxima in the reduced Ra-
man intensity (gray diamonds) and in the reduced VDoS (blue
triangles) against ω0 = kev0.

In Fig. 4(a) we have plotted the height of the boson peak
max{g(ω)/gD(ω)} vs the relative boson peak position ωb/ωD.
We obtain a power-law relationship

max{g(ω)/gD(ω)} = 0.46
( ωb

ωD

)−0.8
= 1.11

( ω0

ωD

)−0.8
, (8)

where the second equality is obtained from Eq. (7). An even
more accurate power-law relationship is displayed in Fig. 4(b)
for another dimensionless representation of the boson peak
height:

ω3
0max{g(ω)/ω2} = 2.19

(
ke

kD

1

1 − n

)2.42

. (9)

Relations (7), (8), and (9) relate unambiguously the position
and the height of the boson peak to the descriptors ke and G0.

0.1 0.15 0.2 0.25
1.0

2.0

3.0

4.0

0.4 0.6 0.8

0.1

0.5

1.0

m
ax

[g
(

)/
g D

(
)]

b/ D

(b)

3 0m
ax

[g
(

)/
2 ]

ke/kD (1-n)-1

(a)

FIG. 4. (a) Double-logarithmic plot of the maximum of the
reduced VDoS g(ω)/gD(ω) vs ωb/ωD with gD(ω) = 3ω2/ω3

D.
(b) Double-logarithmic plot of the maximum of ω3

0g(ω)/ω2 vs
(ke/kD )(1 − n)−1. The gray lines indicate the exponent 0.8 (a) and
2.42 (b), respectively.
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FIG. 5. (a) Poisson ratio ν (red circles, left scale) and κ =
Kexpt/Gexpt (blue triangles, right scale) vs ke/kD. (b) fragility m vs
ke/kD. Symbol code as in Fig. 1. The full lines are guides to the eye.

C. Correlation length, Poisson ratio, and fragility

In Fig. 5(a) we have plotted the Poisson ratio ν as well
as κ = Kexpt/Gexpt against ke/kD, showing that the empirical
correlation can be better represented by a linear relation with
ν than by a linear relation with κ . The correlation with ν is
ν = 0.06 + 0.56ke/kD.

The Poisson ratio is a rather important figure for designing
new glass materials for applications [54,55]. For example, for
ν > 0.3 one expects a brittle-to-ductile transition, therefore,
values of ke/kD > 0.5 would point to a ductile material. This
makes sense intuitively, as a large value of ξGkD will lead to a
rather rigid network.

A further characteristic property of glasses is the fragility
index m of its corresponding liquid [7], which is the relative
slope of the logarithm of the temperature dependence of the
viscosity η near the glass transition temperature Tg. It is de-
fined by m = ∂ log10 η/∂[Tg/T ]|T =Tg . Novikov and Sokolov
[56,57] proposed an empirical relationship between the Pois-
son ratio and m for a number of nonconducting glasses. This
had been challenged by Yannopoulos and Johary [58], pre-
senting a large number of exceptions. Later it became clear
that such relationships appear only in certain material classes
[59]. Very recently Østergaard et al. collected viscosity and
elasticity data for a very large number of glasses [55]. They
have shown that rather than a correlation a trend exists for
larger m values in materials with larger ν values, see Fig. 6.
In Fig. 5(b) we have plotted m against ke/kD of those mate-
rials involved in our present study for which viscosity data is
available in the literature. Indeed, we find a weak but notable
positive correlation between m and the ratio of ke/kD. If we
combine this correlation with the one shown in Fig. 5(a) we
find m = 218ν − 17, which is inserted as a red dotted line
into the trend picture of Østergaard et al. in Fig. 6. We add
Sokolov’s correlation for nonmetals [59] m = 29κ − 12. It is
seen that it also fits into Østergaard’s trend. For our classifica-
tion it is important to note that large ke/kD values prevail for
fragile materials.
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FIG. 6. Symbols: fragility m vs Poisson ratio ν as compiled by
Østergaard et al. [55]. Dotted red line: Present empirical correlation
as obtained from the data of Fig. 5. Dash-dotted green line: Empirical
correlation obtained by Sokolov [56,57,59] for nonmetallic glasses.
The gray-shaded region marks the overall trend of reported experi-
mental data.

III. DISCUSSION

We have already emphasized that our disorder classifi-
cation essentially reduces to two descriptors, the disorder
parameter σ 2, which is proportional to the nonaffinity n =
1 − Gexpt/G0 and the upper momentum cutoff ke, which is
inversely proportional to the correlation length ξG of the elas-
ticity fluctuations.

The nonaffine reduction of the macroscopic shear modulus
Gexpt, which appears in all types of glass, may be interpreted
in terms of acoustic percolation [47]. The local sound prop-
agation is fastest in regions of high rigidity and, in turn,
the strain energy is localized in the soft, nonaffine regions.
Under shear, the rigid backbone regions then enclose the non-
affine soft regimes, which feature rotational patterns. Metallic
glasses with low σ 2 exhibit less pronounced nonaffine fea-
tures. In the more interconnected morphologies, softer modes
become a serious obstacle for sound propagation, leading to
an enhanced acoustic path length and therefore a reduction of
the effective velocity. This is in perfect analogy of the perco-
lational reduction of the conductivity in disordered networks
[60], and is the reason for the remarkable relation between
nonaffinity n and σ 2.

The remaining descriptor, the correlation length ξG of the
spatial rigidity fluctuations, features strong correlations with
the frequency position ωb and the height of the boson peak. On
the other hand, it is related to the ratio of the shear and bulk
modulus κ , hence, to the Poisson ratio ν and—trendwise—to
the fragility index m.

Let us start discussing the relation ωb = 0.333ω0, revealed
in Fig. 3. As ω0 = ke

√
G0/ρ is inversely proportional to ξG,

so is the boson peak position. Such a correlation between ωb

and the inverse of a structure-related correlation function was
already conjectured in the early days of the discussion of the
boson peak [61,62], but had never been unambiguously quan-
tified. The velocity connecting the boson peak frequency and
the inverse correlation length turns out to be not related to the
macroscopic transverse sound velocity vT but to the average
local one, v0, i.e., the one related to the typical local shear
modulus. Only when a proportionality with vT is enforced, a
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structure-related prefactor appears:

ωb ∝ ω0 ∝ 1

ξG

vT√
1 − n

. (10)

We see, if vT /ξG is used instead of v0/ξG, a correction
factor [1 − n]−1/2 appears,5 which is similar to the empirical
“shape factor,” introduced by Duval et al. [62] in order to
account for specific material properties so as to improve the
correlation between ωb and vT /ξG. Instead of some assumed
shape of rigid inclusions [62], our correction factor accounts
for the nonaffinity and, by the CPA equivalence (6), to the
disorder strength.

Summarizing the trends displayed in Fig. 6, and combining
the findings of Figs. 5 and 1, we may say that with in-
creasing liquid fragility, the correlation length (relative to the
intermolecular distance) decreases and nonaffinity (weakly)
increases. The former observation is a strong confirmation
for the correlation between liquid heterogeneity and hetero-
geneity in the solid (glassy) state which was previously found
for molecular glass formers and colloidal suspensions [63,64],
where the growing size of correlated regions was identified as
the origin of the dynamic slow down during glass formation
(further support may be found in the correlation between
liquid fragility and structural fragility which was discovered
for metallic glasses [65]). It is, indeed, known that structures
presenting an abundance of soft elastic modes tend to have
a greater length scale of shear fluctuation ξG and are strong
(low Poisson ratio). Previous modeling studies [66] found that
the amplitude of the boson peak (in Debye units) correlates
well with the inverse of the fragility 1/m. Our data provide
experimental confirmation for this observation, as relation (8)
implies max{g(ω)/gD(ω)} ∝ (ke/kD)−0.8 ∝ m−0.8.

The metal-organic framework glass represents a particular
case. A glass formed from ZIF-62, termed ag-ZIF-62, was
obtained through structural collapse of a nanoporous crys-
tal at temperatures only mildly above Tm. As a relic of the
crystalline state, the resulting glass contains pores on the
scale of 0.5 nm [67], representing a disperse morphology
of soft modes. In terms of the governing length scales and
the function of f (κ ), their properties are similar to metallic
glasses. However, among all the considered glass chemistries,
they exhibit the highest nonaffinity and the highest disorder
parameter.

IV. CONCLUSION

In conclusion, we implemented heterogeneous-elasticity
theory in conjunction with the coherent-potential approxima-
tion using experimental input from a broad variety of glass
chemistries in order to extract the vibrational density of states
and the probability distribution density of the local shear
modulus of glassy materials. The exclusive use of physically

5If ξG and vT would not be influenced by the disorder parameter
σ 2, and because n is directly proportional to σ 2, Eq. (10) would
imply that ωb would shift to higher frequencies with increasing σ 2.
This is in contradiction to the theoretical prediction of HET [47] and
counterintuitive. We checked from our data that indeed ωb does not
increase with σ 2.

meaningful fitting parameters enables widespread application
of our approach to real-world materials, revealing remarkable
trends which appear to hold across all classes of glass (despite
pronounced differences in bond directionality and localiza-
tion).

In analyzing our data, we extracted three universal de-
scriptors of disorder and the statistics of elastic heterogeneity:
The typical shear modulus G0 and the disorder parameter
σ 2, which characterize the log-normal distribution function
of local elasticity, and the momentum cutoff ke, which is
inversely proportional to the correlation length scale ξG. Using
experimental information on the macroscopic shear modulus
Gexpt, we find a one-to-one relation between the nonaffinity
n = 1 − Gexpt/G0 and σ 2. This leaves only two independent
descriptors, the disorder parameter σ 2 and the cutoff wave
number ke, viz. the correlation length. We found a further,
linear correlation between the frequency ω0 ∝ ke

√
G0 and the

boson peak position ωb, and a power-law relation between
the boson peak amplitude and frequency positions in Debye
units. Furthermore, we revealed a correlation between ke and
the Poisson ratio and, trendwise, liquid fragility.

It remains to be explored how disordered materials derived
from techniques other than liquid quenching (e.g., the prolific
superstrong glasses [68] or pressure-amorphized crystals [67])
would fall into the observed trends. Furthermore, extending
the range of observation to materials at the extremes of dis-
order and with enhanced nonaffinity, respectively, would be a
significant step in understanding the further role of structural
heterogeneity on macroscopic properties through refining the
discovered relations, for example, by considering pressurized
or autoclaved glasses and mesoporous hybrids beyond the
very few examples which are known today. The link between
HET, disorder classification by use of vibrational spectra, and
direct structural data obtained outside of computer models re-
mains elusive at present. Nascent experimental techniques (for
example, in electron microscopy) might provide routes for
direct imaging of elastic heterogeneity for a broader range of
materials so as to establish a comprehensive understanding of
analytical descriptors and the underlying statistics of disorder.

Such insight will open new routes for specific and inde-
pendent tailoring of nonaffinity and structural heterogeneity
towards macroscopic properties. Aside mechanical and vibra-
tional behavior, this also concerns the transport coefficients of
sound propagation, heat, and ion conduction.
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APPENDIX: MATERIALS AND METHODS

1. Materials

The glass samples used in this study were chosen on the
condition of individual material homogeneity and availabil-
ity of general physical data so as to cover a broad range
of materials with variable bonding character and variations
in fundamental structural motifs and network dimensionality.
Details on the studied compositions are provided in the Sup-
plementary Material (see, also, Refs. [69–105] therein), Table
S1 [49], together with their glass transition temperature Tg,
liquid fragility index m, mass density ρ, and calculated values
of the volume density of bond energy 〈U0/V0〉 and of the
atomic packing density Cg. The experimental (macroscopic)
shear, bulk and Young’s modulus Gexpt, Kexpt, and Eexpt, re-
spectively, and Poisson’s ratio ν are given in Table S2 [49].
Most glasses were prepared by conventional melt-quenching
techniques. Some commercial samples were used as obtained,
including a standard soda-lime silicate glass (Marienfeld Su-
perior, Paul Marienfeld, Lauda-Königshofen, Germany), a
low-alkali borosilicate glass (Borofloat-33, Schott TGS, Jena,
Germany), two variants of vitreous silica [Suprasil, Heraeus
Quarzglas, Hanau, Germany, and R300, prepared by a modi-
fied chemical vapor deposition route (MCVD), respectively],
and a range of optical glasses (Schott, Mainz, Germany). De-
tailed information on the fabrication procedures are provided
in the references given in Tables S1 and S2 [49]. All materials
were used in the form of disks with a thickness of 1–5 mm
and a diameter of 2 mm, polished to optical grade using CeO2

suspensions. X-ray diffraction (MiniFlex600, Rigaku) was
conducted on all samples in order to confirm the absence of
any detectable crystalline species. The glass transition temper-
atures were determined by differential scanning calorimetry
(Netzsch STA 449 F3 Jupiter) in flowing nitrogen, employing
heating rates of 20 K/min for the MeP, SP, and ag-ZIF-
62 glasses, 40 K/min for Cu46Zr46Al8 (40 K/min), and 10
K/min for all other glasses. Density data were obtained with
an Archimedes balance using distilled water or dry ethanol as
immersion media. Where not already available from previous
studies (for references see Table S2 [49]), the macroscopic
(effective) elastic properties were analyzed through ultra-
sonic echography at room temperature. The longitudinal and
transversal sound velocities vL and vT were derived from the
corresponding sound wave propagation times (recorded with
an accuracy of ±1 ns by piezoelectric transducers operating
at frequencies of 8 to 12 MHz) and the exact thickness of the
polished glass plates (determined with an accuracy of ±2 µm
using a micrometer screw). The macroscopic elastic moduli
were calculated from these values.

2. Vibrational spectra

Raman scattering spectroscopy was carried-out using a
Renishaw inVia confocal Raman microscope equipped with
a low-frequency notch filter covering the frequency range

of 0–200 cm−1. Samples were excited with an argon ion
laser operating at 514.5 nm. The signal was collected with
a CCD camera at a spectral resolution of 2 cm−1, using a
grating with 2400 lines/mm and a 50× microscope objective.
All spectra were collected in two polarization geometries,
VV and VH, by means of a polarizer/half-wave plate setup
inserted in the laser beamline between the notch filter and
the monochromator. For the chalcogenides and the metal-
lic glasses, the vibrational properties were investigated by
heat capacity (Cp) measurements at low temperature. For the
chalcogenides this was a precautious measure because the rel-
atively harsh Raman excitation conditions might have induced
experimental artifacts, which would compromise subsequent
data analyses. For the metallic glasses, they are generally
unsuitable for Raman spectroscopy because first-order Ra-
man bands result from a change in the polarizability of the
molecule and metallic materials are infinitely polarizable. Fur-
ther low-temperature heat capacity data on vitreous silica and
on the aluminosilicate glasses (AS) were extracted from a
previous study [106]. Cp analyses of the chalcogenide glasses
As38Se62 and GeSe4, and of the metallic glasses Pd40Ni40P20

and Zr52.5Cu17.9Ni14.6Al10Ti5 were conducted on a physical
property measurement system (PPMS, Quantum Design) at
temperatures down to approximately 2.3 K. Cp data on vit-
reous As2S3 [107] and Cu46Zr46Al8 [108] were taken from
literature, as were all experimental data of glycerol [50–53].

3. CPA calculation of spectral functions

From the CPA equations (1), (3), and (4) the dynamic
sound velocities vL,T (z) are obtained via G(z). From these
quantities the VDoS is obtained as

g(ω) = 2ω

3π

3

k3
D

∫ kD

0
dkk2

[
1

−z2+k2v2
L(z)

+ 2
1

−z2+k2v2
T (z)

]
.

(A1)

Here kD = 3
√

6π2N/V is the Debye wave number. The tem-
perature dependent specific heat is given by

Cp(T ) = Ac

∫ ∞

0
g(ω)

ω2

T 2

e
h̄ω

kBT

(e
h̄ω

kBT − 1)2
dω, (A2)

Ac is a prefactor and h̄ and kB are Planck’s and Boltzmann’s
constants. The depolarized (V H) and polarized (VV ) Raman
spectra are [31,36,46]

IV H (ω) = AV H [n(ω) + 1]
(

4
3 [χL(ka, ω)]′′ + 2[χT (ka, ω)]′′

)
,

(A3)

IVV (ω) = AVV [n(ω) + 1][χL(ka, ω)]′′ + 4
3 IV H (ω). (A4)

AV H and AVV are prefactors and ka is a cutoff related to
the correlation length of the Pockels-constant fluctuations.
n(ω) = [eh̄ω/kBT − 1]−1 is the boson occupation number (to
which the boson peak owes its name). In addition to σ 2, G0, ke

the Raman spectra feature two further descriptors (“Raman
descriptors”), which are the wave number cutoff ka ∝ ξ−1

a ,
where ξa is the correlation length of the Pockels-constant
fluctuations and the amplitude ratio AVV /AV H of the two types
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of Pockels-constant correlation functions [31]. As in previous
studies [31,33,46], ka turned out to be very near to ke, see
Table S3 [49].

4. CPA equation for ω = 0

The CPA equation for ω = 0 is

0 =
〈

Gi − G(0)

1 + 1
3 [Gi − G(0)]�(0)

〉
P

(A5)

⇔
〈

Gi

1 + 1
3 [Gi − G(0)]�(0)

〉
P

= G(0)

〈
1

1+ 1
3 [Gi−G(0)]�(0)

〉
P

= G(0)

〈
1+ 1

3 [Gi−G(0)]�(0)− 1
3 [Gi−G(0)]�(0)

1+ 1
3 [Gi−G(0)]�(0)

〉
P

= G(0) ≡ Gexpt. (A6)

We have

1

3
�(0) = 1

3

(
2

Gexpt
+ 4

3

1

Kexpt + 4
3 Gexpt

)
= f (κ )

1

Gexpt
,

(A7)

with

f (κ ) = 1

3

(
2 + 4

4 + 3κ

)
κ = Kexpt

Gexpt
. (A8)

We note that f (κ ) is a very slowly varying function with

f (∞) = 2

3
� f (κ ) � f (0) = 1. (A9)

We now introduce dimensionless variables into the second
version of Eq. (A6): gi = Gi/G0 and Q = Gexpt/G0 and ob-
tain

Q = 1

G0

√
2πσ

∫ ∞

0
dGi

1

Gi
e− 1

2σ2 [ln(Gi/G0 )]2

× Gi

1 + f (κ )
[ gi

Q − 1
]

= 1√
2πσ

∫ ∞

0
dgi

e− 1
2σ2 [ln(gi )]2

1 + f (κ )
[ gi

Q − 1
] . (A10)

We see that Q is an implicit function of σ 2 (and vice versa)
with f (κ ) as parameter.

5. CPA calculation of Gexpt in the small-disorder limit

We now define new deviatoric moduli:

Gexpt = 〈Gi〉P − �, Gi = 〈Gi〉P − �i. (A11)

The CPA equation (A6) becomes

0 =
〈

�i − �

1 − f (κ )
Gexpt

[�i − �]

〉
P

⇔ � =
〈

�i

1 − f (κ )
Gexpt

[�i − �]

〉
P

.

(A12)

We now treat �i and � to be of order σ and obtain to lowest
(quadratic) order

� ≈ f (κ )

〈Gi〉P
〈�2

i 〉P. (A13)

Therefore,

Gexpt

〈Gi〉P
=1 − �

〈Gi〉P
≈ 1 − f (κ )

〈�2
i 〉P

〈Gi〉2
P

= 1 − f (κ )(eσ 2 − 1)

(A14)
and finally

Q = Gexpt

G0
= G(0)

〈Gi〉geo
= e

1
2 σ 2

[1 − f (κ )(eσ 2 − 1)]

≈ 1 −
(

f (κ ) − 1

2

)
σ 2. (A15)

6. Numerical implementation

The CPA equation can be solved numerically within
a few iterations. The resulting solution, the frequency-
dependent shear modulus G(z), was then used to obtain
the vibrational density of states g(ω). Fits were constructed
in terms of a least-square minimization of the differ-
ence between the experimental data and the corresponding
theoretical predictions of Eqs. (A2)–(A4). There were, there-
fore, two independent fitting procedures involved in this
work: the Cp fit and the Raman fit. The Cp fit produced
(σ, G0, ke) while taking [vL, vT , kD,Cp (2.3 < T < 20 K)]
for input. The Raman fit produced (σ, G0, ke, ka, A21) by
using [vL, vT , kD, IVV (ω), IV H (ω)] for input, where A21 =
AV H/AVV . The frequency ranges for Raman spectra were se-
lected from 15 cm−1 below the Raman boson peak up to 100
cm−1. Since the fitting problems are ill-posed, we employed
Tikhonov regularization. As the criterion for identifying the
optimized regularization parameter for the Cp fit, we used
the minimum of the smoothness parameter M of the reduced
VDoS (M increases sharply if the reduced VDoS starts to
oscillate). In this way, an independent, individually optimized
regularization parameter was attributed to each glass data set.
For the Raman fit, the goodness of fit (GOF ) was addition-
ally used. GOF evaluates the maximum curve length of an
experimental Raman spectrum which fits to the predicted one.
It is noteworthy that, although we restricted the Raman fit
input to the spectral range of <100 cm−1, the obtained fits of
most samples showed good agreement to experimental data
also up to higher frequency (<200 cm−1). The full evaluation
procedure was scripted in order to produce independent and
automated fits for Raman and Cp experimental data, respec-
tively. In this way, the VDoS was derived independently from
two different experimental data sets.

134106-8



DISORDER CLASSIFICATION OF THE VIBRATIONAL … PHYSICAL REVIEW B 104, 134106 (2021)

[1] W. H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).
[2] D. Turnbull and M. H. Cohen, J. Chem. Phys. 34, 120 (1961).
[3] Y. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).
[4] G. Biroli and J. P. Garrahan, J. Chem. Phys. 138, 12A301

(2013).
[5] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[6] M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
[7] C. A. Angell, Science 267, 1924 (1995).
[8] B. Ruta, G. Monaco, V. Giordano, F. Scarponi, D. Fioretto,

G. Ruocco, K. Andrikopoulos, and S. Yannopoulos, J. Phys.
Chem. B 115, 14052 (2011).

[9] A. Makishima and J. D. Mackenzie, J. Non-Cryst. Solids 17,
147 (1975).

[10] Y. Shi, A. Tandia, B. Deng, S. R. Elliott, and M. Bauchy, Acta
Mater. 195, 252 (2020).

[11] E. D. Cubuk, R. Ivancic, S. S. Schoenholz, D. Strickland, A.
Basu, Z. Davidson, J. Fontaine, J. L. Hor, Y.-R. Huang, Y.
Jiang et al., Science 358, 1033 (2017).

[12] A. Nicolas, E. E. Ferrero, K. Martens, and J.-L. Barrat, Rev.
Mod. Phys. 90, 045006 (2018).

[13] B. Wang, Y. Yu, M. Wang, J. C. Mauro, and M. Bauchy, Phys.
Rev. B 93, 064202 (2016).

[14] O. Benzine, S. Bruns, Z. Pan, K. Durst, and L. Wondraczek,
Adv. Sci. 5, 1800916 (2018).

[15] E. J. Frankberg, J. Kalikka, F. G. Ferré, L. Joly-Pottuz, T.
Salminen, J. Hintikka, M. Hokka, S. Koneti, T. Douillard, B.
Le Saint et al., Science 366, 864 (2019).

[16] J. P. Wittmer, A. Tanguy, J.-L. Barrat, and L. Lewis, Europhys.
Lett. 57, 423 (2002).

[17] B. A. DiDonna and T. C. Lubensky, Phys. Rev. E 72, 066619
(2005).

[18] F. Leonforte, R. Boissière, A. Tanguy, J. P. Wittmer, and J.-L.
Barrat, Phys. Rev. B 72, 224206 (2005).

[19] F. Leonforte, A. Tanguy, J. P. Wittmer, and J.-L. Barrat, Phys.
Rev. Lett. 97, 055501 (2006).

[20] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat,
Phys. Rev. E 80, 026112 (2009).

[21] J. Ding, Y.-Q. Cheng, H. Sheng, M. Asta, R. O. Ritchie, and
E. Ma, Nat. Commun. 7, 13733 (2016).

[22] W. A. Phillips and A. Anderson, Amorphous Solids: Low-
Temperature Properties (Springer, Berlin, 1981), Vol. 24.

[23] U. Buchenau, N. Nücker, and A. J. Dianoux, Phys. Rev. Lett.
53, 2316 (1984).

[24] B. Frick and D. Richter, Science 267, 1939 (1995).
[25] A. I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher,

T. Asthalter, R. Rüffer, O. Leupold, and W. Petry, Phys. Rev.
Lett. 92, 245508 (2004).

[26] J. Wuttke, W. Petry, G. Coddens, and F. Fujara, Phys. Rev. E
52, 4026 (1995).

[27] G. Monaco and V. M. Giordano, Proc. Natl. Acad. Sci. 106,
3659 (2009).

[28] G. Baldi, A. Fontana, G. Monaco, L. Orsingher, S. Rols, F.
Rossi, and B. Ruta, Phys. Rev. Lett. 102, 195502 (2009).

[29] G. Baldi, V. M. Giordano, G. Monaco, and B. Ruta, Phys. Rev.
Lett. 104, 195501 (2010).

[30] G. Baldi, V. M. Giordano, and G. Monaco, Phys. Rev. B 83,
174203 (2011).

[31] B. Schmid and W. Schirmacher, Phys. Rev. Lett. 100, 137402
(2008), see references therein for an extended list of Raman-
spectroscopy papers.

[32] S. Caponi, S. Corezzi, D. Fioretto, A. Fontana, G. Monaco,
and F. Rossi, Phys. Rev. Lett. 102, 027402 (2009).

[33] A. Schulte, W. Schirmacher, B. Schmid, and T. Unruh, J. Phys.
Condens. Matter 23, 254212 (2011).

[34] M. A. Ramos, C. Talón, and S.Vieira, J. Non-Cryst. Solids
307–310, 80 (2002).

[35] M. A. Ramos, Low Temperature Phys. 46, 104 (2020).
[36] W. Schirmacher, T. Scopigno, and G. Ruocco, J. Non-Cryst.

Solids 407, 133 (2015).
[37] T. Nakayama, Rep. Prog. Phys. 65, 1195 (2002).
[38] M. I. Klinger, Phys. Rep. 292, 111 (2010).
[39] A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A.

Bosak, R. Ruffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto,
H. Giefers, S. Roitsch, G. Wortmann, M. H. Manghnani, A.
Hushur, Q. Williams, J. Balogh, K. Parlinski, P. Jochym, and
P. Piekarz, Phys. Rev. Lett. 106, 225501 (2011).

[40] A. I. Chumakov, G. Monaco, A. Fontana, A. Bosak, R. P.
Hermann, D. Bessas, B. Wehinger, W. A. Crichton, M. Krisch,
R. Ruffer, G. Baldi, G. Carini, G. Carini, G. DAngelo, E.
Gilioli, G. Tripodo, M. Zanatta, B. Winkler, V. Milman, K.
Refson, M. T. Dove, N. Dubrovinskaia, L. Dubrovinsky, R.
Keding, and Y. Z. Yue, Phys. Rev. Lett. 112, 025502 (2014).

[41] A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco,
Sci. Rep. 3, 1407 (2013).

[42] H. Shintani and H. Tanaka, Nat. Mater. 7, 870 (2008).
[43] H. Mizuno, S. Mossa, and J.-L. Barrat, Phys. Rev. E 87,

042306 (2013).
[44] W. Schirmacher, Europhys. Lett. 73, 892 (2006).
[45] W. Schirmacher, G. Ruocco, and T. Scopigno, Phys. Rev. Lett.

98, 025501 (2007).
[46] B. Schmid, Diploma thesis, Technische Universität München,

2007.
[47] S. Köhler, G. Ruocco, and W. Schirmacher, Phys. Rev. B 88,

064203 (2013).
[48] R. Zimmermann and C. Schindler, Phys. Rev. B 80, 144202

(2009).
[49] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.134106 for detailed data on glass
compositions, physical properties and fit results.

[50] C. Talón, Q. W. Zou, M. A. Ramos, R. Villar, and S. Vieira,
Phys. Rev. B 65, 012203 (2001).

[51] T. Uchino and T. Yoko, Science 273, 480 (1996).
[52] S. Kojima, Phys. Rev. B 47, 2924(R) (1993).
[53] J. Wuttke, W. Petry, and S. Pouget, J. Chem. Phys. 105, 5177

(1996).
[54] G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Nat.

Mater. 10, 823 (2011).
[55] M. B. Østergaard, S. R. Hansen, K. Januchta, T. To, S. J.

Rzoska, M. Bockowski, M. Bauchy, and M. M. Smedskjaer,
Materials 12, 2439 (2019).

[56] M. N. Novikov and A. P. Sokolov, Nature (London) 431, 961
(2004).

[57] V. N. Novikov, Y. Ding, and A. P. Sokolov, Phys. Rev. E 71,
061501 (2005).

[58] S. N. Yannopoulos and G. P. Johari, Nature (London) 442, E7
(2006).

[59] V. N. Novikov and A. P. Sokolov, Phys. Rev. B 74, 064203
(2006).

[60] A. I. Efros and B. I. Shklovsk, Electronic Properties of Doped
Semiconductors (Springer, Heidelberg, 1984).

134106-9

https://doi.org/10.1021/ja01349a006
https://doi.org/10.1063/1.1731549
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1063/1.4795539
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1126/science.267.5206.1924
https://doi.org/10.1021/jp2037075
https://doi.org/10.1016/0022-3093(75)90047-2
https://doi.org/10.1016/j.actamat.2020.05.047
https://doi.org/10.1126/science.aai8830
https://doi.org/10.1103/RevModPhys.90.045006
https://doi.org/10.1103/PhysRevB.93.064202
https://doi.org/10.1002/advs.201800916
https://doi.org/10.1126/science.aav1254
https://doi.org/10.1209/epl/i2002-00471-9
https://doi.org/10.1103/PhysRevE.72.066619
https://doi.org/10.1103/PhysRevB.72.224206
https://doi.org/10.1103/PhysRevLett.97.055501
https://doi.org/10.1103/PhysRevE.80.026112
https://doi.org/10.1038/ncomms13733
https://doi.org/10.1103/PhysRevLett.53.2316
https://doi.org/10.1126/science.267.5206.1939
https://doi.org/10.1103/PhysRevLett.92.245508
https://doi.org/10.1103/PhysRevE.52.4026
https://doi.org/10.1073/pnas.0808965106
https://doi.org/10.1103/PhysRevLett.102.195502
https://doi.org/10.1103/PhysRevLett.104.195501
https://doi.org/10.1103/PhysRevB.83.174203
https://doi.org/10.1103/PhysRevLett.100.137402
https://doi.org/10.1103/PhysRevLett.102.027402
https://doi.org/10.1088/0953-8984/23/25/254212
https://doi.org/10.1016/S0022-3093(02)01443-6
https://doi.org/10.1063/10.0000527
https://doi.org/10.1016/j.jnoncrysol.2014.09.054
https://doi.org/10.1088/0034-4885/65/8/203
https://doi.org/10.1016/j.physrep.2010.03.004
https://doi.org/10.1103/PhysRevLett.106.225501
https://doi.org/10.1103/PhysRevLett.112.025502
https://doi.org/10.1038/srep01407
https://doi.org/10.1038/nmat2293
https://doi.org/10.1103/PhysRevE.87.042306
https://doi.org/10.1209/epl/i2005-10471-9
https://doi.org/10.1103/PhysRevLett.98.025501
https://doi.org/10.1103/PhysRevB.88.064203
https://doi.org/10.1103/PhysRevB.80.144202
http://link.aps.org/supplemental/10.1103/PhysRevB.104.134106
https://doi.org/10.1103/PhysRevB.65.012203
https://doi.org/10.1126/science.273.5274.480
https://doi.org/10.1103/PhysRevB.47.2924
https://doi.org/10.1063/1.472336
https://doi.org/10.1038/nmat3134
https://doi.org/10.3390/ma12152439
https://doi.org/10.1038/nature02947
https://doi.org/10.1103/PhysRevE.71.061501
https://doi.org/10.1038/nature04967x
https://doi.org/10.1103/PhysRevB.74.064203


ZHIWEN PAN et al. PHYSICAL REVIEW B 104, 134106 (2021)

[61] S. Elliott, Europhys. Lett. 19, 201 (1992).
[62] E. Duval, A. Boukenter, and T. Achibat, J. Phys. Condens.

Matter 2, 10227 (1990).
[63] X. Qiu and M. Ediger, J. Phys. Chem. B 107, 459 (2003).
[64] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El

Masri, D. L’Hôte, F. Ladieu, and M. Pierno, Science 310, 1797
(2005).

[65] N. A. Mauro, M. Blodgett, M. L. Johnson, A. J. Vogt, and
K. F. Kelton, Nat. Commun. 5, 4616 (2014).

[66] L. Yan, G. Düring, and M. Wyart, Proc. Natl. Acad. Sci. 110,
6307 (2013).

[67] R. N. Widmer, G. I. Lampronti, S. Anzellini, R. Gaillac, S.
Farsang, C. Zhou, A. M. Belenguer, C. W. Wilson, H. Palmer,
A. K. Kleppe et al., Nat. Mater. 18, 370 (2019).

[68] S. Singh, M. D. Ediger, and J. J. De Pablo, Nat. Mater. 12, 139
(2013).

[69] S. Sawamura, R. Limbach, H. Behrens, and L. Wondraczek,
J. Non-Cryst. Solids 481, 503 (2018).

[70] S. Sawamura and L. Wondraczek, Phys. Rev. Materials 2,
092601(R) (2018).

[71] R. Boehmer, K. L. Ngai, C. A. Angell, and D. J. Plazek,
J. Chem. Phys. 99, 4201 (1993).

[72] M. L. F. Nascimento and C. Aparicio, J. Phys. Chem. Solids
68, 104 (2007).

[73] J. E. Shelby, J. Appl. Phys. 50, 8010 (1979).
[74] Y. Kawamura and A. Inoue, Appl. Phys. Lett. 77, 1114

(2000).
[75] T. D. Bennett, Y. Z. Yue, P. Li, A. Qiao, H. Z. Tao, N. G.

Greaves, T. Richards, G. I. Lampronti, S. A. T. Redfern, F.
Blanc et al., J. Am. Chem. Soc. 138, 3484 (2016).

[76] S. Li, R. Limbach, L. Longley, A. A. Shirzadi, J. C. Walmsley,
D. N. Johnstone, P. A. Midgley, L. Wondraczek, and T. D.
Bennett, J. Am. Chem. Soc. 141, 1027 (2019).

[77] M. Stepniewska, K. Januchta, S. Zhou, A. Qiao, M. M.
Smedskjaer, and Y. Z. Yue, Proc. Natl. Acad. Sci. U.S.A. 117,
10149 (2020).

[78] I. Gallino, Entropy 19, 483 (2017).
[79] S. Scudino, B. Jerliu, K. Surreddi, U. Kühn, and J. Eckert,

J. Alloys Compd. 509, S128 (2011).
[80] W. L. Johnson, J. H. Na, and M. D. Demetriou, Nat. Commun.

7, 10313 (2016).
[81] S. Wei, M. Stolpe, O. Gross, Z. Evenson, I. Gallino, W.

Hembree, J. Bednarcik, J. J. Kruzic, and R. Busch, Appl. Phys.
Lett. 106, 181901 (2015).

[82] G. N. de Macedo, S. Sawamura, and L. Wondraczek, J. Non-
Cryst. Solids 492, 94 (2018).

[83] J. Deubener, H. Behrens, R. Müller, S. Zietka, and S. Reinsch,
J. Non-Cryst. Solids 354, 4713 (2008).

[84] R. Limbach, A. Winterstein-Beckmann, J. Dellith, D. Möncke,
and L. Wondraczek, J. Non-Cryst. Solids 417–418, 15 (2015).

[85] K. Griebenow, C. B. Bragatto, E. I. Kamitsos, and L.
Wondraczek, J. Non-Cryst. Solids 481, 447 (2018).

[86] Q. H. Le, T. Palenta, O. Benzine, K. Griebenow, R. Limbach,
E. I. Kamitsos, and L. Wondraczek, J. Non-Cryst. Solids 477,
58 (2017).

[87] Y.-F. Niu, J.-P. Guin, A. Abdelouas, T. Rouxel, and J. Troles,
J. Non-Cryst. Solids 357, 932 (2011).

[88] F. Scarponi, L. Comez, D. Fioretto, and L. Palmieri, Phys. Rev.
B 70, 054203 (2004).

[89] D. Moencke, E. I. Kamitsos, D. Palles, R. Limbach, A.
Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L.
Wondraczek, J. Chem. Phys. 145, 124501 (2016).
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