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Model of ramp compression of diamond from ab initio simulations
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Ramp compression experiments characterize high-pressure states of matter at temperatures well below those
present in shock compression. However, because temperature is typically not directly measured during ramp
compression, it is uncertain how much heating occurs under these shock-free conditions. Here, we performed a
series of ab initio simulations on carbon in order to match the density-stress measurements of Smith et al. [Smith
et al., Nature (London) 511, 330 (2014)]. We considered isotropically as well as uniaxially compressed solid
carbon in the diamond and BC8 phases, with and without defects, as well as liquid carbon. Our idealized model
ascribes heating during ramp compression to an initially uniaxially compressed cell transforming isochorically
into an isotropically (hydrostatic equivalent) compressed state having lower internal energy, hence higher temper-
ature so as to conserve energy. Multiple such heating events can occur during a single ramp experiment, leading to
higher temperatures than with isentropic compression. Comparison with experiments shows that heating alone
does not explain the equation of state measurements on diamond, instead implying that a significant uniaxial
stress component remains present at high compression. The temperature predictions of our ramp compression
model remain to be verified with future laboratory measurements.
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I. INTRODUCTION

High-pressure experiments and theoretical investigations
are essential to understanding the extreme conditions present
within planetary interiors, because the equations of state of
constituent materials are not sufficiently well characterized at
present. Static compression experiments are able to reach such
extreme conditions by compressing matter using diamond
anvil cells, where sample temperatures can be controlled by
laser heating, but the applied hydrostatic pressures are lim-
ited to ∼6-9 Mbar [1–3]. On the other hand, in dynamic
shock compression, an impactor or a high-intensity laser
pulse generates a shock wave that propagates through the
sample, achieving higher pressures than static compression
but with significant heating. Shock temperatures are diffi-
cult to measure accurately, resulting in material properties
with poorly characterized temperature dependences [4–6].
Dynamic shocks have an inherent rise time due to dissipa-
tive processes, such as viscosity or scattering, that cause an
increase in entropy [7]. The sample usually melts upon reach-
ing Mbar pressures, which limits the ability to characterize
crystalline solids at high pressure with dynamic shock com-
pression experiments.

One promising technique to solve the quandary of dynam-
ically probing high densities at lower temperatures is ramp
compression [7–10], which utilizes a continuously increased
laser power source in order to avoid the formation of shocks
that can substantially heat the material during compression.

*Corresponding author: f_gonzalez@berkeley.edu

The idea is to design the shape of the ramp pulse in a way
that either no shock is formed or the shock forms as late as
possible, maintaining a relatively large portion of the mate-
rial under a pure ramp as opposed to a shock [7]. This is
an intrinsically unstable situation, as a finite-amplitude stress
wave tends to steepen into a shock as it moves forward. One
typically assumes that ramp experiments compress materials
along a thermodynamic path that is close to an isentrope
[7,10], resulting in significantly less heating and much higher
densities than shock waves [11]. Access to this dense, low
temperature regime is key to understanding the interiors of
planets, with central pressures reaching 100 Mbar [12–18].
Since they primarily cool through convection, their interior
temperature profiles are assumed to be isentropic, thus, ramp
compression is well suited to probe conditions in the interiors
of super-earths and giant planets, as well as to characterizing
high-pressure crystal structures, thereby testing the validity of
theoretical predictions [19–24].

Recent efforts in developing the ramp-compression tech-
nique have been successful in probing relatively cold and solid
materials, such as diamond, at ultrahigh pressures [7–10,12–
17,19–21,25–33]. While the experiments provide accurate
measurements of stress and density, similarly accurate mea-
surements of temperature are lacking [27,33]. In order to
predict a material’s response to compression, one needs to
reliably know its equation of state that describes how the in-
ternal energy and pressure depend on density and temperature.
Currently, there is no theoretical framework, equivalent to the
Rankine-Hugoniot equations for shock compression [34], that
provides a complete description of the ramp compression.
There have been some preliminary temperature estimates,
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based on approximations of the plastic work done by shocks
[8,27,35], but such methods lack a microscopic formalism.

We present two alternative interpretations of existing mea-
surements on diamond ramp compression: (i) if the measured
stresses in the sample are isotropic (fluidlike response, as
found for shock-compression measurements well above the
Hugoniot elastic limit), then the temperatures must be high–
well above the melting temperature–in order to match the
observed strains (densities); (ii) alternatively, if the stresses
are nonisotropic, implying the presence of strength under
ramp loading, then the observed strains are consistent with
much lower temperatures, and the sample remains well below
the melting temperature for the ramp loading we consider. The
second interpretation is consistent with previous estimates of
the temperature under ramp loading, and with the lack of any
empirical evidence of melting in the experiments we consider,
as discussed below.

In this manuscript, we present a simplified model, based
on thermodynamics and density functional theory molecular
dynamics (DFT-MD) simulations [36,37], to estimate the tem-
perature increase along a ramp-loading path. We provide a
mechanism of energy transfer that explains how temperature
increases during the loading process in terms of a series of
uniaxial compression steps, as an analog to the actual, ramp
compression of solid materials.

We apply our model to diamond and show that, when
many compression steps are employed, the resulting compres-
sion paths are compatible with predictions from a multishock
Hugoniot curve approach, a procedure often used to approxi-
mate an isentrope by breaking up a single shock into multiple,
smaller successive shocks [38]. We show that the temperatures
along the ramp compression path are much higher than an
isentropic profile.

The paper is organized as follows: Sec. II provides de-
tails of our simulations methods. Section III discusses the
experimental results by Smith et al. that motivated this work
and introduce six different hypotheses to match the density-
stress data points with first-principles simulations. Elastic
constants and stability criteria are analyzed. Section IV dis-
cusses a model based on plastic work to estimate temperature
in ramp-compression model. Section V introduces our ramp
wave compression model. Section VI compares the similari-
ties between our model and a multishock Hugoniot approach.
Finally, we present our conclusions in Sec. VII.

II. SIMULATION DETAILS

Our DFT-MD simulations were performed in cubic super-
cells of 64 atoms for hydrostatically compressed diamond,
while uniaxial compressions were performed in tetragonal
supercells of 96 atoms. For the BC8 crystal structure, we used
cubic supercells with 128 atoms and tetragonal supercells with
192. Simulations of carbon in the simple cubic (SC) phase
were performed in a 64 atoms supercells, while the uniaxial
compressions of this phase were done in tetragonal 128 atoms
supercell. Previous studies [39] demonstrate that these sizes
are sufficient to achieve convergence for both pressure and
energy in DFT-MD simulations of diamond. We also include a
study of finite-size effects in our Supplemental Material [40].

We also generated BC8 supercells with defects, which
were generated by removing atoms from an ideal BC8 super-
cell in consecutive steps. We start with one defect. For the next
and all following steps, we remove the atom (or one of the
atoms) that is farthest away from all the previously generated
defects. This procedure provides us with a reasonable starting
configuration for the MD simulations with defects. As we will
discuss later, these defects will migrate at elevated tempera-
tures rendering the initial configuration less important.

The temperature was regulated with a Nosé thermostat
[41,42] in the NVT ensemble. We sampled the Brillouin zone
at the � point in all our supercells, except for the SC phase,
where we used the Balderesci point. We used a time step of
1 fs and a total simulation time of at least 5 ps, which is
enough to yield sufficiently converged values of the energy
and pressure. The calculations were performed under the pro-
jector augmented-wave [43] method as implemented in VASP

[44], using the generalized-gradient approximation of Perdew,
Burke, and Ernzerhof [45]. The 2 s22 p2 electrons were taken
in their valence configuration of the pseudopotential, and
an energy cutoff of 900 eV was used for the plane-wave
expansion.

III. RAMP COMPRESSION EXPERIMENTS OF DIAMOND
AND EQUATION OF STATE

The starting point for our theoretical investigation are the
experiments of Bradley et al. [8], Lazicki et al. [46], and Smith
et al. [9], who ramp-compressed diamond to unprecedented
stress conditions of 800, 2000, and 5000 GPa, respectively.
The goal of this paper is to investigate the possible ther-
modynamic conditions along these ramp compression paths.
Matching the data of Smith et al. with DFT-MD simula-
tions proved to be difficult because for a given density, our
DFT-MD simulations predict normal stresses that are ∼8-12%
lower than what was experimentally determined (see Fig. 1).
We try to interpret this discrepancy by exploring a number of
different hypotheses: (i) First, we performed DFT-MD simula-
tions of carbon at pressures beyond 1 TPa in the BC8 structure
at different temperatures, as this is the phase predicted to be
most thermodynamically stable under these conditions. (ii)
We perform simulations of the diamond structure. (iii) We
assume the sample has melted and match the stress-density
measurements with liquid simulations. (iv) Then we study
whether uniaxially strained BC8 solids can match the exper-
imental data. (v) We performed simulations of BC8 crystals
with defects because they lower the density. (vi) Finally we
consider a density-rescaling argument to take into account the
initial density of the sample used in the experiments.

(i) With DFT-MD simulations, we first aim to reproduce
the density-stress values of Smith et al. [9] by assuming a
solid structure that is in hydrostatic equilibrium. We focused
on a density of 9.78 g cm−3 and performed simulations for the
BC8 structure under hydrostatic conditions (cubic cells with
P = Px = Py = Pz) for two temperatures, 4400 and 6000 K,
which are close to the melting temperature at this density
[25,47,48]. We expect them to yield the highest pressures for
this density. For these two temperatures, we obtained pres-
sures of 2496 and 2510 GPa respectively at this density (ε = 0
in the upper panels of Fig. 1), which are 16% and 14% below
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FIG. 1. Normal stress components vs strain derived from DFT-MD simulations for uniaxially strained BC8 supercells of carbon at
9.78 g cm−3. The shaded grey area in the first three panels represents the error bars in the stress reported at this density (2935 GPa) by
Smith et al. [9]. The two upper panels result from defect-free simulations at 4400 and 6000 K. The lower left panel depicts predictions from
a BC8 cell with 7.8% porosity and 4400 K, where the vacancies are represented by red spheres. The lower right panel compares the normal
stresses reported by Smith et al. [9] and Lazicki et al. [46] with our values of the stress in the compression direction, Px , where the red and black
squares connected by a line in this panel represent the entire range of Px values for uniaxial compressions at 4400 K for BC8 cells with and
without defects, respectively. These correspond to uniaxial compressions up to ε = 20% change in lattice constant. The green, thin diamond
corresponds to the pressure of carbon in the diamond structure at the same density, 9.78 g cm−3, and 4400 K. The yellow shaded area shows
the Smith et al. data with uncertainties after the densities have been rescaled by a factor of 1.08 (see discussion in main text). The dashed black
line with circles corresponds to our proposed ramp compression model, discussed in Sec. V.

the experimentally reported stress value of 2935 ± 83 GPa
for this density (see bottom right panel of Fig. 1). When the
uncertainty of the measured density (∼2.7%) is included, χ2

deviations [49] of 8.0 and 6.5 are obtained, respectively, when
the density-stress measurements are compared with the sim-
ulation results for the two temperatures. These discrepancies
cannot be bridged by increasing the simulation temperature
further because thermal pressure is small compared to the
static pressure and–more importantly–carbon is predicted to
melt at ∼6000 K for these pressures [25].

(ii) The recent work by Lazicki et al. [46] provided stress-
density measurements up to 2000 GPa that are in fairly good
agreement with the results of Smith et al. (see yellow dia-
monds in Fig. 1). In addition, (111) and (220) x-ray diffraction
lines demonstrated that the sample remained in the diamond
crystal structure up to ∼2000 GPa, even though the BC8 phase
is predicted to be thermodynamically more stable beyond
950 GPa (see Fig. 2). We thus performed simulations of the
diamond structure at 4400 K and 9.78 g cm−3 and obtained a
pressure of 2652 ± 2 GPa. This is 6% higher than the pressure

of the BC8 phase but still not high enough to match the stress
reported in the experiments.

(iii) As we were not able to match the density-stress data
points of Smith et al. with a solid structure under hydrostatic
conditions, we investigated whether these measurements
could be matched with simulations of liquid carbon, even
though the experiments had shown no signatures of melting
along the ramp-compression path. We used our equation of
state (EOS) for liquid carbon [25] to reproduce the density-
stress conditions of 9.78 ± 0.27 g cm−3 and 2935 ± 83 GPa
reported in the experiment. This results in an unexpectedly
high temperature of 41900 ± 5300 K. Still, we were able
match all the density-stress conditions reported in Ref. [9],
and attribute a temperature to every data point. We propagated
the experimental stress and density error bars and plot the in-
ferred temperature conditions in Fig. 2. For the density points
8.24 ± 0.16 and 12.4 ± 0.7 g cm−3, we infer temperatures
of 34700 ± 3600 K and 47000 ± 26000 K, respectively. The
assumption, that the reported density-stress data points corre-
spond to liquid carbon implies a significant amount of heating
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FIG. 2. Phase diagram of carbon. DFT-MD simulations of dense,
liquid carbon [25] were used to attribute a hypothetical temperature
to the density-stress data values reported from Bradley et al. [8] and
the [9] ramp compression experiments of Smith et al. The vertical
lines represent the temperature uncertainties that were obtained by
propagating the experimental error bars. The orange dashed curve
represents the isentrope that crosses the principal Hugoniot curve at
110 GPa, the diamond elastic limit.

has occurred during ramp compression [9]. This provided
us with motivation to construct a thermodynamic model to
estimate the heating in ramp-compression experiments, which
we present in Sec. V.

If one assumes the compression is purely isentropic, the
temperature does not exceed 1000 K within pressures of
3000 GPa as the orange curve in Fig. 2 shows. We used the
quasi-harmonic approximation to obtain isentropes from the
free energies of each solid phase. In particular, we obtain
the isentrope that crosses the principal Hugoniot curve at
110 GPa, the pressure reported by Smith et al. as the initial
state for their ramp loading. Under the assumption that the
compression was isentropic, and no plastic work contributed
to the heating, one would be forced to conclude that no melt-
ing has occurred in the experiments of Smith et al. On the
other hand, one cannot match the reported stress-density data
points with simulations of solids under hydrostatic conditions.

(iv) Under this hypothesis, we explore whether the high
stresses observed in the experiments are consistent with a
solid sample under a high degree of uniaxial strain. It is
our goal to match the measured density-stress points with
DFT-MD with simulations of strained BC8 and to derive a
temperature estimate.

We simulated uniaxially compressed BC8 supercells with
the strain applied in the x direction in order to obtain higher
Px values than those derived from hydrostatic simulations at
the same density. We adjusted the shape of the simulation
cell such that the density was kept constant at 9.78 g cm−3

during the uniaxial compression, the same density we used for
hydrostatic compression. In the two upper panels of Fig. 1,
we plot the computed normal stresses Px and Py = Pz in the
uniaxially compressed BC8 cell as a function of x strain at this
density for temperatures of 4400 and 6000 K. In the elastic
regime, where strain values are small, the stresses increase

linearly and Px > Py = Pz, as expected. For the two tempera-
tures, Px increases with strain until it reaches maximum values
of 2777 and 2800 GPa, respectively, for strain magnitudes of
12 and 16%. If the BC8 cell is strained further, Px decreases
because mechanical instabilities take place. For very large
strain values of 18 and 20%, the structure becomes unstable
and the uniaxially strained BC8 crystal collapses.

Uniaxial compression at temperatures of 4400 and 6000 K
leads to maximum stress values of 2777 and 2800 GPa, which
are still 5.4% and 4.6% lower than the measured stress value
of 2935 ± 83 GPa (see Fig. 1, upper panels). When the un-
certainty of the measured density is considered, χ2 values
of 0.7 and 0.5 are obtained that are much lower than those
obtained with hydrostatic conditions. There are two ways to
interpret the remaining discrepancy. One could argue that
χ2 values less than 1.0 represent satisfactory agreement be-
tween simulations and experiments, and the ramp-compressed
carbon crystals were strained close to the limit of their struc-
tural stability. Alternatively, one could argue that the sample
melted in the experiments of Smith et al., but this would
require a significant amount of heating and would not be
consistent with x-ray diffraction peaks observed at lower
pressures [46].

Our simulations of uniaxially compressed cells enable us
to determine the elastic constants C11 and C12 of carbon at ex-
treme P-T conditions, as we shown in Fig. 3. Since diamond
and BC8 are cubic structures, one finds C11 = C22 = C33 and
C12 = C13. In Fig. 3, we show the calculated elastic constants
for both structures, obtained from a set of uniaxial distortions
performed at different conditions. We observe that both C11

and C21 depend strongly on pressure, but there is no significant
dependence on temperature. For diamond, the value of C11 at
650 GPa is almost three times higher than its value at zero
pressure (1161 GPa). A similar behavior is observed in BC8,
where the rate of increase of C11 with pressure is approxi-
mately 2.96, smaller than the value of 3.54 for diamond. Based
on a linear fit, we estimate C11 to jump from 4883 GPa to
6354 GPa at 1000 GPa, where diamond transforms into BC8.
In Fig. 3, we highlight the region where our computed elastic
constants violate the generalized Born stability criterion, that
requires the determinant of the stiffness tensor to be positive
[50]. For cubic crystals, this requires, C11 − C12 > P, which is
no longer satisfied for our simulations at the highest pressures
in this plot. In Fig. 4 we show the stress-strain curve for dia-
mond at ambient conditions and for high pressure conditions
in the BC8 phase, to illustrate of how the elastic constant were
obtained. Knowing the elastic constants at high pressure is
fundamental to developing strength models [51], and they can
be used to account for plastic work during compression [8],
which we will discuss in Sec. IV.

(v) We also considered the effects of porosity by per-
forming constant-density, uniaxial strained simulations of
defect-bearing BC8 cells for the same density of 9.78 g cm−3

as above. Using the prescription in Sec. II, we generated sam-
ples with 7.8% defect-induced porosity (illustrated in Fig. 1)
to match the sample properties of Smith et al. [9]. The average
normal stress (pressure in the case of zero strain) was found
to be 2400 GPa at 4400 K, which is 100 GPa lower than the
pressure of the perfect crystal at the same temperature-density
conditions. For a given average stress, the defect-laden cells
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FIG. 3. Elastic constants C11 and C21 of diamond and BC8 carbon
as a function of pressure at different temperatures. The shaded region
indicates the instability regime, where the Born criterion [50] (C11 −
C12)/2 > P, is no longer satisfied.

have a smaller volume. One could have expected that this
volume reduction leads to higher stresses for given density,
making it easier to match the measured stress values, but our
results in Fig. 1 suggest otherwise. In the bottom left panel, the
maximum stress value of strained, defective cells was in fact
lower than those we obtained for the defect-free crystals. We
find the defects are mobile at a temperature of 4400 K. Their
mobility tends to distribute the stresses more evenly, which
reduces the structures ability to maintain large stresses in a
particular direction.

(vi) Finally we report the observation that when the exper-
imental density values are rescaled by a factor of 1.08 (yellow
shaded region in Fig. 1), the stress-density points came into
good agreement with our DFT-MD predictions. The 1.08 fac-
tor equals the ratio of the density of defect-free diamond,
3.515 g cm−3, and the initial density of the porous diamond in
the experiment 3.25 g cm−3. This scaling has been shown to
work fairly well in shock compression experiments on porous
materials [52–57]. If the shock Hugoniot curve for an initial
density ρA

0 is known but the curve for the initial density ρB
0

is needed, one can approximately scale the densities of the
original Hugoniot curve by the ratio of ρB

0 /ρA
0 . Based on this

analogy, one may want to multiply the densities of Smith
et al. f = 3.515/3.25 = 1.08 or to multiply our DFT-MD
densities by 1/ f . While this scaling brings the results from

FIG. 4. Stress-strain curves for diamond (upper panel) and BC8
structures (lower panel). The dashed lines depict the linear regime
from where the elastic constants, shown in Fig. 3, were obtained.

experiments and simulations into good agreement, it leaves
two open questions. It is unclear why the DFT-MD results
would better describe an experiment that started from the
density defect-free diamond, and regardless of what the initial
density was in the experiments, it should be possible to di-
rectly match the reported density-stress points with DFT-MD
simulations at some temperature.

It should also be pointed out that ramp experiments are
not as well understood as Hugoniot measurements. Nonhy-
drostatic effects may play an important role and, though the
expermients of Bradley et al. [8] and Smith et al. [9] pro-
vide measurements of the longitudinal stress as a function of
density, they do not report any other stress components. The
deviations between different stress components could be as
large as 45% for pressures below 1 TPa, as we will discuss in
the next sections. For the BC8 phase, a reduction of 15% in
the lattice parameter at 2500 GPa can cause the longitudinal
stress to be 12% larger than the average stress, as we illustrate
in Fig. 1. All of these results and open questions motivate us
to construct a thermodynamic model to illustrate how heating
may be introduced in such experiments.
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IV. PLASTIC WORK

A. Infinitesimal heating due to plastic work

It has been suggested that the temperature increase in ramp
compression can be explained as a temperature increase due
to isentropic compression combined with additional heating
from plastic work [8,27,35,51,58]. Here, the increment in
plastic work done per unit volume in the plastic flow region
is given by

dWp

V0
= σ ′

i jdε
p
i j = σ̄dεp, (1)

where σ ′
i j = σi j − σpδi j is the deviatoric stress of the stress

tensor, σi j . The average stress is given by σp = (σxx + σyy +
σzz )/3. The equivalent stress for plastic deformations, σ̄ ≡√

3
2σ ′

i jσ
′
i j (Einstein summation implied), is often assumed to

lie on the yield surface through the von Mises criterion, σ̄ =
Y , where Y is assumed to depend only on volume compres-
sion, and is taken from the flow stress reported by Bradley
et al. [8]. Thus,

dWp

V0
= Y (η)

dεp

dη
dη, (2)

where η ≡ ρ/ρ0 > 1. The total plastic work done is then
given by

	Wp = V0

∫ η

1
Y (η′)

dεp

dη′ dη′. (3)

The relative plastic strain, dεp/dη, can be related to the volu-
metric compression, η, through [27]

εp = 2

3

[
ε11(η) − Y (η)

2G(η)

]
, (4)

where ε11 = ln(ρ/ρ0) = ln(η) and G is the shear modulus
that is taken from the Steinberg-Guinan model [51]. This is
a simplistic model of plasticity, with all of the plastic work
going into heating the system. The corresponding temperature
rise due to this irreversible processes is

	Trise =
∫ 	Wp

0

dE

CV
. (5)

The final temperature reached in this model of ramp compres-
sion is given by the contribution from isentropic compression,
	Tisen, and the contribution from plastic work,

Tfinal = 	Tisen + 	Trise. (6)

The Grüneisen parameter gives the temperature increase
under isentropic compression, with γ ρ = γ0ρ0 assumed con-
stant, which results in 	Tisen = T0 exp(γ0(1 − ρ0/ρ)), with γ0

the ambient-density Grüneisen parameter.
In Fig. 5, we compare the plastic work done to compress

diamond to a given density with the DFT-derived energy
difference, 	E , between uniaxially and hydrostatically com-
pressed diamond to the same density from ambient conditions.
We find that the energy excess, 	E , is comparable to our
plastic work estimates, obtained from Eq. (3). When one adds
together the energy of isentropic compression and 	E , one
obtains the solid black curve in Fig. 5 that represents the total
energy increase in this ramp compression model.

FIG. 5. Plastic work (dot dashed line) and energy increase upon
isentropic compression (solid black line), compared to the energy
difference between hydrostatically and uniaxially compressed dia-
mond (open blue circles). The energy difference with the isentrope,
	Eisen = − ∫

P dV (dashed red line) is added to the plastic work to
account for the total energy increase 	Etotal. Estimates from elasticity
theory using fourth- order elastic constants from Telicho et al. [59].

Alternatively, we can use elasticity theory to estimate en-
ergy increase due to uniaxial compression. From the elastic
constants of diamond reported by Telichko et al. [59], we
calculated this energy considering the error bars in elastic
constants, shown by the shaded green curve in Fig. 5. We
observe that there is good agreement between the total energy
increase, 	Etotal, obtained from the plastic work model and
that from elasticity theory.

V. RAMP COMPRESSION MODEL

Our DFT-MD simulation results motivated the develop-
ment of a model that can explain the rise of temperature
during ramp compression. In some experiments [8–10], the
main ramp pulse may be preceded by an initial shock, which
takes the sample to a point along the principal shock Hugoniot
curve, from where it is ramp compressed. Here, we model
the energy transfer that occurs in solid materials as they are
compressed by a ramp wave.

In ramp compression, a ramp pulse creates a uniaxial strain
in the material, that eventually relaxes to a hydrostatically
compressed state at conditions exceeding the dynamic yield
stress [7]. This relaxation increases the internal energy and
entropy. It is a complex process that involves length and time
scales that are orders of magnitude larger than the scope of ex-
isting ab initio simulation methods. Furthermore, since strain
is uniaxial, only the longitudinal component of the stress can
be measured [8,9], and access to the full stress tensor and
thus also the average stress is only available through models
[10]. For this reason, we need to design an analog process
that captures the essential stages of ramp compression, while
being predictive and amendable to ab initio computations.

In our model, depicted in Fig. 6, we approximate ramp
loading as a series of compression and relaxation steps. In
each step, we perform DFT-MD simulations in the NVT
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FIG. 6. Illustration of a single step of our ramp wave com-
pression model. The system is uniaxially compressed from the
hydrostatic state (a) to the uniaxially compressed state (b) along an
isotherm. The energy of this state, Eb, which is higher than that of
the equivalent hydrostatic state at the same temperature and density,
E∗

b , are used to obtain the energy difference, Ec, which is given to the
hydrostatically compressed sample at this density as kinetic energy.

ensemble to prepare a cubic sample that is (a) prepared un-
der hydrostatic conditions at a given density and temperature
and then (b) uniaxially compressed to a higher density. The
internal energy is compared to that of a cubic sample under
hydrostatic conditions at the same density and temperature.
We derive the internal energy difference between the two
states, which we found to be equivalent to the plastic work
(Fig. 5), in accord with our assumption that relaxation from
the uniaxially compressed state to hydrostatic conditions is
irreversible and therefore causes heating during ramp com-
pression. Thus, (c) we add the energy difference to the energy
of the hydrostatically compressed state and let the system
equilibrate to a new temperature while holding the energy
constant. To achieve this, we performed DFT-MD simulations
in the microcanonical (NVE) ensemble. Step (c) represents
the relaxation to the hydrostatic state, with the elastic energy
accumulated in the metastable, uniaxially compressed state
being transformed into internal energy, increasing the sample
temperature as hydrostatic conditions are achieved.

Since the energy is held constant after adding this energy
difference, the system reaches a new thermodynamic equilib-
rium state with a higher temperature. This new state is taken
as the initial state for the next compression step, and the entire
process (a)–(c) is repeated. Every compression step consists

FIG. 7. Illustration of our ramp wave compression model for
diamond, using three compression steps. The system is uniaxially
compressed to the next density (red squares) along an isotherm
(horizontal arrows), and then the energy difference with respect to the
equivalent hydrostatically compressed state (at the same conditions),
is given to the cubic sample as kinetic energy (vertical arrow). The
relaxation of the system after increasing energy is performed in the
microcanonical ensemble (NVE), which leads to the new equilibrium
temperature (blue circles). The cycle is repeated from this point using
the equilibrated state as the new initial state for the next step. A
second and then a third compression step is performed in order to
reach 800 GPa.

of these three stages. The total number of compression steps
is chosen so that they lead to a reasonable subdivision of the
pressure interval spanning the initial and final compression.

We show an application of our model to diamond using
the three consecutive compression steps that we illustrate in
Fig. 7. In the first step, the sample is (a) prepared at 300 K
and ambient density of ρ0 ≡ 3.468 g cm−3 and taken to (b),
the uniaxially compressed state, at the same temperature. The
corresponding energy difference at these conditions is given
to the sample hydrostatically compressed to the same density
and temperature, a process that takes the system to (c). A sec-
ond step is initiated from this state to reach a compression of
1.5-fold, and then a third step takes the diamond to 1.86-fold
compression, which is the density needed in order to reach
800 GPa. In this case, we have chosen the densities in each
step to closely match 200, 400, and 800 GPa. The resulting
curve, shown in open blue circles in Fig. 7, is the predicted
ramp compression path in temperature-density space.

A. Single-step calculations

In order to determine the dependence on the step size in
our model [going from (a) to (b)], we subjected diamond
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FIG. 8. Total energy and stress in hydrostatically (solid green
circles) and uniaxially compressed (open squares) diamond along
the 300 K isotherm for a series of single-step uniaxial compressions.
Ramp compression experiments by Bradley et al. [8] and Smith et al.
[9] are shown for comparison. The cubic, hydrostatically compressed
state is energetically favored over the uniaxially compressed state
for all pressures. Along this isotherm, the pressure in hydrostatically
compressed samples, P, is always below the experimental curves.
The open blue circles represent the heated sample [stage (c) in our
ramp model] for each of the individual single-step compressions.
The drop in stress anisotropy, SL = Px − 1/2(Py + Pz ), at ρ/ρ0 = 1.8
indicates the onset of a mechanical instability in the uniaxially com-
pressed crystal that is enhanced by thermal motion of the nuclei.

to a series of single-step uniaxial compressions from initial
ambient conditions, as shown in Figs. 8 and 9. In Fig. 8, we
compare the total energy and pressure of the uniaxially and
hydrostatically compressed cells along the 300 K isotherm.
Each point corresponds to a different uniaxial compression
ratio (and thus, to a different of target density) in going from
(a) to (b) (see Fig. 8). The uniaxial compression is achieved
by reducing the lattice constant in the [100] direction, while
keeping the other cell vectors unchanged. We compare our
results with two reports of Px as a function of density dur-
ing ramp compression (Bradley et al. [8] and Smith et al.
[9]). The change in slope of the curve of Bradley et al. near
ρ = 3.8 g cm−3 (1.1 ρ0) indicates the elastic response limit.

As expected, the energy of the hydrostatically compressed
cell is always lower than that of the cell subjected to uniaxial
compression, which reflects the fact that the latter is a state
of metastable equilibrium. The hydrostatic pressure in the
cubic cell, however, is higher than the average stress, Pav =
(Px + Py + Pz )/3, in the uniaxially compressed cell, along this

FIG. 9. Final temperature [relaxation to hydrostatically com-
pressed stage (c)] vs compression ratio for a series of single-step
uniaxial compression steps, corresponding to the blue circles in
Fig. 8. The final temperature from our single-step ramp model is
compared to the temperature rise derived from the plastic work
model using Eq. (6).

isotherm. The stress along the compression direction, Px, is
about 35% higher than the average stress, Pav , and 65% higher
than the perpendicular stress, 1

2 (Py + Pz ) ≈ Py ≈ Pz, as shown
in Fig. 8. When the density reaches 6.24 g cm−3 (1.8 ρ0) in
hydrostatic compressions at 300 K, the lattice constant is 18%
smaller than its ambient value of 3.57 Å, while this requires
a compression of 45% of the strained axis of the uniaxially
compressed cell. Beyond this point, further compression is no
longer feasible, since a longitudinal stress instability triggers
a crystal structure collapse in this highly strained cell. The
decrease in the slope of Px at 1.8ρ0 and subsequent decrease in
the longitudinal stress anisotropy, SL = Px − 1

2 (Py + Pz ), is a
signature of the instability growing in the uniaxially distorted
crystal.

After adding the energy excess of the strained cells, shown
in Fig. 8, to each of the corresponding cubic cells [stage (c)
of our ramp compression model], we can calculate how much
the temperature increases for each of the single-step compres-
sions. The resulting temperatures are shown in Fig. 9, where
the shock Hugoniot curve obtained from DFT simulations
[60] is also shown for comparison. Beyond 1.4-fold compres-
sion(300 GPa), the final temperatures under ramp loading start
deviating from shock Hugoniot curve in temperature-density
space. This can be interpreted as an upper limit for single-step
uniaxial compressions in our ramp model, since we expect the
first step to take the system to a point close to the Hugoniot
curve, because the energy used to compress the sample in
a shock is then released to heat the sample. The resulting
temperatures are lower that those obtained from the plastic
work model presented in Sec. IV.

B. Multistep calculations

After determining the temperatures of a series of indepen-
dent single-step compressions, we applied several consecutive
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compression steps to diamond, starting from ambient con-
ditions and studied how our predicted final temperatures
depend on the number of steps chosen. We first subdivided
the pressure interval 0 to 800 GPa in three steps: 0 GPa →
200 GPa → 400 GPa → 800 GPa, as we show in Fig. 10.
For this sequence, we obtain a final temperature of 2150 K
at 800 GPa. As the number of steps is increased over a given
pressure interval, one expects to generate less heat because
smaller uniaxial compression is applied at every step and,
consequently, less energy is available to increase the temper-
ature. Indeed, this is what we observe in Fig. 10 when we use
four compression steps: 0 GPa → 100 GPa → 200 GPa →
400 GPa → 800 GPa. Using four steps, then, leads to a
lower temperature of 1400 K. For a very large number of
compression steps, this curve approaches an isentrope, as the
amount of heating decreases for smaller steps. We also show a
different three-step sequence for a final pressure of 600 GPa,
considering 150 GPa and 300 GPa as the intermediate steps.
At the final pressure of 600 GPa, we obtain a temperature of
1500 K.

Therefore, at 800 GPa, our model predicts a temperature
of 3300 K when we use a single step (Fig. 9), 2150 K for
three steps, and 1400 K for four steps. Bradley et al. estimated
that this temperature should be 6300 K at this pressure [8],
assuming that heating responds to an isentropic plastic flow
process. While all these temperature estimates are based on
different assumptions, they all lie below the melting curve
and support the conclusion that the sample remained solid at
these conditions [8]. The appropriate number of steps in our
model can be determined once temperature measurements are
provided in a ramp-compression experiment, which will also
provide information about the strain in the material.

VI. MULTISHOCK HUGONIOT CALCULATIONS

In order to provide a benchmark for our model calcula-
tions, we performed a multishock Hugoniot analysis over a
dense grid of DFT-MD data in the 0 − 5000 GPa pressure
range, considering also the high-pressure BC8 and SC phases
of carbon, and then compare our results with the values re-
ported by Smith et al. [9]. A multishock Hugoniot offers
one approximation to a ramp wave, which can be thought
a succession of shocks. By breaking up a single shock into
multiple smaller shocks, one approaches an isentrope [38],
and we expect the conditions in each of these shocks to be
similar to those obtained by our ramp model. When a shock
passes through a material, the initial energy, pressure, and
volume (E0, P0,V0) and the final values (E , P,V ) are related
by the Rankine-Hugoniot equations [14]

(E − E0) = 1
2 (P + P0)(V − V0), (7)

which describes the conservation of mass, momentum, and
energy across the shock front. In the multishock scheme, a
point on the principal Hugoniot curve is used as the initial
state for a second shock. A point on this secondary Hugoniot
curve is chosen as an initial state for the third shock, and so
on. Since Eq. (7) needs to be evaluated at many volumes V
for a given temperature T to obtain E (V, T ) and P(V, T ), a
dense volume-temperature grid is required to find the states
that satisfy this equation.

FIG. 10. Temperature rise in our ramp-compression model for
different compression paths. The final temperature depends on the
number of steps taken to subdivide the pressure interval. For a final
density of 6.48 g cm−3 (800 GPa), a three-step subdivision leads to
a final temperature of 2000 K, while four steps lead to 1200 K. For
a final pressure of 600 GPa, a three-step sequence results in a final
temperature of 1500 K.

In Fig. 11, we show the full temperature-pressure range
at which we performed DFT-MD multishock calculations.
The isotherms span across the diamond, BC8 and SC phases
of carbon. Seven consecutive shock Hugoniot curves were
generated as described above. The initial state for each curve
was chosen such that the pressures matched closely 0, 200,
400, 600, 1200, 1800, and 2400 GPa. The initial conditions
in each shock form a curve that is shallower than the principal
Hugoniot curve, as expected. These are shown in the pressure-
density diagram of Fig. 11, which shows that they closely
match the data from Smith et al. [9].

A. Ramp model versus multishock hugoniot curves

We applied our ramp-compression model to the 0 −
5000 GPa pressure interval, choosing an evenly distributed set
of compression steps: 0, 300.25, 612.15, 1225, 1850, 2450,
and 4000 GPa. We added an intermediate step at 1000 GPa,
where diamond is predicted to transform to the BC8 structure
[14,25,61]. For the additional step at 1000 GPa, we use the
density and temperature reached in the diamond structure
to prepare the BC8 structure, and then we uniaxially com-
pressed BC8 to 1225 GPa. This prevents a spontaneous phase
transition during the uniaxial compression. However, for the
additional step at 3000 GPa, it was not possible to stabilize the
simple cubic crystal at the corresponding temperature under
uniaxial compression, which can be an indication of a BC8
to simple hexagonal transition [61]. Therefore, the last step to
4000 GPa was also performed in the BC8 structure.

We compared the results from our ramp model using 8
steps, with the multishock scheme shown in Fig. 12, and
steps chosen to closely match the pressure sequence of the
ramp-loading model. We observe that the final temperatures
predicted by the two models are in good agreement, and below
the melting curve. In our ramp model, we find a temperature
of 4600 K when the pressure reaches 3000 GPa, while this
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FIG. 11. Multiple-shock Hugoniot curves of carbon at pressure-
temperature conditions of the diamond, BC8, and simple cubic
phases. The shocks occur in diamond at 200, 400, and 600 GPa, and
in BC8 at 1200, 1800, and 2400 GPa. In the bottom figure, the multi-
shock points of the panel above are plotted in pressure-density space,
and compared with the experimental ramp-compression values of
Smith et al. [9] and the DFT-MD solid-liquid principal Hugoniot of
diamond [14,60]. The densities of Smith et al. were scaled by a factor
of 1.08.

temperature is 4200 K for this same pressure in the multishock
approach. The good agreement between the two approaches
shows that, in fact, our ramp compression model is equivalent
to a series of consecutive shocks. Moreover, our results agree
with values from a recent EOS model for diamond [62], based
on flow stress estimates and plastic work done in the sample
(Fig. 13).

Our findings show that, as the number of compression
steps increases, the temperature decreases. Most of the heat
is delivered in the first shock, after which the temperature in-
creases moderately, when a sufficiently large number of steps
is considered. The total number of steps required to predict
the temperature under ramp loading depends especially on the
magnitude of the first step along the principal Hugoniot curve,
which is set by experiments [9].

B. Multishocks in the liquid regime

In Fig. 13, we show how different the compression path
is when the second shock is launched at 600 GPa, using the
multishock scheme. First, we observe a discontinuity in the
Hugoniot temperature upon crossing the melting line, caused
by the heat of fusion. This discontinuity is also observed in
the secondary shock, which starts in the diamond solid phase

FIG. 12. Temperatures predicted by the multishock scheme com-
pared to our ramp model in the 0 − 5000 GPa pressure range, using
eight steps. Intermediate steps are performed at 1000 and 3000 GPa,
where solid/solid phase transitions are predicted to occur. All uni-
axial compressions from 1000 to 4000 GPa were performed in the
BC8 structure. The melting curve (thin blue curve) [25] is shown
for comparison. The dot-dashed black curve represents the isentrope
that crosses the principal Hugoniot curve at 110 GPa, the diamond
elastic limit. Temperature estimates, based on plastic work, at 600
and 800 GPa from the ramp compression experiments of Bradley
et al. [8] are shown as yellow stars.

at 600 GPa, which crosses the melting line around 900 GPa
and continues in the liquid regime around 2000 GPa. If a third
shock is launched from this secondary Hugoniot curve in the
liquid phase at 2450 GPa, the temperature can reach values as
high as 14000 K at 4000 GPa. Therefore, even if we consider
more steps, the final temperature is higher than the melting
temperature for this particular choice of the first step. Once a
liquid state has been reached, the remaining compression may
be close to isentropic (see Fig. 2).

VII. CONCLUSIONS

In order to match the density-stress measurements of Smith
et al., we performed DFT-MD simulations of isotropically and
uniaxially compressed solid carbon at various temperatures.
Simulations of solid structures with vacancies and for the
liquid phase were also performed. We find the inferred ramp
compression path to have a pressure-temperature slope similar
to that of the isentropes. Our simulations of solid diamond
show that the stresses are always lower when compared with
the experimental results for the same density. The experimen-
tal stress-density data points can be matched with simulations
of liquid carbon but this implies unexpectedly high temper-
atures, and no signature of melting are reported by Bradley
et al. or Smith et al.. Still, based on our simulations, we es-
timate that 30% of the deposited shock energy was converted
into heat while 70% went into compressing the sample, which
means one cannot rule out a priori that the sample has melted.
On the other hand, the recent x-ray diffraction measurements
by Lazicki et al. demonstrated that the sample did not melt in
those experiments.
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FIG. 13. Three-shock sequence in the multishock scheme,
launching a secondary shock at 600 GPa. The secondary shock
continues in the liquid phase at 2000 GPa, while the third shock,
that starts at 2450 GPa, reaches 14000 K at 4000 GPa. The second
shock crosses the melting line near 900 GPa. Different combinations
of steps in our ramp compression model show that it is not possible
to melt the sample with any combination of steps. Temperature
estimates, based on plastic work, at 600 and 800 GPa from the ramp
compression experiments of Bradley et al. [8] are shown as yellow
stars. Temperature estimates from Swift et al. [62] are shown in solid
thick grey line.

The question of how hot diamond becomes during ramp
compression can, in principle, be addressed with additional
temperature measurements. However, one can only measure
the thermal emission from the sample’s free surface, which
makes inferring a bulk temperature more uncertain. For ex-
ample, Lazicki et al. were unable to discriminate between
a ramp compression path with a Taylor-Quinney factor (the
fraction of plastic work converted to heat) of 0.9 from one
with a factor of 0.5, but they suggested that the latter value
was more plausible.

The fact that the reported experimental stresses are higher
than the corresponding pressure of isotropically compressed
carbon, either diamond or BC8, at any given density is a con-
sequence of one or both of the following: (i) the samples have
initial porosity, so have a heterogeneous, high-temperature
response; (ii) the final stress state is not isotropic, but has a
residual uniaxial component. Thermal pressure due to irre-
versible heating under ramp loading is otherwise too small
to explain the differences between experimental data and the
results from our DFT simulations. The possibility that the
evolution of lattice defects and porosity play an important
role, or that the samples had not reached thermodynamic equi-
librium during the few nanoseconds that these experiments
last, cannot be ruled out. Diamond can withstand substantial
uniaxial compression, and the stress in the compression di-
rection can be more than 200 GPa (up to 3 times) larger than
the other two directions according to our simulations, which
means that the average stress reached the experiments may be
30% smaller than the stress that was reported for direction of
compression.

The lowest possible temperature path that a ramp compres-
sion can follow is an isentrope, which assumes all changes
are thermodynamically reversible. While this assumption may
be realistic for liquids, during the compression of crystalline
materials some irreversible changes are unavoidable. For ex-
ample, during phase changes, the atoms need to rearrange to
form a different crystal structure [63,64]. But, even without
a phase change, the atoms need to rearrange once the strain
is sufficiently large to exceed the elastic limit under dynamic
loading. In both cases, ramp and shock, defects are generated
to facilitate the relaxation to a new hydrostatic state and we
developed a multistep model in order to characterize these
effects for ramp compression of solids. We find that single-
step compressions in our ramp model yields results in fair
agreement with the diamond shock Hugoniot below 300 GPa,
which can be interpreted as plastic deformation taking place
in uniaxially compressed diamond. The temperatures pre-
dicted by our ramp model are in good agreement with the
multiple-shock scheme for an equivalent set of steps, provid-
ing some validation of the model. We find a strong dependence
of the predicted ramp compression path on the initial step.
Future experimental techniques must be developed in order
to obtain reliable measurements of temperature during ramp
compression, as current techniques such as extended x-ray
absorption fine-structure measurements of temperature in Fe,
have very large error bars [27]. In the absence of a fundamen-
tal microscopic theory for temperature increase during ramp
compression, our model provides a reasonable first estimate.
We have found that it is possible to estimate the temperature
for experiments by calculating temperatures based either on
our ramp model outlined before, or on a multishock scheme.

Our study is relevant for characterizing the interiors of
giant planets because carbon is a notable constituent of ice
giants like Uranus and Neptune and has been proposed to
occur in the interiors of exoplanets like 55 Cancri e [21,65].
For certain protoplanetary disks with high carbon content,
the chemistry of planetary formation may lead to the for-
mation of carbon-rich planets dominated by carbides and
diamond. The properties of carbon at extreme conditions are
also needed to construct models for white dwarf stars. Dia-
mond’s singular properties (e.g., high bulk modulus, thermal
conductivity, transparency across a broad spectrum of elec-
tromagnetic wavelengths) is exploited in static high-pressure
experiments and as a means of increasing the initial density
of (precompressed) samples for dynamic compression exper-
iments. It exhibits a nearly constant melting temperature at
9–20 Mbar [25] and an exceptionally large dynamic strength
[66]. Furthermore, because of its overall technical and scien-
tific importance, including potential use in laser compression
experiments as an ablator and target material, diamond makes
it one of most important elements across multiple disciplines.

ACKNOWLEDGMENTS

We thank D. Orlikowski and R. Rudd for providing de-
tails about the plastic work model. F.G.-C. thanks Nicolas
Verschueren for his help with some figures. K.P.D. states
that their work was sponsored by an agency of the United
States government. Neither the United States government nor
any agency thereof, nor any of their employees, makes any

134104-11



F. GONZÁLEZ-CATALDO et al. PHYSICAL REVIEW B 104, 134104 (2021)

warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the U.S. Government
or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the U.S. Government or any agency thereof, and shall not
be used for advertising or product endorsement purposes.
This work was in part supported by the National Science

Foundation-Department of Energy (DOE) partnership for
plasma science and engineering (Grant No. DE-SC0016248),
by the DOE-National Nuclear Security Administration (Grant
No. DE-NA0003842), and the University of California Labo-
ratory Fees Research Program (Grant No. LFR-17-449059).
This work was also performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344. This
research used computational resources of the National En-
ergy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

[1] S. Tateno, K. Hirose, T. Komabayashi, H. Ozawa, and Y. Ohishi,
Geophys. Res. Lett. 39, L12305 (2012).

[2] S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, and G.
Morard, Science 340, 464 (2013).

[3] R. J. Hemley, H.-K. Mao, G. Shen, J. Badro, P. Gillet, M.
Hanfland, and D. Häusermann, Science 276, 1242 (1997).

[4] D. G. Hicks, T. R. Boehly, P. M. Celliers, D. K. Bradley, J. H.
Eggert, R. S. McWilliams, R. Jeanloz, and G. W. Collins, Phys.
Rev. B 78, 174102 (2008).

[5] S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig, B.
Loupias, A. Benuzzi-Mounaix, and M. R. Le Gloahec, Nat.
Mater. 6, 274 (2007).

[6] H. Nagao, K. Nakamura, K. Kondo, N. Ozaki, K. Takamatsu, T.
Ono, T. Shiota, D. Ichinose, K. Tanaka, K. Wakabayashi et al.,
Phys. Plasmas 13, 052705 (2006).

[7] D. C. Swift, R. G. Kraus, E. N. Loomis, D. G. Hicks, J. M.
McNaney, and R. P. Johnson, Phys. Rev. E 78, 066115 (2008).

[8] D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G.
Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and
G. W. Collins, Phys. Rev. Lett. 102, 075503 (2009).

[9] R. Smith, J. Eggert, R. Jeanloz, T. Duffy, D. Braun, J. Patterson,
R. Rudd, J. Biener, A. Lazicki, A. Hamza et al., Nature
(London) 511, 330 (2014).

[10] R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K.
Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G.
Kraus, D. C. Swift et al., Nat. Astronomy 2, 452 (2018).

[11] L. E. Hansen, D. E. Fratanduono, S. Zhang, D. G. Hicks, T.
Suer, Z. K. Sprowal, M. F. Huff, X. Gong, B. J. Henderson,
D. N. Polsin, M. Zaghoo, S. X. Hu, G. W. Collins, and J. R.
Rygg, Phys. Rev. B 104, 014106 (2021).

[12] M. Ross, Nature (London) 292, 435 (1981).
[13] W. B. Hubbard, Science 214, 145 (1981).
[14] L. R. Benedetti, J. H. Nguyen, W. A. Caldwell, H. Liu, M.

Kruger, and R. Jeanloz, Science 286, 100 (1999).
[15] T. Guillot, Annu. Rev. Earth Planet. Sci. 33, 493 (2005).
[16] D. Valencia, R. J. O’Connell, and D. D. Sasselov, Astrophys.

Space Sci. 322, 135 (2009).
[17] S. Seager, M. Kuchner, C. Hier-Majumder, and B. Militzer,

Astrophys. J. 669, 1279 (2007).
[18] S. M. Wahl, D. Thorngren, and B. Militzer, Tidal response of

hot jupiters (unpublished).
[19] A. Oganov, G. Schubert, and G. Price, Theory and Practice–

Thermodynamics, Equations of State, Elasticity, and Phase

Transitions of Minerals at High Pressures and Temperatures,
Vol. 2 (Treatise on Geophysics, Elsevier, Amsterdam, 2007).

[20] C. J. Pickard and R. Needs, J. Phys.: Condens. Matter 21,
452205 (2009).

[21] H. F. Wilson and B. Militzer, Astrophys. J. 793, 34 (2014).
[22] F. González-Cataldo, H. F. Wilson, and B. Militzer, Astrophys.

J. 787, 79 (2014).
[23] F. González-Cataldo, S. Davis, and G. Gutiérrez, Sci. Rep. 6,

26537 (2016).
[24] J. Wu, F. González-Cataldo, and B. Militzer, Phys. Rev. B 104,

014103 (2021).
[25] L. X. Benedict, K. P. Driver, S. Hamel, B. Militzer, T. Qi, A. A.

Correa, A. Saul, and E. Schwegler, Phys. Rev. B 89, 224109
(2014).

[26] J. Wang, R. F. Smith, J. H. Eggert, D. G. Braun, T. R. Boehly,
J. Reed Patterson, P. M. Celliers, R. Jeanloz, G. W. Collins, and
T. S. Duffy, J. Appl. Phys. 114, 023513 (2013).

[27] Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E.
Fratanduono, S. Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith,
D. C. Swift, D. G. Braun, T. R. Boehly, and G. W. Collins, Phys.
Rev. Lett. 111, 065501 (2013).

[28] J. Wang, R. F. Smith, F. Coppari, J. H. Eggert, T. R. Boehly,
G. W. Collins, and T. S. Duffy, in Journal of Physics: Confer-
ence Series, Vol. 500 (IOP Publishing, UK, 2014), p. 062002.

[29] J. Eggert, R. Smith, D. Swift, R. Rudd, D. Fratanduono, D.
Braun, J. Hawreliak, J. McNaney, and G. Collins, High Press.
Res. 35, 339 (2015).

[30] J. Wang, F. Coppari, R. F. Smith, J. H. Eggert, A. E. Lazicki,
D. E. Fratanduono, J. R. Rygg, T. R. Boehly, G. W. Collins, and
T. S. Duffy, Phys. Rev. B 94, 104102 (2016).

[31] H. G. Wei, E. Brambrink, N. Amadou, A. Benuzzi-Mounaix, A.
Ravasio, G. Morard, F. Guyot, T. D. Rességuier, N. Ozaki, K.
Miyanishi, G. Zhao, and M. Koenig, Chin. Phys. B 26, 115205
(2017).

[32] S. K. Han, R. F. Smith, D. Kim, J. K. Wicks, J. R. Rygg, A.
Lazicki, J. H. Eggert, and T. S. Duffy, Phys. Rev. B 103, 184109
(2021).

[33] F. Coppari, R. F. Smith, J. Wang, M. Millot, D. Kim, J. R. Rygg,
S. Hamel, J. H. Eggert, and T. S. Duffy, Nat. Geosci. 14, 121
(2021).

[34] Y. B. Zel’Dovich and Y. P. Raizer, Physics of Shock Waves and
High-Temperature Hydrodynamic Phenomena (Courier Corpo-
ration, North Chelmsford, MA, 2002).

134104-12

https://doi.org/10.1029/2012GL052103
https://doi.org/10.1126/science.1233514
https://doi.org/10.1126/science.276.5316.1242
https://doi.org/10.1103/PhysRevB.78.174102
https://doi.org/10.1038/nmat1863
https://doi.org/10.1063/1.2205194
https://doi.org/10.1103/PhysRevE.78.066115
https://doi.org/10.1103/PhysRevLett.102.075503
https://doi.org/10.1038/nature13526
https://doi.org/10.1038/s41550-018-0437-9
https://doi.org/10.1103/PhysRevB.104.014106
https://doi.org/10.1038/292435a0
https://doi.org/10.1126/science.214.4517.145
https://doi.org/10.1126/science.286.5437.100
https://doi.org/10.1146/annurev.earth.32.101802.120325
https://doi.org/10.1007/s10509-009-0034-6
https://doi.org/10.1086/521346
https://doi.org/10.1088/0953-8984/21/45/452205
https://doi.org/10.1088/0004-637X/793/1/34
https://doi.org/10.1088/0004-637X/787/1/79
https://doi.org/10.1038/srep26537
https://doi.org/10.1103/PhysRevB.104.014103
https://doi.org/10.1103/PhysRevB.89.224109
https://doi.org/10.1063/1.4813091
https://doi.org/10.1103/PhysRevLett.111.065501
https://doi.org/10.1080/08957959.2015.1071361
https://doi.org/10.1103/PhysRevB.94.104102
https://doi.org/10.1088/1674-1056/26/11/115205
https://doi.org/10.1103/PhysRevB.103.184109
https://doi.org/10.1038/s41561-020-00684-y


MODEL OF RAMP COMPRESSION OF DIAMOND FROM … PHYSICAL REVIEW B 104, 134104 (2021)

[35] D. E. Fratanduono, R. F. Smith, S. J. Ali, D. G. Braun, A.
Fernandez-Pañella, S. Zhang, R. G. Kraus, F. Coppari, J. M.
McNaney, M. C. Marshall, L. E. Kirch, D. C. Swift, M. Millot,
J. K. Wicks, and J. H. Eggert, Phys. Rev. Lett. 124, 015701
(2020).

[36] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[37] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[38] K. P. Driver, F. Soubiran, and B. Militzer, Phys. Rev. E 97,

063207 (2018).
[39] B. Militzer, High Energy Density Phys. 21, 8 (2016).
[40] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.134104 for information about the
system-size convergence and the evolution of energy, pressure,
and stresses as a function of time, with the respective error bars,
in a typical simulation. This includes reference [67].

[41] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[42] W. G. Hoover and H. A. Posch, Phys. Lett. A 113, 82

(1985).
[43] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[44] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[45] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[46] A. Lazicki, D. McGonegle, J. R. Rygg, D. G. Braun, D. C.

Swift, M. G. Gorman, R. F. Smith, P. G. Heighway, A.
Higginbotham, M. J. Suggit, D. E. Fratanduono, F. Coppari,
C. E. Wehrenberg, R. G. Kraus, D. Erskine, J. V. Bernier, J. M.
McNaney, R. E. Rudd, G. W. Collins, J. H. Eggert et al., Nature
(London) 589, 532 (2021).

[47] K. Nguyen-Cong, A. S. Williams, J. T. Willman, A. B.
Belonoshko, and I. I. Oleynik, AIP Conf. Proc. 2272, 070010
(2020).

[48] J. T. Willman, A. S. Williams, K. Nguyen-Cong, A. P.
Thompson, M. A. Wood, A. B. Belonoshko, and I. I. Oleynik,
AIP Conf. Proc. 2272, 070055 (2020).

[49] We define χ2 = ( ρmodel−ρexp

δρexp
)2 + ( Px,model−Px,exp

δPx,exp
)2.

[50] J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, Phys. Rev. Lett.
71, 4182 (1993).

[51] D. Orlikowski, A. A. Correa, E. Schwegler, J. E. Klepeis, M.
Elert, M. D. Furnish, R. Chau, N. Holmes, and J. Nguyen, AIP
Conf. Proc. 955, 247 (2008).

[52] B. Militzer, F. González-Cataldo, S. Zhang, K. P. Driver, and F.
Soubiran, Phys. Rev. E 103, 013203 (2021).

[53] F. González-Cataldo, F. Soubiran, and B. Militzer, Phys.
Plasmas 27, 092706 (2020).

[54] S. Zhang, K. P. Driver, F. Soubiran, and B. Militzer, Phys. Rev.
E 96, 013204 (2017).

[55] K. P. Driver and B. Militzer, Phys. Rev. E 95, 043205 (2017).
[56] K. P. Driver and B. Militzer, Phys. Rev. B 93, 064101 (2016).
[57] F. Soubiran, F. González-Cataldo, K. P. Driver, S. Zhang, and

B. Militzer, J. Chem. Phys. 151, 214104 (2019).
[58] G. R. Fowles, J. Appl. Phys. 32, 1475 (1961).
[59] A. V. Telichko, S. V. Erohin, G. M. Kvashnin, P. B. Sorokin,

B. P. Sorokin, and V. D. Blank, J. Mater. Sci. 52, 3447 (2017).
[60] A. A. Correa, L. X. Benedict, D. A. Young, E. Schwegler, and

S. A. Bonev, Phys. Rev. B 78, 024101 (2008).
[61] M. Martinez-Canales, C. J. Pickard, and R. J. Needs, Phys. Rev.

Lett. 108, 045704 (2012).
[62] D. C. Swift, O. Heuze, A. Lazicki, S. Hamel, L. X.

Benedict, R. F. Smith, J. M. McNaney, and G. J. Ackland,
arXiv:2004.03071.

[63] A. Williams, K. N. Cong, J. Willman, N. Goldman, and I.
Oleynik, AIP Conf. Proc. 2272, 070054 (2020).

[64] B. Godwal, F. González-Cataldo, A. Verma, L. Stixrude, and R.
Jeanloz, Earth Planet. Sci. Lett. 409, 299 (2015).

[65] N. Madhusudhan, K. K. Lee, and O. Mousis, Astrophys. J. Lett.
759, L40 (2012).

[66] R. S. McWilliams, J. H. Eggert, D. G. Hicks, D. K. Bradley,
P. M. Celliers, D. K. Spaulding, T. R. Boehly, G. W. Collins,
and R. Jeanloz, Phys. Rev. B 81, 014111 (2010).

[67] H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).

134104-13

https://doi.org/10.1103/PhysRevLett.124.015701
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevE.97.063207
https://doi.org/10.1016/j.hedp.2016.09.003
http://link.aps.org/supplemental/10.1103/PhysRevB.104.134104
https://doi.org/10.1063/1.447334
https://doi.org/10.1016/0375-9601(85)90659-0
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1038/s41586-020-03140-4
https://doi.org/10.1063/12.0001100
https://doi.org/10.1063/12.0000881
https://doi.org/10.1103/PhysRevLett.71.4182
https://doi.org/10.1063/1.2833022
https://doi.org/10.1103/PhysRevE.103.013203
https://doi.org/10.1063/5.0017555
https://doi.org/10.1103/PhysRevE.96.013204
https://doi.org/10.1103/PhysRevE.95.043205
https://doi.org/10.1103/PhysRevB.93.064101
https://doi.org/10.1063/1.5126624
https://doi.org/10.1063/1.1728382
https://doi.org/10.1007/s10853-016-0633-x
https://doi.org/10.1103/PhysRevB.78.024101
https://doi.org/10.1103/PhysRevLett.108.045704
http://arxiv.org/abs/arXiv:2004.03071
https://doi.org/10.1063/12.0000908
https://doi.org/10.1016/j.epsl.2014.10.056
https://doi.org/10.1088/2041-8205/759/2/L40
https://doi.org/10.1103/PhysRevB.81.014111
https://doi.org/10.1063/1.457480

