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The boundary charge that accumulates at the edge of a one-dimensional single-channel insulator is known
to possess the universal property that its change under a lattice shift towards the edge by one site is given
by the sum of the average bulk electronic density and a topologically invariant contribution, restricted to
the values 0 and −1 [Pletyukhov et al., Phys. Rev. B 101, 165304 (2020)]. This quantized contribution is
associated with particle-hole duality, ensures charge conservation, and fixes the mod(1) ambiguity appearing
in the modern theory of polarization. In the present paper we generalize the above-mentioned single-channel
results to the multichannel case by employing the technique of boundary Green’s functions. We show that
the topological invariant associated with the change in boundary charge under a lattice shift in multichannel
models can be expressed as a winding number of a certain combination of components of bulk Green’s
functions as a function of the complex frequency, as it encircles the section of the energy axis that corre-
sponds to the occupied part of the spectrum. We observe that this winding number is restricted to values
ranging from −Nc to zero, where Nc is the number of channels (orbitals) per site. Furthermore, we consider
translationally invariant one-dimensional multichannel models with an impurity and introduce topological
indices which correspond to the quantized charge that accumulates around said impurity. These invariants
are again given in terms of winding numbers of combinations of components of bulk Green’s functions.
Through this construction we provide a rigorous mathematical proof of the so-called nearsightedness prin-
ciple formulated by Kohn [Kohn, Phys. Rev. Lett. 76, 3168 (1996)] for noninteracting multichannel lattice
models.
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I. INTRODUCTION

Over the last decades, the study of topological insulators,
sparked by the discoveries of the quantum Hall effect [1,2] and
later of the quantum spin Hall effect [3], has attracted much
interest. Topological insulators (TIs) are states of matter with
a gapped bulk and symmetry-protected gapless edge states [4].
These dissipationless edge states are at the center of interest
in the field of TIs, due to their numerous promising appli-
cations in quantum computing [5–8] and spintronics [4,9],
and their exponential localization poses questions concerning
the nature of the charge distribution in their spatial vicinity
[10]. As particularly interesting in this respect appear both
the boundary charge QB, i.e., the charge that accumulates at
the edge of a finite insulator, and the interface charge QI , i.e.,
the charge that accumulates around the interface shared by a
pair of insulators [11]. The study of both of these quantities
has a long history [12–22]; connecting them to the field of TIs
however is a rather young endeavor.

With the emergence of the so-called modern theory of po-
larization (MTP), interest in the study of the boundary charge
reawakened [23–30]. One of the major achievements of the
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MTP lies in the so-called surface charge theorem, relating the
surface (boundary) charge to the bulk polarization, which in
turn is related [23,24] to the Zak-Berry phase [31]. However,
the MTP is restricted by the fact that the Zak-Berry phase
is defined modulo an integer, since upon an Abelian gauge
transformation it changes by the winding number of the cor-
responding phase. This fact complicates bridging the field of
TIs with MTP, since MTP is unable to predict the number of
edge states, the central quantity in the field of TIs.

Topological indices related to the boundary charge in one-
dimensional (1D), single-channel models without symmetry
constraints were introduced recently [10,32]. In particular
it was shown that knowledge of the exact eigenstates of a
given model allows one to find the gauge in which there
is a unique relation between the boundary charge QB,α of a
given band α and the corresponding Zak-Berry phase, fix-
ing the unknown integer of the surface charge theorem. A
new topological invariant underpinning the universal behav-
ior of the boundary charge upon continuous shifting of the
lattice towards the boundary was introduced [10,32]. It was
shown that the boundary charge QB is connected to uni-
versal long-wavelength properties of topological insulators,
making the study of the boundary charge an invaluable tool
for the characterization of TIs beyond symmetry constraints
[10,32–38].
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In another recent work [11] the universal properties of
boundary and interface charges were embedded in a general
framework, relating them generically to the nearsightedness
principle [39,40]. This principle states a fundamental prop-
erty of insulators that local perturbations by external fields
lead only to local charge redistributions resulting in an
addition/removal of an integer number of electrons to/from
a perturbed region. Based on this theorem two invariants were
established, with quantized values in generic systems, includ-
ing interactions, random disorder, and multichannel systems.
The first invariant is related to the change of the boundary
charge by discrete translations of the lattice, similar to the
one described above for single-channel systems. The second
invariant is related to the sum of the two boundary charges left
and right to a barrier separating a translational invariant lattice
in two subparts. The quantization of this invariant is related
to a local inversion of the lattice and, together with the first
invariant, provides the basis for the quantization of interface
charges at domain walls [12–18] and the generalization of the
Goldstone-Wilczek formula [19–22] to arbitrary tight-binding
lattices.

The topic of the present paper is to analyze the two in-
variants introduced in [11] in all detail for noninteracting
multichannel tight-binding models. Via an explicit represen-
tation in terms of a winding number defined purely in terms
of bulk quantities of the infinite system, we rigorously prove
the quantization and provide a means to explicitly calculate
their integer values from bulk properties. This generalizes the
results of [10,32] to systems with more than a single orbital
per lattice site, establishes a bulk-boundary correspondence
between universal properties of the boundary charge and bulk
properties, and provides a rigorous proof of the nearsighted-
ness principle.

To calculate the invariants we use the method of bound-
ary Green’s functions (BGF) [41–48]. Complementary to the
method of [10] this technique allows for the direct construc-
tion of the open boundary lattice Green’s function, avoiding
the computation of eigenstates [45]. The BGF method proved
to be useful in analyzing electronic transport in superconduct-
ing systems [44,46], thermal transport in spin heterostructures
[41], as well as transport in topological superconductors
hosting Majorana bound states [42,48]. Lately, the boundary
Green’s function technique was generalized to higher dimen-
sional systems [47] where the boundaries manifest as lines
and planes in two and three dimensions, respectively. Other
noteworthy applications of the BGF formalism include the
efficient construction of topological phase diagrams [43], as
well as bulk-boundary correspondence related investigations
in both noninteracting [49] and interacting topological insula-
tors [50]. Similar methods were also extensively used in the
1960s and 1970s with respect to determining the electronic
spectrum as well as conductivity in one-dimensional metallic
systems with strong disorder [51,52].

In the present paper the method of boundary Green’s func-
tions is used to study boundary and interface charges and their
associated topological invariants in multichannel extensions
of generalized Aubry-André-Harper models [53,54]. Employ-
ing the BGF technique, we express the boundary charge of
a one-dimensional multichannel insulator in terms of an en-
ergy integral of the local spectral density which, in turn, is

expressed via the bulk Green’s functions. Such a represen-
tation is beneficial since it avoids the direct diagonalization
of the semi-infinite system’s Hamiltonian. We introduce the
topological invariant I associated with the change of bound-
ary charge �QB (relative to the average charge per site in
the bulk ρ̄) under lattice translations. This invariant is ex-
pressed as a winding number of a particular combination of
components of bulk Green’s functions, clearly demonstrating
the bulk-boundary correspondence discussed within the realm
of topological insulators [55–58]. When the whole lattice is
shifted by a single site some number of edge states (each
contributing a unit of electron charge) may either cross the
chemical potential from above or below, respectively, hence
maintaining the integer valuedness of this invariant. Similar
arguments are frequently used in discussions of adiabatic
charge pumping [59,60]. As opposed to the single-channel
case, where this invariant is limited to the values 0 and −1, in
a system with Nc orbitals per site I can take on integers in the
range −Nc � I � 0, naturally generalizing the Nc = 1 case
(see [10,32]). It is worth noting that the form of bulk-boundary
correspondence encompassed by this invariant is not limited
to any particular symmetry classes and is purely based on such
physical principles as charge conservation and Pauli exclusion
principle. To the best of our knowledge this invariant was not
established rigorously in the literature and thus provides a
contribution to the fields of topological insulators, boundary
Green’s functions, and the modern theory of polarization.

We also adopt the BGF formalism to study the quantization
of interface charge and establish rigorously another invariant
related to the sum of the boundary charges left and right to a
barrier. In particular, we study two types of interface models:
The first is obtained from a translationally invariant model by
adding a finite potential barrier on a given site, whereas the
second type is obtained from a translationally invariant model
by weakening the link between two adjacent sites. We derive
expressions for the interface charge in both impurity and weak
link models in terms of winding numbers of combinations
of components of bulk Green’s functions, thus demonstrating
the quantization of the interface charge. Since the unit cells
are perfectly matched, there is no dipole moment in the in-
terface charge distribution, which is thus generated solely by
removing a number of valence band electrons to the emerging
interface-localized bound states. This result is of fundamental
importance in the theory of topological insulators, since it
provides the direct analytical proof of the nearsightedness
principle [39,40]. This principle assigns the robustness prop-
erty to excess charges localized near a boundary or at an
interface of two insulators (see [11] for the analytic proof of
the interface charge quantization in a special case).

Finally, we substantiate our findings with a number of nu-
merical examples, comparing the winding numbers with their
physical counterparts (i.e., boundary and interface charges) as
computed from exact diagonalization of finite systems. We
use randomly generated Hamiltonians for this comparison,
demonstrating the validity of these invariants.

This paper is organized as follows. In Sec. II we in-
troduce the class of models under consideration and define
their boundary Green’s functions. In Sec. III we define the
boundary charge for multichannel one-dimensional models
and express it in terms of boundary Green’s functions. We
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then use results from Sec. II to express the change in boundary
charge upon lattice shifts via the winding number of a spe-
cific combination of components of bulk Green’s functions.
In Sec. IV we define the interface charge for two different
impurity models: (1) finite potential on a single site and (2) a
weakened link between two adjacent unit cells. We express the
interface charge in both cases in terms of boundary Green’s
functions and use this representation to cast the expression
for the interface charge in the form of a winding number.
In Sec. V we explain how to efficiently evaluate the various
winding numbers and then show examples demonstrating the
validity of all three invariants as applied to randomly gener-
ated models. Finally, in Sec. VI we state our summary.

II. BOUNDARY GREEN’S FUNCTION

Let us consider a class of translationally invariant 1D lat-
tice models with Z sites per unit cell (labeled by 1 � j � Z
in the following) and Nc states per site (called channels and
labeled by σ ). We use the global coordinate index m = Z (n −
1) + j ∼ (n, j), which as well contains the unit-cell index n.

In particular, we focus on the nearest-neighbor hopping
models

Ĥ0 = −
∞∑

m=−∞

Nc∑
σ,σ ′=1

(tm,σσ ′ |m + 1, σ 〉〈m, σ ′| + H.c.) (1)

+
∞∑

m=−∞

Nc∑
σ,σ ′=1

vm,σσ ′ |m, σ 〉〈m, σ ′|, (2)

tm = tm+Z , vm = v†
m = vm+Z , (3)

where tm and vm are hopping and potential matrices, respec-
tively, both of the size Nc × Nc.

Solutions |ψ (0)
kα

〉 of the eigenvalue problem Ĥ0|ψ (0)
kα

〉 =
ε

(0)
kα

|ψ (0)
kα

〉 are labeled by the Bloch momentum k, −π � k <

π , and the band index α, 1 � α � NcZ . The Bloch Hamilto-
nian

hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1 −t†
1 0 . . . 0 −tZ e−ik

−t1 v2 −t†
2 . . . 0 0

0 −t2
...

...
...

... −t†
Z−2 0

0 0 . . . −tZ−2 vZ−1 −t†
Z−1

−t†
Z eik 0 . . . 0 −tZ−1 vZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(4)

is related to Ĥ0 via

Ĥ0 =
∫ π

−π

dk |k〉〈k| ⊗ hk, 〈n|k〉 = eikn

√
2π

, (5)

with hk =∑ j j′σσ ′ (hk ) jσ, j′σ ′ | j, σ 〉〈 j′, σ ′|. The normalized

eigenstates obeying hk|χkα〉 = ε
(0)
kα

|χkα〉, 〈χkα|χkα′ 〉 = δαα′ ,
help us express

〈
m, σ

∣∣ψ (0)
kα

〉 = eikn

√
2π

〈 j, σ |χkα〉. (6)

We note the completeness relation and the identity resolution

1̂ =
∑

α

∫ π

−π

dk
∣∣ψ (0)

kα

〉〈
ψ

(0)
kα

∣∣ =∑
m,σ

|m, σ 〉〈m, σ |. (7)

Using the notation ψ
(0)
kα

(m, σ ) = 〈m, σ |ψ (0)
kα

〉, we also quote
the componentwise form of (7):

δmm′δσσ ′ =
∑

α

∫ π

−π

dk ψ
(0)
kα

(m, σ ) ψ
(0) ∗
kα

(m′, σ ′). (8)

The bulk retarded Green’s function Ĝ(0)(ω) = 1
ω−Ĥ0+iη

has
the matrix expression

G(0)
mσ,m′σ ′ = 〈m, σ |Ĝ(0)(ω)|m′, σ ′〉

=
∫ π

−π

dk

2π
〈 j, σ | eik(n−n′ )

ω + iη − hk
| j′, σ ′〉. (9)

In the following we make use of the reduced notations

G(0)
m,m′ =

∫ π

−π

dk

2π
〈 j| eik(n−n′ )

ω + iη − hk
| j′〉 ≡ G(0)

j, j′ (n − n′), (10)

implying that each element [(ω + iη − hk )−1] j j′ is a Nc × Nc

matrix block with internal indices σ, σ ′.
Adding an arbitrary potential V̂ to Ĥ0, we break the transla-

tional invariance of the 1D lattice model. The retarded Green’s
function Ĝ(ω) = 1

ω+iη−Ĥ
of the perturbed model Ĥ = Ĥ0 + V̂

satisfies the Dyson equation

Ĝ(ω) = Ĝ(0)(ω) + Ĝ(0)(ω)V̂ Ĝ(ω). (11)

To mimic a boundary model which is defined in the right
half space (m � 1), we can choose an infinitely high potential
for m � 0, which would block an occupation of sites in the left
half space. In models which only allow for nearest-neighbor
hopping it is however sufficient to put a high potential just on
the single site m = 0: It will play the role of the impenetrable
barrier between the right and left half spaces. In the follow-
ing we restrict ourselves to this class of models and choose
〈m, σ |V̂ |m′, σ ′〉 = V0 δσσ ′ δm,0 δm′,0, aiming to perform the
limit V0 → ∞ afterwards. A case of longer ranged hoppings
will be discussed elsewhere [61].

Choosing the ultralocal potential of the above stated form
has the advantage that this choice allows us to study the left
boundary model with m � −1 in the same setting. The Dyson
equation (11) acquires then the special form

Gmσ,m′σ ′ = G(0)
mσ,m′σ ′ + G(0)

mσ,0σ1
V0 G0σ1,m′σ ′ , (12)

where we omit for brevity the ω dependence and implicitly as-
sume a summation over the repeated index σ1 (this convention
is also used in the following). In the matrix notation, Eq. (12)
is equivalent to

Gm,m′ (ω) = G(0)
m,m′ (ω) + V0 G(0)

m,0(ω) G0,m′ (ω). (13)

To solve this equation for Gm,m′ (ω), we first set m = 0 and
find

G0,m′ (ω) = [1 − V0 G(0)
0,0(ω)

]−1
G(0)

0,m′ (ω). (14)
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Inserting this result back into (13) yields the expression for
Ĝ(ω) in terms of Ĝ(0)(ω):

Gm,m′ (ω) = G(0)
m,m′ (ω) + V0 G(0)

m,0(ω)

× [1 − V0 G(0)
0,0(ω)

]−1
G(0)

0,m′ (ω). (15)

Now it is appropriate to take the limit of the infinite barrier
height V0 → ∞. It leads to the so-called boundary Green’s
function

Gm,m′ (ω) = G(0)
m,m′ (ω) − G(0)

m,0(ω)
[
G(0)

0,0(ω)
]−1

G(0)
0,m′ (ω). (16)

III. BOUNDARY CHARGE AND THE ASSOCIATED
TOPOLOGICAL INVARIANT

In this section we study an excess charge which is accumu-
lated near the hard wall boundary of a semi-infinite lattice. In
particular, we derive an expression for a change �QB of the
boundary charge QB under the lattice shift by one site towards
the wall in terms of a topological invariant I . The latter is
given by a winding number and therefore takes integer val-
ues. Thereby we achieve a multichannel generalization of our
earlier single-channel result [10,32]. However, instead of ex-
plicitly constructing the boundary problem eigenstates, which
was feasible in the single-channel consideration, we resort
now to the representation in terms of the boundary Green’s
functions, which was introduced in the previous section.

A. Boundary charge definition

The solution of the boundary model reads

Ĥ |ψs〉 = εs|ψs〉. (17)

Here, s is a general index to label all eigenstates, and it can
have both continuous and discrete domains with extended and
localized eigenstates, respectively. We note expressions for
the completeness and the boundary Green’s function in the
basis ψs(m, σ ) = 〈m, σ |ψs〉:

δmm′δσσ ′ =
∑∫

s
ψs(m, σ ) ψ∗

s (m′, σ ′), (18)

Gmσ,m′σ ′ (ω) =
∑∫

s

ψs(m, σ ) ψ∗
s (m′, σ ′)

ω + iη − εs
. (19)

At zero temperature, the charge density equals

ρm =
∑∫

s

∑
σ


(μ − εs) ψ∗
s (m, σ ) ψs(m, σ ) (20)

=
∑

σ

∫
dω 
(μ − ω)

∑∫
s
ψ∗

s (m, σ ) ψs(m, σ ) δ(ω − εs)

= − 1

π

∑
σ

∫
dω 
(μ − ω) Im Gmσ,mσ (ω), (21)

where μ is the chemical potential. Inserting the solution (16)
into the above expression we find

ρm − ρ (0)
m = 1

π
Im
∫

dω
(μ − ω)

× tr
{

G(0)
m,0(ω)

[
G(0)

0,0(ω)
]−1

G(0)
0,m(ω)

}
, (22)

where the trace operation is performed in the channel space,
and

ρ (0)
m = − 1

π
Im
∫

dω
(μ − ω)tr
{
G(0)

m,m(ω)
} ≡ ρ

(0)
j (23)

is the density in the translationally invariant model (and thus
in the bulk), which only depends on the site index j within the
unit cell.

The boundary charge (in units of electron charge) is defined
as

QB =
∞∑

m=1

(ρm − ρ̄ (0) ) fm, (24)

where ρ̄ (0) = 1
Z

∑Z
j=1 ρ

(0)
j is the unit-cell averaged density in

the bulk, and fm is an envelope function mimicking a charge
probe (see [10,11] for details). In particular, fm ≈ 1 for m �
M, and gradually falls off to zero value on the interval M �
m � M + N , with M, N 
 1. Splitting

QB =
∞∑

m=1

(
ρm − ρ (0)

m

)
fm (25)

+
∞∑

m=1

(
ρ (0)

m − ρ̄ (0)
)

fm, (26)

one can show that QB = Q′
B + QP, with

Q′
B = 1

π
Im
∫

dω 
(μ − ω)

× tr

{[
G(0)

0,0(ω)
]−1

∞∑
m=1

G(0)
0,m(ω) G(0)

m,0(ω)

}
, (27)

QP = −
Z∑

j=1

j

Z

(
ρ

(0)
j − ρ̄ (0)

)
. (28)

The contribution (27) is obtained from (25) by approximat-
ing fm ≈ 1 [which is justified, since (22) decays on the scale
of a typical localization length ξ � M]. This contribution
arises from the density modulation close to the boundary. It
contains contributions from the Friedel density oscillations of
extended states as well as integer-valued contributions from
edge states the energies of which might reside in spectral gaps.
In Appendix A 1 we derive the expression (A32) for the cor-
responding integrand in which the sum over m is performed.

In turn, the contribution (28) represents the dipole moment
of the unit cell (also called the polarization charge). It is
induced by the spatial variation of fm, which takes place
far away from the boundary [see [10] for details of deriving
(28) from (26)]. For the following analysis it is convenient to
express

ρ
(0)
j = − 1

π

∫
dω 
(μ − ω)

× Im tr

{∫ π

−π

dk

2π
〈 j| 1

ω + iη − hk
| j〉
}

(29)

=
∑

σ

ν∑
α=1

∫ π

−π

dk

2π
|χkα ( j, σ )|2, (30)
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FIG. 1. Schematic illustration of the winding of the quantity
det([G(0)

0,0]−1G(0)
0,1tZ ) in the complex ω plane. Here, the complex con-

tour traversed while changing the frequency ω is indicated by the
blue lines, with arrows indicating the direction. In turn, the branch
cuts and bound-state poles, which give the spectral ranges of the
boundary problem, are indicated as bold red lines and dots, respec-
tively. It is only these nonanalytic features (lying below the chemical
potential μ) which contribute to the winding number integral.

where ν is a number of the fully occupied bands, which
depends on the level of the chemical potential μ. Using the
normalization of the states |χkα〉 it is also straightforward to
show that

ρ̄ (0) = 1

Z

Z∑
j=1

∑
σ

ν∑
α=1

∫ π

−π

dk

2π
|χkα ( j, σ )|2 = ν

Z
. (31)

B. Topological invariant for boundary charge change
under the lattice shift

We shift the lattice by one site towards the boundary and
study �QB = Q̃B − QB, where Q̃B is the boundary charge in
the shifted system. For its expression it is sufficient to replace
t j → t̃ j = t j+1, v j → ṽ j = v j+1 for 1 � j � Z − 1, as well as
tZ → t̃Z = t1, vZ → ṽZ = v1.

First we evaluate the change in the polarization charge
(28):

�QP = Q̃P − QP = −
Z∑

j=1

j

Z

(
ρ̃

(0)
j − ρ

(0)
j

)
(32)

= −
Z−1∑
j=1

j

Z

(
ρ

(0)
j+1 − ρ

(0)
j

)− ρ
(0)
1 + ρ

(0)
Z (33)

= ν

Z
− ρ

(0)
1 . (34)

Defining the quantity

I = �QB − ν

Z
= �Q′

B − ρ
(0)
1 , (35)

we show that it can take only integer values and thereby ap-
pears to be a topological invariant. In particular, in Appendix
A 3 we derive the winding number expression

I = − 1

π

∫
dω 
(μ − ω)

× Im
∂

∂ω
ln det

([
G(0)

0,0

]−1
G(0)

0,1tZ
)
. (36)

As is explained in Sec. V, this integral can be interpreted
as a winding number of the function det([G(0)

0,0]−1G(0)
0,1tZ ), as

the complex frequency ω encircles the occupied part of the
spectrum, as indicated in Fig. 1. Contributions to the winding
number stem from branch cuts (bands) and from poles (edge
states).

The result (35) is a multichannel generalization of the anal-
ogous invariant derived in [10,32] for single-channel models.

In Appendix C 1 we demonstrate the equivalence of the rep-
resentation (36) with those quoted for I in the above cited
papers.

IV. INTERFACE CHARGE

In this section we study an excess charge, which is ac-
cumulated at the interface of two semi-infinite models. It is
generally defined by

QI =
∞∑

m=−∞

(
ρm − ρ̄ (0)) fm (37)

=
∞∑

m=−∞

(
ρm − ρ (0)

m

)
fm (38)

+
∞∑

m=−∞

(
ρ (0)

m − ρ̄ (0)) fm. (39)

Here for negative m the envelope function is defined as a
mirror image of its positive part, and in addition we introduce
a splitting into the two sums which is analogous to the splitting
made in Eqs. (25) and (26).

Starting from the translationally invariant model, we con-
sider two types of interfaces: (1) adding a finite potential
barrier V0 on site m = 0 (Sec. IV A) and (2) weakening the
link between sites m = 0 and 1 by 0 � λ � 1 (Sec. IV B).
Similar models have been recently studied in [62] in the
search for a unified bulk-boundary correspondence for band
insulators.

Since in the underlying model unit cells of the right
and left semi-infinite lattices perfectly match, there is no
dipole moment in the overall charge distribution, and therefore
the contribution (39) identically vanishes. The net interface
charge is thus created by removing electrons from the valence
band by emerging interface localized states. It is entirely given
by the contribution (38), which is alternatively represented by

QI = − 1

π
Im
∫

dω
(μ − ω)
∞∑

m=−∞
tr
{
Gm,m − G(0)

m,m

}
,

(40)

where G is the Green’s function of the interface model, and
G(0) corresponds to the bulk model.

For the above physical reason QI is expected to be quan-
tized in integer units of the electron’s charge. In the following
subsections we derive winding number expressions for QI ,
which provide a quantitative confirmation of our expectations.
In other words, we analytically prove—now in the multi-
channel setting—the nearsightedness principle postulated in
[39] and used in [11] to prove the quantization of the in-
variant. Details of our intermediate evaluation are provided in
Appendix B.

A. Potential impurity

In this subsection we consider a model characterized by
the Green’s function (15), that is featuring the additional im-
purity potential V0 at the site m = 0. On the basis of (40) the
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following holds:

QI = − 1

π
Im
∫

dω 
(μ − ω)

× V0 tr

{[
1 − V0 G(0)

0,0

]−1
∞∑

m=−∞
G(0)

0,m G(0)
m,0

}
. (41)

Making use of (B11), we express

QI = − 1

π
Im
∫

dω 
(μ − ω)

× tr

{
(1 − V0F0)−1 ∂ (1 − V0F0)

∂ω

}
(42)

= − 1

π

∫
dω 
(μ − ω)

× Im
∂

∂ω
ln det

(
1 − V0 G(0)

0,0

)
, (43)

where F0 = G(0)
0,0 [see Eq. (A17)]. Like I in (36), QI acquires

integer values. They are equal to winding numbers of the
function det(1 − V0 G(0)

0,0) in the complex ω plane [see Fig. 3].
At V0 = 0 we restore the translational invariance, and

therefore QI (V0 = 0) = 0.
In the limit V0 → ∞ (two isolated subsystems excluding

site m = 0) we obtain

QI (V0 → ∞) = − 1

π

∫
dω 
(μ − ω) Im

∂

∂ω
ln det G(0)

0,0.

(44)

B. Link weakening

In this subsection we generalize the result of [11] (see
Appendix C therein) to the multichannel case.

We add the perturbation Vλ = (1 − λ) [t†
Z |0〉〈1| +

tZ |1〉〈0|], with 0 � λ � 1, to the translationally invariant
model. The corresponding Dyson equation reads

Gm,m′ = G(0)
m,m′ + G(0)

m,1 tλ G0,m′ + G(0)
m,0 t†

λ G1,m′ (45)

where tλ = (1 − λ)tZ . It follows that

G0,m′ = G(0)
0,m′ + G(0)

0,1 tλ G0,m′ + G(0)
0,0 t†

λ G1,m′ , (46)

G1,m′ = G(0)
1,m′ + G(0)

1,1 tλ G0,m′ + G(0)
1,0 t†

λ G1,m′ . (47)

Solving these equations for G0,m′ and G1,m′ (see Appendix
B) and inserting the obtained solutions into (45), we evaluate
(40). Performing the sum over all sites, we derive the winding
number expression

QI = − 1

π

∫
dω 
(μ − ω)

× Im
∂

∂ω
ln det

[
(1 − λ2)

(
� + 1

2

)
+ λ2

]
, (48)

where � = 1
2 − F−1

0 G(0)
0,1 tZ F0 [see Eq. (A84)].

At λ = 1 we restore the translational invariance, and there-
fore QI (λ = 1) = 0.

At λ = 0 (two isolated subsystems including site m = 0)
we obtain

QI (λ = 0) = − 1

π

∫
dω 
(μ − ω)

× Im
∂

∂ω
ln det

(
� + 1

2

)
. (49)

Using Eqs. (A87) and (A94), we deduce

det

[
(1 − λ2)

(
� + 1

2

)
+ λ2

]
= det

[
1 − (1 − λ2) G(0)

0,1tZ
]
,

(50)
which is a convenient representation for evaluating the invari-
ant (48) at finite λ.

In Appendix C 2 we demonstrate how to reproduce from
(48) the single-channel expression for the interface charge
previously derived in [11].

V. NUMERICAL RESULTS

In this section we demonstrate the validity of the above
defined topological invariants, particularly Eqs. (36), (43),
and (48). To this end we evaluate these winding numbers
for some randomly generated multichannel models and com-
pare their values to the corresponding boundary and interface
charges, evaluated from their original definitions. As it turns
out, even for the minimal nontrivial (that is, allowing for
the “spin-orbit” coupling) multichannel models (Nc = Z =
2), the analytical evaluation of these winding numbers is un-
feasible, so we have to resort to a numerical calculation.

This section is organized as follows: in Sec. V A we de-
scribe our strategy of the numerical evaluation of the winding
numbers. In particular, we describe an algorithm which allows
for an efficient computation of these invariants. In Secs. V B
and V C we show representative data for the winding numbers
corresponding to the boundary and interface charges, respec-
tively.

A. Numerical implementation of the winding numbers

All three winding numbers discussed in this paper are
defined in terms of bulk Green’s functions, which in turn are
defined via a quasimomentum integral [see Eq. (9)]. In the
numerical evaluation, we approximate this integral by a sum
over Nk evenly spaced (by δk = 2π

Nk
) momenta kl = −π + lδk ,

with l = 0, . . . , Nk − 1, i.e.,

G(0)
mσ,m′σ ′ = lim

Nk→∞
δk

2π

∑
kl

〈 j, σ | eikl (n−n′ )

ω + iη − hkl

| j′, σ ′〉. (51)

The various winding numbers computed from these
Green’s functions are then compared to exact diagonalization
data computed from some finite size Hamiltonian, suitably
defined according to the boundary configuration in question,
i.e., hard wall, potential impurity, or link weakening (see
Fig. 2). These finite size Hamiltonians have some dimen-
sion D = NsitesNc, where Nsites denotes the number of sites
(chosen in the following to accommodate an integer number
NZ of unit cells, that is Nsites = ZNZ ), and are characterized
by some spectrum εs (where s = 1, . . . , D) and bandwidth
B = maxs εs − mins εs. We define the average level spacing
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(a)
. . . 1 . . .

n = 0

Z 1 . . .

n = 1

Z . . .
(b)

. . . 1 . . .

n = 0

Z

V0

1

tZ

t†Z

. . .

n = 1

Z . . .
(c)

. . . 1 . . .

n = 0

Z 1

λtZ

λt†Z

. . .

n = 1

Z . . .

FIG. 2. Diagram depicting the various boundary configurations considered here: hard wall (a), potential impurity (b), and weakened
link (c). In all three cases we consider a closed ring of NZ unit cells, as indicated by the bent dotted lines underneath the diagrams which
contain NZ − 2 additional unit cells, respectively. The labels above the diagrams correspond to the numbering of the unit cells as discussed
in Sec. II. The feature distinguishing a given boundary configuration from the translationally invariant ring is highlighted in red, respectively.
(a) Boundary configuration of a hard wall, which is used in the computation of the shift in boundary charge. The link between unit cells n = 0
and 1 is cut completely and the boundary charge is measured to the right, i.e., starting with unit cell n = 1. The envelope function falls off to
zero to the right of n = 1, around n ∼ NZ/4. (b) Potential impurity boundary configuration, where the on-site potential V0 is added onto site
m = 0 (n = 0, j = Z) of the translationally invariant ring. Note that in the limit V0 → ∞ we effectively obtain a hard wall again [as in (a)], but
with the site m = 0 missing. This boundary configuration is used to evaluate the interface charge, that is, the envelope function extends across
the impurity to the left and right, over the range between −NZ/4 and NZ/4. (c) Boundary configuration of a weakened link, where the hopping
matrices between unit cells n = 0 and 1 are reduced by a factor 0 � λ � 1. For λ = 1 the translationally invariant ring is recovered, and the
limit λ = 0 corresponds to the hard wall configuration of (a). The interface charge is again computed using an envelope function extending
across the impurity to the left and right.

of a finite size Hamiltonian as

δε = B

D
. (52)

The Green’s function evaluated via the sum over momenta
converges to that of an infinite system, if

sup
k

||δk∂khk|| � δε. (53)

Here, || . . . || denotes any matrix norm. In the following we
will thus assume that all Green’s functions are computed
according to Eq. (51) where the momentum spacing δk is not
sent to zero, but kept finite and chosen according to Eq. (53).
In practice we choose δk = 1

D and find that with this choice
Eq. (53) is always fulfilled.

Having settled the question of how to compute the bulk
Green’s functions we now turn to the question of how to
evaluate the winding numbers themselves. All three winding
numbers defined in this paper are given in terms of energy
integrals of the following kind (up to overall minus signs):

wn[K] =
∫

dω

π

(μ − ω)Im ∂ω ln K (ω), (54)

where

K ∈

⎧⎪⎪⎨
⎪⎪⎩

det
([

G(0)
0,0

]−1
G(0)

0,1tZ
)

det
(
1 − V0G(0)

0,0

)
det
[
1 − (1 − λ2)G(0)

0,1tZ
] , (55)

depending on the quantity in question. Note that in all three
cases K∗ = K|ω+iη→ω−iη. The winding number expression
can thus be recast as follows:

wn[K] = 1

2π i

⎡
⎣∫ μ

−∞
∂ω ln K|ω+iη +

−∞∫
μ

∂ω ln K|ω−iη

⎤
⎦ (56)

=
∮
C

dω

2π i
∂ω ln K (ω) = lim

nc→∞

nc∑
n=1

�n, (57)

where C denotes a rectangular contour with infinitesimal
width 2η in the imaginary direction, ranging (in the real di-
rection) from the lowest band edge mins εs (instead of −∞)
to the chemical potential μ, and where

�n =
{

arg K (ωn+1 )−arg K (ωn )
2π

if n + 1 � nc
arg K (ω1 )−arg K (ωnc )

2π
if n = nc

, (58)

with the nc ordered samples {ωn}n=1,...,nc from the contour C
[see Fig. 3(a)].

Note that the value of the integral does not change upon a
continuous deformation of the rectangular contour C, as long
as one does not cross any nonanalytic features of K (e.g.,
poles or branch cuts) in the process. Due to the symmetry
under complex conjugation mentioned above it is however
numerically advantageous to resort to a rectangular contour,
since any evaluation of K automatically yields two samples
needed for the computation of the winding number (at ω and
at ω∗). In the following we will thus assume that we always
exploit this symmetry.

Since the evaluation of K for a single sample ωn involves
the computationally expensive sum over Nk momenta men-
tioned above, it is desirable to limit the number of samples nc

to a minimum. We achieve this by not using a fixed grid of
evenly spaced samples along the energy contour, but by start-
ing with a small number of evenly spaced samples (at least
three), and then iteratively adding samples in between those
points, for which the absolute value of the phase difference
|�n| is largest. The algorithm consists of the following steps.

(1) Choose Nstart evenly spaced samples ωn on the energy
contour C, and compute the corresponding values of K (ωn)
and with those the phase differences �n. At each stage of the
algorithm, the sum

∑nc
n=1 �n provides an estimate of the value

of the winding number and maxn |�n| provides a measure for
the error in the winding number, which is expected to behave
like ≈ O(n−1

c ).
(2) As long as there are neighboring points on the K

contour, for which the absolute value of the phase difference
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(a) (d)

(c)

(b)

FIG. 3. Representative data of the evaluation of a K =
det([G(0)

0,0]−1G(0)
0,1tZ ) winding number for a randomly generated Nc =

Z = 3 model with three occupied bands (components of the Hamil-
tonian are listed in the Supplemental Material [63]). (a) Samples
comprising the energy contour (in orange) and the distribution of
bands (colored) and gaps (white) and an edge state pole marked by
the red star. The solid black rectangle underneath the samples denotes
the complete contour; the curved arrow in the upper right indicates its
orientation. (b, c) Estimate of the winding number

∑nc
n=1 �n and the

scaled error nc maxn |�n| as functions of the number of samples nc,
respectively. (d) K contour with arrows indicating the orientation. It
is characterized by a winding number equal to 2, which accords with
the value obtained in panel (b). The colors of the various sections of
the K contour correspond to the bands, while gaps are denoted by
gray color.

|�n| is larger than some threshold δ, determine n0, such that
|�n0 | = maxn |�n|, and evaluate K at the value ωnew on the
energy contour which lies in between (along the energy con-
tour) ωn0 and ωn0+1. Compute the phase differences for the
two new pairs of neighbors ({ωn0 , ωnew} and {ωnew, ωn0+1})
which emerge due to the addition of this new sample, and
recompute the sum over all phase differences.

Once the absolute values of all phase differences are below
a certain threshold, the (rounded) final estimate

∑nc
n=1 �n is

taken as the result of the winding number computation. Note
that whenever we evaluate K at a given ω we also get the value
at ω∗ for free, by exploiting the above-mentioned symmetry.

Figure 3 shows an example of the computation of a wind-
ing number for K = det([G(0)

0,0]−1G(0)
0,1tZ ), Nc = Z = 3, three

occupied bands, and a randomly generated Hamiltonian the
matrix elements of which are listed in the Supplemental
Material [63].

Figure 3(a) shows the energy contour with samples ωn (in
orange) and the extent of the bands as indicated by the colored
regions (white areas correspond to gaps, and the red star
denotes the pole). In practice, the extent η of the contour in
the imaginary direction is not infinitesimally small, but rather
finite and small compared to the bandwidth. In this plot, and
in what follows, we always use η = 10δε . One can clearly see
that the density of samples along the contour varies greatly,
with densely populated but also completely blank sections.

Together with the quick convergence of the winding number
discussed below, this demonstrates the usefulness of the above
described algorithm, as compared to a fixed, uniform grid,
which would lead to many unnecessary evaluations of K .

Figures 3(b) and 3(c) show the estimate of the winding
number

∑nc
n=1 �n and the scaled error nc maxn |�n| as func-

tions of the number of samples nc, respectively. It is apparent
that convergence is reached quickly and that the error falls
off as ≈ O(n−1

c ), as expected. Occasional peaks in the scaled
error correspond to the discovery of new parts of the K contour
by the algorithm. Once such a new section has been discov-
ered it is quickly smoothed out by considering more samples
in the corresponding region of the energy contour, reducing
the scaled error again.

Figure 3(d) shows the contour described by K (ωn) in the
limit where the value of the winding number has converged.
The colors of the various sections of the contour correspond
to the equally colored bands in Fig. 3(a), while sections cor-
responding to gaps are colored in gray.

In this example (and in all following calculations), we use
Nstart = 10 and δ = 1

360 , i.e., in the converged limit no pair
of neighboring points has an absolute phase difference of
more than 1◦ as measured from the origin. Although we have
discussed the special case of K = det([G(0)

0,0]−1G(0)
0,1tZ ) here,

we report that other combinations of Green’s functions, and
in particular the relevant functions defined in Eq. (55), show
qualitatively similar behavior as the example shown in Fig. 3.

B. Numerical validation of the boundary charge invariant

The boundary charge invariant [Eq. (36)] is related to the
change in boundary charge under a shift of the lattice by one
site towards the boundary. In order to compute the boundary
charge we define a finite size Hamiltonian with NZ unit cells
and cut the system, as depicted in Fig. 2(a).

In order to evaluate the change in the boundary charge upon
continuous shift of the system towards the left boundary we
consider the following form for the on-site potentials vn and
hopping matrices tn:

vn = v0 + cos

(
ϕ + 2π (n − 1)

Z

)
δv, (59)

tn = t0 + cos

(
ϕ + 2π (n − 1)

Z

)
δt , (60)

where v0 = v
†
0, δv = δ†

v, and t0 and δt are random Nc × Nc-
dimensional matrices. Here, the phase variable ϕ controls the
shift of the right subsystem toward the boundary; in particular
a shift of ϕ → ϕ + 2π

Z shifts it by one site.
Note that in the previous work [10] a more general class of

phase dependencies for the components of the Hamiltonian
was considered, with higher Fourier coefficients and addi-
tional random phase shifts. Restricting ourselves to the form
stated above however suffices to demonstrate the validity of
the winding number invariant defined in this paper, since no
conceptual differences arise in the spectral properties of the
Hamiltonian upon including such higher Fourier coefficients.

We diagonalize the finite size Hamiltonian with open
boundary conditions and NZ = 100 unit cells in order to com-
pute the boundary charge QB(ϕ) in the right subsystem (i.e.,
between the cut link on the left n = 1 and the envelope’s
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(a) (b)

(c)

(d)

FIG. 4. Representative data of the comparison of boundary
charge QB and boundary charge invariant I for a randomly generated
Nc = 3, Z = 4 model with two occupied bands (components of the
Hamiltonian are listed in the Supplemental Material [63]). (a) Extent
of the bands and gaps of the model as a function of the phase ϕ, the
chemical potential (dashed line), and a rectangular box indicating
the relevant energy window. (b) Zoom of this region with additional
orange (green) lines indicating edge states localized on the right from
the cut link in the system (the shifted system), as computed from
the diagonalization of a finite size Hamiltonian with NZ = 100 unit
cells, respectively. The chemical potential is indicated as a dashed
line. (c) Both the boundary charge QB and shifted boundary charge
Q̃B = QB(ϕ + 2π

Z ) as functions of ϕ. (d) Change in boundary charge
�QB and the winding number invariant I [Eq. (36)]. The offset
between these two curves is exactly − ν

Z = − 1
2 for all values of ϕ.

function fall-off region n ∼ NZ/4 on the right) for a given
chemical potential μ and phase ϕ. The change in bound-
ary charge upon shift by one site is then simply given by
�QB(ϕ) = Q̃B(ϕ) − QB(ϕ) where Q̃B(ϕ) = QB(ϕ + 2π

Z ).
Figure 4 shows a comparison of the boundary charge

QB (computed in the way stated above), the change in
boundary charge �QB, and the winding number invariant I ,
all as functions of the phase ϕ for a randomly generated
Nc = 3, Z = 4 model with two occupied bands. The matrices
v0, δv, t0, and δt used in this example are listed in the Supple-
mental Material [63].

Figure 4(a) shows a band structure of the translationally
invariant ring as a function of the phase ϕ. Some of the
NcZ = 12 bands touch at special phases, but the gap above the
second band remains open throughout the whole phase cycle.
The dashed line at the top of the second band corresponds
to the chemical potential and the rectangular box denotes the
relevant region of the band structure.

Figure 4(b) shows a zoom on the relevant bands and gaps
(especially the second gap), the chemical potential as a dashed
black line, and the energies of edge states localized on the
right from the cut link in both the initial (orange) and shifted
(green) finite system with NZ = 100 unit cells, all as functions
of the phase ϕ.

Figure 4(c) shows the boundary charge QB and the bound-
ary charge of the shifted system Q̃B as a function of the
phase ϕ. One can see that the boundary charge behaves almost

linearly ≈ ϕ

π
interrupted by two jumps by −1 at those phases,

where edge states leave the topmost occupied band.
Figure 4(d) shows the difference in boundary charge �QB

and the winding number I [Eq. (36)], both as functions of the
phase ϕ. One can see that the two line shapes are identical,
up to an offset of − ν

Z = − 1
2 , demonstrating the validity of the

boundary charge invariant for this randomly generated model.
We report that in preparation of this paper we have sim-

ulated numerous of these random models with varying Nc, Z
and number of occupied bands and have never seen failure of
Eq. (36). We furthermore report that in no case have we seen
I < −Nc or I > 0.

C. Numerical validation of the interface charge invariants

In addition to the winding number relating to the change in
boundary charge discussed above, this paper also introduces
two winding numbers relating to the interface charge that ac-
cumulates around an impurity in an otherwise translationally
invariant system. We consider two types of impurities: a local
potential on site m = 0 and a weakened link between sites
m = 0 and 1.

In the following we discuss one example for each of these
two cases, respectively, comparing the value of the winding
numbers to the interface charges both as functions of the
strength of the impurity. To this end we model the transla-
tionally invariant system as a ring with NZ unit cells and add
the respective impurity [see Figs. 2(b) and 2(c)]. We then
diagonalize these finite size Hamiltonians and compute the
sum of the boundary charges to the left and to the right of
the impurity. We denote these two types of boundary charges
by Q(R)

B (to the right of the impurity) and Q(L)
B (to the left of

the impurity, also including the impurity site m = 0), such that
the interface charge is given by Qdef

I = Q(R)
B + Q(L)

B , where we
use the label “def” in order to distinguish the interface charge
calculated on the basis of the definition (37) from the winding
number invariants, which we label by QI [see Eqs. (43) and
(48)].

1. Potential impurity

We consider a finite size Hamiltonian with NZ = 100 unit
cells in a ring configuration and add the potential impurity V0

on site m = 0, as depicted in Fig. 2(b). We diagonalize this
Hamiltonian and use the resulting wave functions to compute
the interface charge.

Figure 5 shows a comparison of the such computed inter-
face charge (which we denote by Qdef

I ) and the corresponding
topological invariant QI [as defined in Eq. (43)] for a ran-
domly generated Nc = 4, Z = 3 model with four occupied
bands. The Hamiltonian blocks are listed in the Supplemental
Material [63].

Figure 5(a) shows the band structure of the translationally
invariant model (i.e., for V0 = 0) versus k, with a rectangle
indicating the relevant region around the fourth gap.

Figure 5(b) shows a zoom onto this region with additional
lines indicating the energies of bound states as functions of the
impurity strength V0 in units of the bandwidth B. One can see
that as the impurity strength is increased in total three bound
states emerge from the fourth band, two of which remain in
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(a) (b)

(c)

FIG. 5. Representative data for the comparison of the interface
charge computed on the basis of Eq. (37) and the interface charge
invariant (43) for a randomly generated Nc = 4, Z = 3 model with
a potential impurity of strength V0 on site m = 0 and four occu-
pied bands. The components of the Hamiltonian are listed in the
Supplemental Material [63]. (a) Band structure of the translationally
invariant system (V0 = 0) as a function of quasimomentum k and a
rectangle indicating the relevant energy window above the fourth
band. (b) Gap above the fourth band and the energies of bound
states in a NZ = 100 model as a function of the impurity strength
V0 measured in units of the bandwidth B. (c) Line shapes of Qdef

I and
QI , both as functions of V0, which perfectly overlap.

the gap for all values of V0, while the third bound state joins
the overlying band.

Figure 5(c) shows the interface charge Qdef
I and the invari-

ant QI [Eq. (43)], both as functions of the impurity strength.
The line shapes of QI and Qdef

I perfectly overlap, demonstrat-
ing the validity of this topological invariant.

Again, we report that in preparation of this paper we have
tested many random models, always finding agreement of (37)
with Eq. (43).

2. Link weakening

Next, we consider a finite size Hamiltonian with NZ = 100
unit cells in a ring configuration and weaken the link between
sites m = 0 and 1 by 0 � λ � 1, as depicted in Fig. 2(c).
We diagonalize this Hamiltonian and use the resulting wave
functions to compute the interface charge.

Figure 6 shows a comparison of the interface charge Qdef
I

[computed in terms of (37) as described above] with the cor-
responding winding number invariant QI given in Eq. (48) for
a randomly generated Nc = Z = 5 model with six occupied
bands (the Hamiltonian parameters are listed in the Supple-
mental Material [63]).

Figure 6(a) shows the band structure of the translationally
invariant system (i.e., for λ = 1) as a function of quasimomen-
tum k and the relevant gap as denoted by the black rectangle.

Figure 6(b) shows a zoom onto the relevant gap with
the chemical potential (dashed black line) and the energy of
eigenstates of the finite system with NZ = 100 unit cells as a
function of the link strength λ. One can see that in total, as the

(a) (b)

(c)

FIG. 6. Representative data for the comparison of the interface
charge computed on the basis of Eq. (37) and the interface charge
invariant (48) for a randomly generated Nc = Z = 5 model with a
weakened link between sites m = 0 and 1 with six occupied bands.
The components of the Hamiltonian are listed in the Supplemen-
tal Material [63]. (a) Band structure of the translationally invariant
system (i.e., for λ = 1) as a function of quasimomentum k with the
relevant gap marked by the black rectangle. (b) Zoom into this gap
with dots depicting the energy of localized eigenstates of the finite
Hamiltonian with NZ = 100 unit cells as function of the link strength
λ. The dashed line indicates the value of the chemical potential.
(c) Line shapes of the boundary charges on the left and right side of
the impurity (Q(L/R)

B ), the interface charge Qdef
I , and the invariant QI ,

all as functions of the link strength λ. Note that QI and Qdef
I perfectly

overlap.

strength of the link is weakened, two eigenmodes leave the
sixth band of the system turning into bound states.

Figure 6(c) shows the boundary charges Q(L)
B and Q(R)

B
on the left (m � 0) and right (m � 1) sides of the impurity,
the interface charge Qdef

I computed on the basis of (37), and
the winding number invariant QI , all as functions of the link
strength λ. One can see that Qdef

I and QI agree throughout the
range of λ, confirming the validity of Eq. (48) for this random
model.

Again, we report that we tested numerous random models
and always found agreement of (37) with Eq. (48).

VI. SUMMARY

For generic one-dimensional insulators with Z sites per
unit cell and Nc channels (orbitals) per site we have developed
a general theoretical framework for boundary and interface
charge investigation, employing the method of boundary
Green’s functions. Using this approach, we represent the
boundary and interface charges in terms of bulk Green’s
functions of the system, which proves particularly advanta-
geous when dealing with multichannel systems, in which the
construction of exact eigenstates of the system with broken
translational invariance is usually a rarely achievable goal due
to the possibility of overlapping bands.

We use this representation of the boundary charge in or-
der to establish the topological invariant associated with the
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changes of boundary charge under lattice shifts. It was shown
that upon a shift of the lattice as a whole by a single lat-
tice site QB (relative to the average density in the bulk ρ̄)
changes by an integer −Nc � I � 0, which can be expressed
as a winding number of a particular combination of bulk
Green’s function components. This result is a natural gen-
eralization of our previous findings regarding single-channel
systems, where I was shown to take on values of 0 or −1. The
present finding proves the conjecture in Sec. VI A of [10].
The character of the bulk-boundary correspondence described
by this invariant is not limited to any particular symmetry
class and holds for arbitrary systems. This invariant quantifies
the spectral flow of the boundary eigenvalue problem, the
change by −1 in it indicating every time that an electron is
taken away by an emerging edge state (which can happen at
most Nc times during one pumping cycle of the phase ϕ).
We emphasize that the values of I , although being integer,
do not represent an alternative to the standard classification
of topological insulators and superconductors [64] in terms of
the symmetry protected classes. The quantization of I is rather
a manifestation of the fundamental property of band insulators
stated in the nearsightedness principle [39,40]: Local potential
perturbations can only lead to integer-valued changes in static
charge properties of insulators. Since this principle is a con-
sequence of the charge conservation and the Fermi principle,
it holds generally regardless of a symmetry protected class to
which an insulator belongs.

In addition to the quantization of �QB − ρ̄ we established
the quantization of charge accumulated on local scattering
centers, also known as interface charge. Specifically, we
demonstrate that the charge accumulating either around a
single potential impurity or a weak link is given by a corre-
sponding winding number and is thus a topological invariant.
This topological invariant also quantifies the spectral flow—
now of the interface eigenvalue problems. This observation
generalizes the findings of [11] (see Appendix C therein) and
provides an analytical proof of the nearsightedness princi-
ple for generic noninteracting one-dimensional tight-binding
models with translational invariance to which a single impu-
rity is added.

In future work [61] it would be also interesting to extend
the obtained results to a class of models with longer than
nearest-neighbor range hoppings. Although longer ranged
hoppings can always be rewritten effectively in terms of
nearest-neighbor hopping by increasing the number of chan-
nels per site, it is of interest to avoid this artificial procedure
and to find winding number expressions for the invariants
including longer ranged hoppings.
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APPENDIX A: PROPERTIES OF BOUNDARY GREEN’S FUNCTIONS AND BOUNDARY CHARGE

1. Boundary charge expression

Let us introduce the following short-hand notation for the Bloch Hamiltonian defined in Eq. (4):

hk =
(

A bk

b†
k vZ

)
, (A1)

hk − (ω + iη) =
(

Ā bk

b†
k v̄Z

)
, (A2)

where Ā = A − (ω + iη), v̄Z = vZ − (ω + iη),

bk = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

tZ e−ik

0
...

0

t†
Z−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, b†
k = −(eikt†

Z , 0, . . . , 0, tZ−1
)
, (A3)

and

A =

⎛
⎜⎜⎜⎜⎜⎝

v1 −t†
1

−t1 v2
. . .

. . .
. . . −t†

Z−2

−tZ−2 vZ−1

⎞
⎟⎟⎟⎟⎟⎠. (A4)

Using the matrix identity(
M11 M12

M21 M22

)−1

=
( (

M11 − M12M−1
22 M21

)−1 −M−1
11 M12

(
M22 − M21M−1

11 M12
)−1

−(M22 − M21M−1
11 M12

)−1
M21M−1

11

(
M22 − M21M−1

11 M12
)−1

)
, (A5)
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where M11 and M22 are square invertible matrices, which may eventually have different sizes, we evaluate the inverse of (A2)
and find

〈Z| 1

ω + iη − hk
|Z〉 = −(v̄Z − b†

kĀ−1bk )−1, (A6)

〈Z| 1

ω + iη − hk
| j〉 = (v̄Z − b†

kĀ−1bk )−1(b†
kĀ−1) j, (A7)

〈 j| 1

ω + iη − hk
|Z〉 = (Ā−1bk ) j (v̄Z − b†

kĀ−1bk )−1, (A8)

where the last two relations are valid for 1 � j � Z − 1. Using (A3), we express

b†
kĀ−1bk = t†

Z Ā−1
1,1tZ + tZ−1Ā−1

Z−1,Z−1t†
Z−1 + eikt†

Z Ā−1
1,Z−1t†

Z−1 + tZ−1Ā−1
Z−1,1tZe−ik, (A9)

(b†
kĀ−1) j = −eikt†

Z Ā−1
1, j − tZ−1Ā−1

Z−1, j, (A10)

(Ā−1bk ) j = −Ā−1
j,1tZe−ik − Ā−1

j,Z−1t†
Z−1. (A11)

Introducing the notations

c = t†
Z Ā−1

1,Z−1t†
Z−1, (A12)

c† = tZ−1Ā−1
Z−1,1tZ , (A13)

r = v̄Z − t†
Z Ā−1

1,1tZ − tZ−1Ā−1
Z−1,Z−1t†

Z−1, (A14)

m(k) = (ceik + c†e−ik − r)−1, (A15)

Fn =
∫ π

−π

dk

2π
m(k)eikn, (A16)

we establish the following relations for j = Z ,

G(0)
0,0(ω) = F0, (A17)

G(0)
0,m(ω) = F−n, G(0)

m,0(ω) = Fn, (A18)

as well as for j �= Z:

G(0)
0,m(ω) = F−n+1t†

Z Ā−1
1, j + F−ntZ−1Ā−1

Z−1, j, (A19)

G(0)
m,0(ω) = Ā−1

j,1tZ Fn−1 + Ā−1
j,Z−1t†

Z−1Fn. (A20)

Note that defining the hermitian conjugation in (A13) we assume that it does not conjugate the spectral parameter ω + iη. We
also remark that from (A19) it follows for m = 1, i.e., for n = 1 and j = 1, that

G(0)
0,1(ω) = (F0t†

Z Ā−1
1,1tZ + F−1c†

)
t−1
Z . (A21)

Using this representation we perform the sum

∞∑
m=1

G(0)
0,m(ω)G(0)

m,0(ω) =
∞∑

n=1

Z∑
j=1

G(0)
0,m(ω)G(0)

m,0(ω)

=
∞∑

n=1

(
F−n+1t†

Z Ā−2
1,1tZFn−1 + F−ntZ−1Ā−2

Z−1,Z−1t†
Z−1Fn

)+
∞∑

n=1

(
F−n+1t†

Z Ā−2
1,Z−1t†

Z−1Fn + F−ntZ−1Ā−2
Z−1,1tZ Fn−1

)+
∞∑

n=1

F−nFn.

(A22)

With help of the differential identity

∂Ā−1

∂ω
= −Ā−1 ∂Ā

∂ω
Ā−1 = Ā−2 (A23)

we simplify Eq. (A22) to
∞∑

m=1

G(0)
0,m(ω)G(0)

m,0(ω) =
∞∑

n=1

(
F−n+1

∂c

∂ω
Fn + F−n

∂c†

∂ω
Fn−1 − F−n

∂r

∂ω
Fn

)
+ F0t†

Z

∂Ā−1
1,1

∂ω
tZF0. (A24)
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Using the identities

F−n+1c + F−n−1c† − F−nr = δn,0, (A25)

cFn+1 + c†Fn−1 − rFn = δn,0, (A26)

we find two equivalent representations:
∞∑

m=1

G(0)
0,m(ω)G(0)

m,0(ω) = −
∞∑

n=1

(
∂F−n+1

∂ω
c + ∂F−n−1

∂ω
c† − ∂F−n

∂ω
r

)
Fn + F0t†

Z

∂Ā−1
1,1

∂ω
tZ F0 + F−1

∂c†

∂ω
F0

= F0t†
Z

∂Ā−1
1,1

∂ω
tZF0 + ∂ (F−1c†)

∂ω
F0 − ∂F0

∂ω
cF1 (A27)

and
∞∑

m=1

G(0)
0,m(ω)G(0)

m,0(ω) = −
∞∑

n=1

F−n

(
c
∂Fn+1

∂ω
+ c† ∂Fn−1

∂ω
− r

∂Fn

∂ω

)
+ F0t†

Z

∂Ā−1
1,1

∂ω
tZF0 + F0

∂c

∂ω
F1

= F0t†
Z

∂Ā−1
1,1

∂ω
tZ F0 + F0

∂ (cF1)

∂ω
− F−1c† ∂F0

∂ω
. (A28)

Introducing

p = v̄Z + t†
Z Ā−1

1,1tZ − tZ−1Ā−1
Z−1,Z−1t†

Z−1 = r + 2t†
Z Ā−1

1,1tZ (A29)

we show that
∞∑

m=1

G(0)
0,m(ω)G(0)

m,0(ω) = 1

2
F0

∂ p

∂ω
F0 − 1

2

∂F0

∂ω
+ 1

2

∂ (F−1c† − F1c)

∂ω
F0 − 1

2

∂F0

∂ω
(cF1 − c†F−1), (A30)

∞∑
m=1

G(0)
0,m(ω)G(0)

m,0(ω) = 1

2
F0

∂ p

∂ω
F0 − 1

2

∂F0

∂ω
+ 1

2
F0

∂ (cF1 − c†F−1)

∂ω
− 1

2
(F−1c† − F1c)

∂F0

∂ω
. (A31)

Summing halves of each expression we obtain

tr

{[
G(0)

0,0

]−1
∞∑

m=1

G(0)
0,m(ω)G(0)

m,0(ω)

}
= 1

2
tr

{
∂ p

∂ω
F0

}
− 1

2
tr

{
F−1

0

∂F0

∂ω

}
− 1

4
tr

{
F−1

0

∂F0

∂ω
(cF1 − c†F−1)

}

− 1

4
tr

{
(F−1c† − F1c)

∂F0

∂ω
F−1

0

}
. (A32)

2. Identities relating components of bulk Green’s functions

In this subsection we review properties of the matrices Fn

defined in Eq. (A16) and prove some useful identities associ-
ated with them.

Rewriting the identity in Eq. (A26) in the matrix form we
find

F−1
n,n′Fn′,n′′ = δn,n′′ , (A33)

with Fn′,n′′ ≡ Fn′−n′′ and

F−1
n,n′ = cδn+1,n′ + c†δn−1,n′ − rδn,n′ . (A34)

We view F−1
n,n′ as a Hamiltonian of the effective tight-binding

model, Fn′,n′′ being the corresponding translationally invariant
Green’s function. Perturbing this model by cutting the link
between the zeroth and first sites,

(FS )−1
n,n′ = F−1

n,n′ + (VS )n,n′ (A35)

= F−1
n,n′ − cδn,0δn′,1 − c†δn,1δn′,0, (A36)

we split this system into two disconnected parts. Since the
two parts are completely independent we find (FS )n,n′ = 0 for

n � 0, n′ � 1 and for n � 1, n′ � 0. The function FS is called
the surface Green’s function and obeys the following Dyson
equations:

FS = F − FVSFS = F − FSVSF, (A37)

(FS )n,n′ = Fn,n′ + Fn,0c(FS )1,n′ + Fn,1c†(FS )0,n′ (A38)

= Fn,n′ + (FS )n,0cF1,n′ + (FS )n,1c†F0,n′ . (A39)

Choosing n = 0, n′ = 1 we find

0 = F−1 + F0c(FS )1,1 = F−1 + (FS )0,0cF0 (A40)

and choosing n = 1, n′ = 0 we find

0 = F1 + F0c†(FS )0,0 = F1 + (FS )1,1c†F0. (A41)

Comparing the two expressions, we find the following identi-
ties:

F0c†F−1 = F1cF0, (A42)

F0cF1 = F−1c†F0. (A43)
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Next, focusing on the two semi-infinite Green’s functions
(FR)n,n′ = (FS )n�1,n′�1, (FL )n,n′ = (FS )n�0,n′�0, and using the
condition that they remain invariant under adding one more
site to the corresponding semi-infinite models, i.e.,

FR =
(

F−1
R c†

c −r

)−1

, FL =
(−r c†

c F−1
L

)−1

, (A44)

we compare the (1,1) matrix elements on both sides of the
first relation (in the lower right corner), and the (0,0) matrix
elements on both sides of the second relation (in the upper left
corner). To this end we use Eq. (A5). We find

(FS )1,1 = (−r − c(FS )1,1c†)−1, (A45)

(FS )0,0 = (−r − c†(FS )0,0c)−1. (A46)

Eliminating (FS )1,1, (FS )0,0, and r with the help of Eqs. (A40),
(A41), and (A26) we obtain the following quadratic matrix
equations:

(c†F−1)2 − c†F−1 − c†F0cF0 = 0, (A47)

(F1c)2 − F1c − F0c†F0c = 0, (A48)

(cF1)2 − cF1 − cF0c†F0 = 0, (A49)

(F−1c†)2 − F−1c† − F0cF0c† = 0. (A50)

Their solutions yields

c†F−1 = 1 −
√

1 + 4c†F0cF0

2
, (A51)

F1c = 1 −
√

1 + 4F0c†F0c

2
, (A52)

cF1 = 1 −
√

1 + 4cF0c†F0

2
, (A53)

F−1c† = 1 −
√

1 + 4F0cF0c†

2
, (A54)

where the sign choice for the square roots is substantiated by
the perturbative expansion of F1 and F−1 in c, c†.

Combining Eq. (A48) with Eq. (A42), we show that

F0 = (1 − F1c)
(
F0 − F1F−1

0 F−1
)
. (A55)

Analogous identities hold for the shifted system, that is, for
the tilded functions.

3. Derivation of (36)

Performing a shift of the lattice leftwards by one site, as
suggested in Sec. III B, we effectively redefine the unit cell
(i.e., making it begin from site j = 2 and terminating it after
site j = 1). The corresponding Bloch Hamiltonian defined in
Eq. (A2) changes to

h̃k − (ω + iη) =
(

Ã b̃k

b̃†
k v̄1

)
, (A56)

where v̄1 = v1 − (ω + iη) and

b̃k = −

⎛
⎜⎜⎜⎜⎜⎜⎝

t1e−ik

0
...

0

t†
Z

⎞
⎟⎟⎟⎟⎟⎟⎠

, b̃†
k = −(eikt†

1 , 0, . . . , 0, tZ ). (A57)

The matrix Ã has a structure similar to that of Ā—they dif-
fer from each other only by the labeling of sites. Moreover,
they share a common block matrix a of the size Nc(Z − 2) ×
Nc(Z − 2). This becomes obvious in the following represen-
tation:

Ā =
(

v̄1 −T †
1

−T1 a

)
, Ã =

(
a −TZ−1

−T †
Z−1 v̄Z

)
, (A58)

with

T1 =
⎛
⎝t1

...

0

⎞
⎠, T †

1 = (t†
1 , . . . , 0), (A59)

TZ−1 =
⎛
⎝ 0

...

t†
Z−1

⎞
⎠, T †

Z−1 = (0, . . . , tZ−1). (A60)

Using the identity in Eq. (A5) and the additional relation

− M−1
11 M12

(
M22 − M21M−1

11 M12
)−1

= −(M11 − M12M−1
22 M21

)−1
M12M−1

22 , (A61)

we evaluate

Ā−1
1,1 = (v̄1 − t†

1 a−1
2,2t1

)−1 ≡ V −1
1 , (A62)

Ā−1
Z−1,Z−1 = a−1

Z−1,Z−1 + a−1
Z−1,2t1V

−1
1 t†

1 a−1
2,Z−1, (A63)

Ā−1
1,Z−1 = V −1

1 t†
1 a−1

2,Z−1, (A64)

Ā−1
Z−1,1 = a−1

Z−1,2t1V
−1

1 , (A65)

and

Ã−1
1,1 = a−1

2,2 + a−1
2,Z−1t†

Z−1V
−1

Z tZ−1a−1
Z−1,2, (A66)

Ã−1
Z−1,Z−1 = (v̄Z − tZ−1a−1

Z−1,Z−1t†
Z−1

)−1 ≡ V −1
Z , (A67)

Ã−1
1,Z−1 = a−1

2,Z−1t†
Z−1V

−1
Z , (A68)

Ã−1
Z−1,1 = V −1

Z tZ−1a−1
Z−1,2. (A69)

Note that we label the blocks of the matrix a beginning with 2
and ending with Z − 1.

Using these representations we express Eqs. (A12), (A13),
(A14), and (A29) as follows:

c = t†
ZV −1

1 t̄†
1 , (A70)

c† = t̄1V
−1

1 tZ , (A71)

r = VZ − t†
ZV −1

1 tZ − t̄1V
−1

1 t̄†
1 , (A72)

p = VZ + t†
ZV −1

1 tZ − t̄1V
−1

1 t̄†
1 , (A73)
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where we have introduced the notation t̄1 = tZ−1a−1
Z−1,2t1. In

addition, we find analogs of these quantities for the shifted
system:

c̃ = t†
1 Ã−1

1,Z−1t†
Z = t̄†

1V −1
Z t†

Z , (A74)

c̃† = tZ Ã−1
Z−1,1t1 = tZV −1

Z t̄1, (A75)

r̃ = v̄1 − t†
1 Ã−1

1,1t1 − tZ Ã−1
Z−1,Z−1t†

Z

= V1 − t̄†
1V −1

Z t̄1 − tZV −1
Z t†

Z , (A76)

p̃ = v̄1 + t†
1 Ã−1

1,1t1 − tZ Ã−1
Z−1,Z−1t†

Z

= 2v̄1 − (V1 − t̄†
1V −1

Z t̄1 + tZV −1
Z t†

Z

) ≡ 2v̄1 − p̃∗. (A77)

As one can see, they all are expressed just in terms of the
four matrices V1, VZ , t̄1, and tZ (besides p̃, which has an extra
contribution 2v̄1).

Defining

m̃(k) = (c̃eik + c̃†e−ik − r̃)−1, (A78)

F̃n =
∫ π

−π

dk

2π
m̃(k)eikn, (A79)

and using Eqs. (27) and (A32) for both the initial and the
shifted systems, we evaluate

�Q′
B = Q̃′

B − Q′
B

= 1

π

∫
dω 
(μ − ω) Im B (A80)

− 1

π

∫
dω 
(μ − ω) Im tr F̃0, (A81)

where

B = − 1

2
tr

{
F̃−1

0

∂F̃0

∂ω

}
+ 1

2
tr

{
F̃0

∂

∂ω

(
�̃†F̃−1

0 + F̃−1
0 �̃

)}

+ 1

2
tr

{
F−1

0

∂F0

∂ω

}
+ 1

2
tr

{
F0

∂

∂ω

(
�F−1

0 + F−1
0 �†

)}
,

(A82)

and

�̃ = F̃−1c̃† − F̃1c̃

2
− F̃0

p̃∗
2

, (A83)

� = c†F−1 − cF1

2
− p

2
F0. (A84)

Noticing that the contribution in Eq. (A81) equals ρ
(0)
1

(since F̃0 = G̃(0)
0,0 = G(0)

1,1) we achieve exact cancellation of the
corresponding term in (35). Thereby we get

I = 1

π

∫
dω 
(μ − ω) Im B. (A85)

On the basis of Eqs. (A42) and (A43) we conclude that

F̃0�̃
† = �̃F̃0, (A86)

F0� = �†F0. (A87)

This observation allows us to write down B in a more compact
form:

B = − 1

2
tr

{
F̃−1

0

∂F̃0

∂ω

}
+ tr

{
F̃0

∂

∂ω

(
F̃−1

0 �̃
)}

+ 1

2
tr

{
F−1

0

∂F0

∂ω

}
+ tr

{
F0

∂

∂ω

(
�F−1

0

)}
. (A88)

With help of the identities (see the next section for the proof)

� = t†
Z�̃(t†

Z )−1, (A89)

t†
Z F̃0tZ = (�2 − 1

4

)
F−1

0 , (A90)

we express

B = tr

{
F−1

0

∂F0

∂ω

}
− tr

{(
� − 1

2

)−1
∂

∂ω

(
� − 1

2

)}
(A91)

= ∂

∂ω
ln det

[
F0

(
� − 1

2

)−1]
(A92)

= − ∂

∂ω
ln det

[
F−1

0

(
�† − 1

2

)]
, (A93)

where we have applied Jacobi’s formula in the second step.
Taking into account that F0 = G(0)

0,0 as well as the relation

G(0)
0,1 = ( 1

2 − �†)t−1
Z , (A94)

following from Eq. (A21), we finally obtain Eq. (36).

4. Identities relating components of boundary Green’s functions

Our goal is to prove the relations in Eqs. (A89) and (A90).
Let us treat the shifted system as the union of the first Z − 1

sites and the rest of the semi-infinite lattice (which coincides
with the initial system up to relabeling of sites m → m − Z +
1). They are coupled with each other by the hoppings −tZ and
−t†

Z , which occur between sites Z − 1 and Z . Formally, this
separation is expressed as

G̃−1
m,m′ = (G̃′)−1

m,m′ + tZδm,Zδm′,Z−1 + t†
Zδm,Z−1δm′,Z , (A95)

(G̃′)−1
m,m′ = −Ãm,m′δ1�m,m′�Z−1 + G−1

m−Z+1,m′−Z+1δm,m′�Z ,

(A96)

where G̃′ is the Green’s function of the system in the absence
of coupling between its two subsystems. It is convenient to
rewrite Eq. (A95) in the form of the Dyson equation:

(G̃′)m,m′ = G̃m,m′ + G̃m,ZtZ (G̃′)Z−1,m′ + G̃m,Z−1t†
Z (G̃′)Z,m′ .

(A97)

Choosing m = Z and m′ = Z − 1, Z , and using that
(G̃′)Z,Z−1 = (G̃′)Z−1,Z = 0 (the case of two isolated subsys-
tems), we obtain the following identities:

0 = G̃Z,Z−1 − G̃Z,ZtZV −1
Z , (A98)

G1,1 = G̃Z,Z + G̃Z,Z−1t†
Z G1,1. (A99)

Using the general expression Eq. (16) for the boundary
Green’s functions we express

G̃Z,Z = G̃(0)
Z,Z − G̃(0)

Z,0

[
G̃(0)

0,0

]−1
G̃(0)

0,Z (A100)

= F̃0 − F̃1F̃−1
0 F̃−1. (A101)
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By virtue of the tilded analog of the identity in Eq. (A55) we
establish

G̃−1
Z,Z = F̃−1

0 (1 − F̃1c̃). (A102)

To prove Eq. (A89) we represent G̃Z,Z−1 by means of the
identity in Eq. (16):

G̃Z,Z−1 = G̃(0)
Z,Z−1 − G̃(0)

Z,0

[
G̃(0)

0,0

]−1
G̃(0)

0,Z−1

= G(0)
1,0 − F̃1F̃−1

0 G̃(0)
0,Z−1, (A103)

where we have used G̃(0)
m−1,m′−1 = G(0)

m,m′ , and hence G̃(0)
Z,Z−1 =

G(0)
Z+1,Z = G(0)

1,0. In turn, representing G̃(0)
0,Z−1 with help of the

tilded analog of Eq. (A19), we obtain

G̃(0)
0,Z−1 = F̃0t̃†

Z Ã−1
1,Z−1 + F̃−1t̃Z−1Ã−1

Z−1,Z−1 (A104)

= (F̃0c̃ + F̃−1tZV −1
Z t†

Z

)
(t†

Z )−1, (A105)

where we have used t̃Z = t1 and t̃Z−1 = tZ . Combining
Eqs. (A103) and (A105) with Eqs. (A98), (A101), and (A94)
we obtain the relation

(t†
Z )−1

(
1
2 − �

)
t†
Z = F̃0tZV −1

Z t†
Z + F̃1c̃ (A106)

= 1
2 − �̃, (A107)

which proves Eq. (A89). To prove Eq. (A90) we eliminate
G̃Z,Z−1 from Eqs. (A98) and (A99). We obtain

G1,1 = (G̃−1
Z,Z − tZV −1

Z t†
Z

)−1
. (A108)

Then we substitute Eq. (A102) into this relation and obtain

G1,1 = (1 − F̃1c̃ − F̃0tZV −1
Z t†

Z )−1F̃0 (A109)

= ( 1
2 + �̃

)−1
F̃0 = (t†

Z )−1
(

1
2 + �

)−1
t†
Z F̃0. (A110)

On the other hand, on the basis of Eq. (16), the following
holds:

G1,1 = G(0)
1,1 − G(0)

1,0

[
G(0)

0,0

]−1
G(0)

0,1 (A111)

= F̃0 − (t†
Z )−1

(
� − 1

2

)
F−1

0

(
�† − 1

2

)
t−1
Z (A112)

= (t†
Z )−1

[
t†
Z F̃0tZ − (� − 1

2

)2
F−1

0

]
t−1
Z . (A113)

Comparing Eq. (A110) with Eq. (A113) we deduce Eq. (A90).

APPENDIX B: GREEN’S FUNCTIONS OF THE INTERFACE
MODEL WITH A WEAKENED LINK

Below we establish the Green’s function of the model
introduced in Sec. IV B.

Eliminating G0,m′ from Eq. (46)

G0,m′ = [1 − G(0)
0,1tλ

]−1[
G(0)

0,m′ + G(0)
0,0t†

λG1,m′
]
, (B1)

and inserting this result into Eq. (47) we obtain the following
linear equation for G1,m′ :

G1,m′ = G(0)
1,m′ + G(0)

1,1tλ
[
1 − G(0)

0,1tλ
]−1

G(0)
0,m′

+ {G(0)
1,1tλ

[
1 − G(0)

0,1t†
λ

]−1
G(0)

0,0t†
λ + G(0)

1,0t†
λ

}
G1,m′ .

(B2)

Its solution reads

G1,m′ = S−1
{
G(0)

1,m′ + G(0)
1,1tλ

[
1 − G(0)

0,1tλ
]−1

G(0)
0,m′
}
, (B3)

where

S = 1 − G(0)
1,0t†

λ − G(0)
1,1tλ

[
1 − G(0)

0,1tλ
]−1

G(0)
0,0t†

λ . (B4)

Analogously we find

G0,m′ = [1 − G(0)
0,1tλ

]−1
G(0)

0,0t†
λS−1

× {[1 − G(0)
1,0t†

λ

]
(t†

λ )−1G(0)−1
0,0 G(0)

0,m′ + G(0)
1,m′
}
. (B5)

We note the useful matrix identity

1 + G(0)
0,0t†

λS−1G(0)
1,1tλ

[
1 − G(0)

0,1tλ
]−1

= G(0)
0,0t†

λS−1
[
1 − G(0)

1,0t†
λ

]
(t†

λ )−1G(0)−1
0,0 , (B6)

which helps us achieve various representations for the above
solutions. We also recall that G(0)

0,0 = F0, G(0)
1,1 = F̃0, and G(0)

0,1
can be expressed via Eq. (A94).

Using the identities in Eqs. (A87) and (A90) we simplify
the expression in Eq. (B4) as follows:

S = (t†
Z )−1 1 − (1 − λ2)

(
1
2 − �

)
1 − (1 − λ)

(
1
2 − �

) t†
Z = 1 − (1 − λ2)

(
1
2 − �̃

)
1 − (1 − λ)

(
1
2 − �̃

) .

(B7)

Consequently, we find

G1,m′ = 1 − (1 − λ)
(

1
2 − �̃

)
1 − (1 − λ2)

(
1
2 − �̃

)G(0)
1,m′

+ 1 − λ

1 − (1 − λ2)
(

1
2 − �̃

) F̃0tZG(0)
0,m′ , (B8)

G0,m′ = 1 − (1 − λ)
(

1
2 − �†

)
1 − (1 − λ2)

(
1
2 − �†

)G(0)
0,m′

+ 1 − λ

1 − (1 − λ2)
(

1
2 − �†

)F0t†
Z G(0)

1,m′ . (B9)

Next, we are interested in

(1 − λ)−1
∞∑

m=−∞
tr
{
Gm,m − G(0)

m,m

}

=
∞∑

m=−∞
tr
{
G(0)

m,1tZG0,m + G(0)
m,0t†

Z G1,m
}

=
∞∑

m=−∞
tr

{
G(0)

m,1tZ
1 − (1 − λ)

(
1
2 − �†

)
1 − (1 − λ2)

(
1
2 − �†

)G(0)
0,m

}

+
∞∑

m=−∞
tr

{
G(0)

m,1tZ
1 − λ

1 − (1 − λ2)
(

1
2 − �†

)F0t†
Z G(0)

1,m

}

+
∞∑

m=−∞
tr

{
G(0)

m,0t†
Z

1 − (1 − λ)
(

1
2 − �̃

)
1 − (1 − λ2)

(
1
2 − �̃

)G(0)
1,m

}

+
∞∑

m=−∞
tr

{
G(0)

m,0t†
Z

1 − λ

1 − (1 − λ2)
(

1
2 − �̃

) F̃0tZG(0)
0,m

}
.

(B10)

125447-16



UNIVERSAL PROPERTIES OF BOUNDARY AND … PHYSICAL REVIEW B 104, 125447 (2021)

Considering

∞∑
m=−∞

G(0)
0,mG(0)

m,0 =
∫ π

−π

dk

2π

Z∑
j=1

〈Z| 1

ω + iη − hk
| j〉

〈 j| 1

ω + iη − hk
|Z〉 = − ∂F0

∂ω
, (B11)

∞∑
m=−∞

G(0)
1,mG(0)

m,1 =
∞∑

m=−∞
G̃(0)

0,m−1G̃(0)
m−1,0 = −∂F̃0

∂ω
, (B12)

∞∑
m=−∞

G(0)
0,mG(0)

m,1 =
∫ π

−π

dk

2π
e−ik

Z∑
j=1

〈Z| 1

ω + iη − hk
| j〉

〈 j| 1

ω + iη − hk
|1〉 = −∂G(0)

0,1

∂ω
= ∂�†

∂ω
t−1
Z , (B13)

we obtain

∞∑
m=−∞

tr
{
Gm,m − G(0)

m,m

}

= (1 − λ)tr

{
1 − (1 − λ)

(
1
2 − �†

)
1 − (1 − λ2)

(
1
2 − �†

) ∂�†

∂ω

}

− (1 − λ)tr

{
tZ

1 − λ

1 − (1 − λ2)
(

1
2 − �†

)F0t†
Z

∂F̃0

∂ω

}

+ (1 − λ)tr

{
1 − (1 − λ)

(
1
2 − �

)
1 − (1 − λ2)

(
1
2 − �

) ∂�

∂ω

}

− (1 − λ)tr

{
1 − λ

1 − (1 − λ2)
(

1
2 − �

) t†
Z F̃0tZ

∂F0

∂ω

}
.

(B14)

Using again the identities in Eqs. (A87) and (A90) we
derive the expression

∞∑
m=−∞

tr
{
Gm,m − G(0)

m,m

}

= 1

2
tr

{
1

1+λ2

2(1−λ2 ) + �

∂�

∂ω

}
+ 1

2
tr

{
1

1+λ2

2(1−λ2 ) + �†

∂�†

∂ω

}

= ∂

∂ω
ln det

[
(1 − λ2)� + 1 + λ2

2

]
, (B15)

from which follows Eq. (48).

APPENDIX C: TOPOLOGICAL INVARIANTS IN THE
SINGLE-CHANNEL CASE

In this section we show how to recover the earlier obtained
results for the single-channel case from the presently analyzed
multichannel expressions.

1. Boundary charge invariant

In the single-channel case, t j and v j are scalar parameters.
As explained in [10], by an appropriate gauge choice, one

can make all hoppings real valued, i.e., t j = t∗
j . Therefore,

c = c∗ = 1
det Ā

∏Z
j=1 t j , F1 = F−1, and

�∗ = − p

2
F0, (C1)

F0 =
∫ π

−π

dk

2π

1

2c cos k − r
= f0

2c
, (C2)

f0 =
∫ π

−π

dk

2π

1

cos k − D
= − 1

D
√

1 − 1
D2

, (C3)

D = r

2c
= 1

2t̄ Z

(
d1,Z − t2

Z d2,Z−1
)
, (C4)

p

2c
= D + t2

Z

t̄Z
d2,Z−1, (C5)

where t̄ Z =∏Z
j=1 t j , and d j, j′ are the determinants of tridiago-

nal matrices which start from v̄ j and end up with v̄ j′ , such that
j � j′. The function D(ω) determines the dispersion of the
bulk problem by virtue of the equation D(ω = εkα ) = cos k.
The edge state equation in the boundary problem reads s ≡
d1,Z−1 = 0.

Then we express

∂ω ln det
([

G(0)
0,0

]−1
G(0)

0,1tZ
) = ∂ω ln

(
p + 1

F0

)

= ∂ω

[
ln

(
t2
Z

t̄Z
d2,Z−1 + D + 1

f0

)
− ln s

]
. (C6)

The argument in the first term is complex valued only
above/below branch cuts, which correspond to bands. For
each band εkα , lying in the energy range ε (−)

α < εkα < ε (+)
α ,

we can alternatively express this term as an integral over the
Bloch momentum k in the Brillouin zone −π < k < π . We
notice that

1

f0(ω + iη)
= − D(ω)

√
1 − 1

D2(ω + iη)
(C7)

= − i sign[D(ω)D′(ω)]D(ω)

√
1

D2(ω)
− 1

= i sin k sign

(
dεkα

dk

)
. (C8)

For bands with odd α, the inequality dεkα

dk > 0 holds for 0 <

k < π , while for even α it holds for −π < k < 0. Therefore,
the integration along the upper branch (see Fig. 1) gives

− 1

π

∫ ε (+)
α

ε
(−)
α

dω
∂

∂ω
ln

(
t2
Z

t̄Z
d2,Z−1(ω) + D(ω) + 1

f0(ω + iη)

)

=
{

− 1
π

∫ π

0 dk ∂
∂k ln

( t2
Z

t̄Z d2,Z−1(εkα ) + eik
)
, odd α,

− 1
π

∫ 0
−π

dk ∂
∂k ln

( t2
Z

t̄Z d2,Z−1(εkα ) + eik
)
, even α.

(C9)

Taking the imaginary part of these expressions and identifying

(up to the normalization) t2
Z

t̄Z d2,Z−1(εkα ) + eik ∼ χkα (1)eik (see
[10] for details), we obtain the αth band’s contribution to the
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invariant in Eq. (36):

Iα = − 1

2π i

∫ π

−π

dk
∂

∂k
ln[χkα (1)eik] (C10)

= −1 − wn[χkα (1)], (C11)

that is, Iα is expressed in terms of the winding number of the
first Bloch state vector component.

In band gaps, the term

− 1

π

∫
dω

∂

∂ω
ln

(
t2
Z

t̄Z
d2,Z−1 + D + 1

f0

)
(C12)

picks up the contribution +1 from the so-called left edge state
pole of the initial system (i.e., with κ < 0) and from the right
edge state pole of the shifted system (i.e., with κ̃ > 0). In turn,
the term

1

π

∫
dω

∂

∂ω
ln s (C13)

picks up the contribution +1 from both the left (κ < 0) and
right (κ > 0) edge state poles of the initial system.

Thus, the invariant defined in Eq. (36) in the single-channel
case amounts to

I =
ν∑

α=1

Iα + �QE , (C14)

where �QE denotes the difference between numbers of right
edge states of the shifted and initial systems summed up over
all gaps below the chemical potential μ. Thereby we recover
our earlier result expressed in Eqs. (257) and (258) of [10].

Remarkably, on the basis of (A90) we establish the identity(
t2
Z

t̄Z
d2,Z−1 + D + 1

f0

)(
t2
Z

t̄Z
d2,Z−1 + D − 1

f0

)
= t2

Z

t̄2Z
ss̃,

(C15)

where s̃ = d2,Z . It allows us to relate

ln

(
t2
Z

t̄Z
d2,Z−1 + D + 1

f0

)
− ln s

= ln s̃ − ln

(
t2
Z

t̄Z
d2,Z−1 + D − 1

f0

)
. (C16)

The equation s̃ = 0 is known to determine both right (κ̃ > 0)
and left (κ̃ < 0) edge states in the shifted system. In turn,

t2
Z

t̄Z d2,Z−1 + D − 1
f0

= 0 holds at the left edge state of the
shifted system (κ̃ < 0) and at the right edge of the initial sys-
tem (κ > 0). Therefore, this observation additionally confirms
the result in Eq. (C14).

2. Interface charge invariant

In the single-channel case we find

� + 1

2
= −1

2

(
t2
Z

t̄Z
d2,Z−1 + D − 1

f0

)
f0. (C17)

Therefore, the contribution to Eq. (48) from band α may be
written as

Q̃I,α = − 1

π

∫ ε (+)
α

ε
(−)
α

dω Im
∂

∂ω
ln f0 (C18)

− 1

π

∫ ε (+)
α

ε
(−)
α

dω Im
∂

∂ω
ln

[
−
(

t2
Z

t̄Z
d2,Z−1 + D − 1

f0

)

+λ2

(
t2
Z

t̄Z
d2,Z−1 + D + 1

f0

)]
. (C19)

The term in Eq. (C18) receives contributions − 1
2 from each

band edge. In the term Eq. (C19) we make the same change
of integration variable ω → k as discussed in Sec. C 1. This
results in the expression

QI,α + 1

= − 1

2π i

∫ π

−π

dk
∂

∂k
ln
[− e−iϕkα (1)−ik + λ2eiϕkα (1)+ik

]
= 1 + wn[χkα (1)]

− 1

2π i

∫ π

−π

dk
∂

∂k
ln
[− 1 + λ2e2iϕkα (1)+2ik

]
, (C20)

where eiϕkα (1) is the phase of χkα (1). For λ2 < 1 the argument
in the last line does not encircle the origin, therefore the
corresponding contribution vanishes. We finally get

QI,α = wn [χkα (1)], (C21)

thereby reproducing our earlier result in Eq. (C35) of [11],
assuming the gauge fixed by the condition Im [χkα (Z )] = 0.
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