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Theory of the effective Seebeck coefficient for photoexcited two-dimensional materials: Graphene
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Thermoelectric phenomena in photoexcited graphene have been the topic of several theoretical and experi-
mental studies because of their potential usefulness in optoelectronic applications. However, available theoretical
descriptions of the thermoelectric effect in terms of the Seebeck coefficient do not take into account the role of the
photoexcited electron density. In this work, we adopt the concept of effective Seebeck coefficient [G. D. Mahan,
J. Appl. Phys. 87, 7326 (2000)] and extend it to the case of a photoexcited two-dimensional (2D) electron gas.
We calculate the effective Seebeck coefficient for photoexcited graphene, we compare it to the commonly used
“phenomenological” Seebeck coefficient, and we show how it depends on the photoexcited electron density and
temperature. Our results are necessary inputs for any quantitative microscopic theory of thermoelectric effects
in graphene and related 2D materials.
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I. INTRODUCTION

Thermoelectricity in solid-state systems consists of a group
of related effects, where charge currents are coupled to tem-
perature gradients and heat flows [1,2]. In particular, the
Seebeck effect consists in the appearance of an electromotive
force, measured in terms of a voltage �V , at the ends of a
junction between two different conductors, if the junction is
subjected to heating.

The procedure to relate �V to the heating of the junction
in a quantitative way is not straightforward. The standard
approach [1,2] is to join a wire of material A to two leads
of material B and consider the temperature difference �T
between the two resulting junctions; the voltage �V is mea-
sured at the two free ends of the leads, which are held at
the same temperature, with the circuit open. [See Fig. 1(a).]
Then, one finds that �V = (SB − SA)�T , where SX is the
Seebeck coefficient (or “thermopower”) of material X . Al-
though only the difference between Seebeck coefficients can
be experimentally determined, the expression �V = −SA�T
is used if SB is known and its contribution can be sub-
tracted, or is negligible, as in the case of superconducting
leads.

The voltage �V is proportional to the difference of the
electrochemical potentials μ̃ = μ − eφ at the end of the leads,
�V = −�μ̃/e [3], where μ is the chemical potential, φ is
the electric potential, and −e is the elementary charge [4]. In
metallic circuits, continuity of the chemical potential implies
that �V = �φ, because the free ends of the leads are kept at
the same temperature [2]. However, Mahan and co-workers
pointed out [6,7] that the difference between �V and �φ

cannot be overlooked when evaluating the local value of the
Seebeck coefficient in a material, and introduced an effec-
tive (or “theoretical”) Seebeck coefficient S̄(r) defined by the

differential relation

∇rφ(x) ≡ −S̄(r)∇rT (r), (1)

which differs from the local expression of the “phenomeno-
logical” Seebeck coefficient S(r), which is defined by

∇rμ̃(x) ≡ eS(r)∇rT (r). (2)

The origin of this difference is that the gradient of the
chemical potential, which vanishes when integrated along the
junctions’ loop, is in general not negligible in a system where
the temperature varies in space.

When the materials in the junctions are semiconductors,
a more careful consideration of the terms involved in the
definition of the Seebeck coefficient might be necessary. More
precisely, heating of one junction can be achieved by shin-
ing electromagnetic radiation onto it, locally photoexciting
the electrons from the valence to the conduction band [8].
(The appearance of the voltage �V is called the photo-
thermoelectric effect, to emphasize its origin.) [9,10] In this
case, the electronic system is not at equilibrium and the value
of the temperature T does not uniquely determine the carrier
density in each band. [See Fig. 1(b).] In other words, electrons
in each band τ establish a separate electrochemical potential
μ̃τ and the standard definition of the Seebeck coefficient
outlined above cannot be adopted. Gurevich and co-workers
pointed out this difficulty and used a specific model to calcu-
late the spatial dependence of the electrochemical potentials
and hence �V [11,12]. Their analysis is focused on the
quasineutrality regime, in a one-dimensional geometry, and
includes electron-hole recombination processes and boundary
effects at the junctions.

While this approach is adequate to a junction’s loop, its
extension to more complex geometries and current patterns
seems cumbersome. We put forward that a more general cal-
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FIG. 1. (a) The temperature difference �T between two junc-
tions (dashed ovals) of materials A and B generates the voltage �V
between the ends of the leads, maintained at the same temperature
T0. (b) Valence and conduction bands in a semiconductor, before,
during, and after photoexcitation (from left to right, respectively).
Left: electrons have electrochemical potential μ̃ and temperature
T0. Center: the incoming radiation (wavy line) of angular frequency
ω generates electron-hole (e-h) pairs. Right: photoexcited e-h pairs
relax into a state with higher temperature T > T0 and different elec-
trochemical potentials μ̃τ in each band τ . (c) Radiation impinging
onto a p-n junction (dashed oval) in graphene (thick line) induced
by a split-gate (dark rectangles) with opposite potentials VL,R. The
electron (ne, gray) and hole (nh, white) densities in space are shown
above graphene. The electrochemical potential (μ̃L,R) is well-defined
away from the junction only. The voltage �V is measured between
the contacts L, R (light gray).

culation framework can be obtained by first evaluating the
effective Seebeck coefficient as a function of the system’s
parameters, and then using this transport coefficient, instead
of S(r), in the set of transport equations appropriate to the
device under consideration [13–15]. Indeed, the effective See-
beck coefficient is naturally well-defined for a photoexcited
electron system as long as electrons thermalize at a com-
mon temperature T . The time scale for thermalization due
to Coulomb interactions is typically on the order of tens of
femtoseconds [16], such that one can consider thermalization
to be attained locally and instantaneously with respect to
other transport length and time scales (e.g., the transit time
through a micron-sized device). As thermalization with the
lattice proceeds through electron-phonon scattering, the elec-
tron temperature and the photoexcited electron density evolve
in time, and so does the effective Seebeck coefficient.

In this work, we outline the theory of the effective Seebeck
coefficient of a photoexcited electron gas and we perform
our calculations explicitly in the case of graphene [17]. The
motivation for focusing on graphene resides in the increasing
relevance that this two-dimensional (2D) material has been
gaining in the field of optoelectronics [18,19]. In particular,
photodetectors based on the photothermoelectric effect can be
designed around graphene-based field-effect transistors using

a split gate, that subjects neighboring regions of the graphene
channel to different electric potentials, modulating the carrier
density and thus creating an effective lateral “junction” within
graphene [20–24]. Focusing a laser beam onto the junction
leads to the generation of a photo-signal (voltage or current)
measured at the contacts on either side (L, R) of the junction.
[See Fig. 1(c).]

The generation of a photosignal in this setup has been
interpreted in terms of the photothermoelectric effect, rely-
ing on the standard junction picture with different Seebeck
coefficients (SL, SR) in the two graphene regions: [20–24]
(i) a temperature difference �T is established between the
illuminated spot and the contacts, which remain at room tem-
perature; (ii) a potential difference is then generated between
each side of the junction and a contact on that side, �VL,R =
−SL,R�T ; (iii) finally, a voltage �V = (SL − SR)�T pro-
portional to the difference of the Seebeck coefficients in the
two gated regions is established between source and drain,
and a photocurrent flows if the circuit is closed. Although
this picture has been successful in explaining the profile of
the photosignal measured in the experiments, it does not take
into account the photoexcited electrons at the junction, which,
due to the vanishing density of states of graphene at charge
neutrality, can easily exceed the intrinsic carrier density. In
other words, this approach neglects that the voltage �V is not
just a function of the average carrier density induced by the
gate on each side of the junction, but also of the laser fluence,
the recombination rate, and all the processes that determine
how the electrons relax to a single electrochemical potential
μ̃L,R away from the junction. For this reason, it is desirable
to have a more complete theory of the photothermoelectric
effect in graphene junctions, which requires the calculation of
the effective Seebeck coefficient. The goal of the present work
is to provide such a theory.

We point out that several works have investigated the
electronic properties of photoexcited graphene, including the
expression of the dielectric function [25], the optical [26] and
terahertz [27] conductivity, and the heat capacity [28]. The
expressions discussed in these works are naturally defined
in the presence of photoexcitation, by taking into account
the band-dependent chemical potentials. On the contrary, the
thermoelectric effect poses a more subtle and fundamental
problem, because, as we discussed above, the very definition
of the Seebeck coefficient assumes the existence of a single
chemical potential.

Our Article is organized as follows. In Sec. II we present
a general theory of the effective Seebeck coefficient in the
presence of photoexcitation. In Sec. III we specify our the-
ory to photoexcited graphene and present the results of our
calculations for a range of parameters. Finally, in Sec. IV
we draw our main conclusions and identify theoretical and
experimental implications of our results.

II. THEORY

Let us denote by fkτ (r, t ) the electron distribution function
in a crystal, where r is the space coordinate, t is the time,
k is the Bloch wave vector in the Brillouin zone, and τ is a
multi-index representing all relevant discrete quantum labels,
such as band index, spin, and valley. The distribution func-

125443-2



THEORY OF THE EFFECTIVE SEEBECK COEFFICIENT … PHYSICAL REVIEW B 104, 125443 (2021)

tion obeys the semiclassical Boltzmann equation [2], which,
linearized for a small electric field E(r) around the quasi-
equilibrium solution f̄kτ (r), in the absence of a magnetic field,
and in the relaxation-time approximation [29], reads

∂tδ fkτ (r, t ) + vkτ · ∇rδ fkτ (r, t ) − e

h̄
E · ∇kδ fkτ (r, t )

= − 1

τkτ (r)
δ fkτ (r, t ), (3)

where δ fkτ (r, t ) ≡ fkτ (r, t ) − f̄kτ (r), vkτ ≡ h̄−1∇kεkτ is the
band velocity obtained from the band energy εkτ , and τkτ (r) is
a relaxation time that depends on the collision processes [29].
When electron-electron scattering is the dominant collision
term in the semiclassical Boltzmann equation, the quasi-
equilibrium solution assumes the Fermi-Dirac form

f̄kτ (r) = 1

e[εkτ −μτ (r)]/[kBT (r)] + 1
, (4)

where μτ (r) is the chemical potential, kB is the Boltzmann
constant, and T (r) is the temperature. The quasiequilibrium
distribution function (4) depends on the band energy but not
on k explicitly, fkτ (r) = fτ (εk,τ , r). (As anticipated in the
Introduction, we assume that the temperature is the same in
all bands.)

Writing the electric field as E(r) = −∇rφ(r), in terms of
the electric potential φ(r), and exploiting Eq. (4), the steady-
state solution to Eq. (3) reads

δ fkτ (r) = −τkτ (r)vkτ ·
{

∇r[μτ (r) − eφ(r)]

+ εkτ − μτ (r)

kBT (r)
∇r[kBT (r)]

}(
− ∂ f̄

∂εkτ

)
, (5)

where ∂ f̄ /∂εkτ is shorthand for [∂ f̄τ (ε, r)/∂ε]ε=εkτ
. The

charge current density is given by J(r) = ∑
τ Jτ (r), where

Jτ (r) = 1

L2

∑
k

(−e)vkτ δ fkτ (r) (6)

is the contribution of the electrons belonging to the
band τ . The standard derivation of the transport equations
[2,13,14,30] proceeds by inserting Eq. (5) into Eq. (6) and
expressing the charge current density in terms of the gra-
dients of the electrochemical potential and the temperature.
We cannot take this step, however, because of the presence
of band-dependent chemical potentials μτ , which cannot be
combined with the electric potential φ(r).

To proceed further, let us carefully parametrize μτ (r) in
terms of the electron density. Let us denote the electron den-
sity in the band τ by n(i)

τ + nτ (r) > 0, where n(i)
τ is the carrier

density of the intrinsic system (i.e., in the absence of electrical
or chemical doping, or photoexcitation) at zero temperature,
and nτ (r) ≷ 0. The chemical potential of the band τ is deter-
mined as a function of the density nτ (r) and the temperature
T (r) by n(i)

τ + nτ (r) = L−2 ∑
k f̄kτ (r). The total carrier den-

sity is n(i) + n(r) = ∑
τ [n(i)

τ + nτ (r)] and the Fermi energy
εF(r) is determined by n(i) + n(r) = L−2 ∑

kτ 	[εF(r) − εkτ ],
i.e., the Fermi energy is the common value of the chemical
potentials at zero temperature, which yields the actual total

density. Similarly, we can define a local equilibrium distri-
bution function f (0)

kτ
(r) by substituting μτ (r) in Eq. (4) with

a band-independent value μ(0)(r), determined by requiring
n(i) + n(r) = L−2 ∑

kτ f (0)
kτ

(r), and, in turn, define n(0)
τ (r) by

the expression n(i)
τ + n(0)

τ (r) = L−2 ∑
k f (0)

kτ
(r). The photoex-

cited electron density is then

δnτ (r) = nτ (r) − n(0)
τ (r), (7)

i.e., the difference between the actual value of the electron
density and the one that would be present if the system was
at equilibrium. From the definitions above, it follows that∑

τ δnτ (r) = 0, which represents the fact that photoexcitation
does not inject electrons into the system, but promotes them
between bands.

Using the equations above, we can implicitly define the
band-dependent chemical potential as a function of the Fermi
energy, the temperature, and the photoexcited density

μτ (r) = μτ [εF(r), T (r), δnτ (r)], (8)

with the equilibrium, zero-temperature limit given by the
Fermi energy, i.e., μτ [εF(r), 0, 0] = εF(r).

Depending on the intrinsic band filling, it might be
convenient to perform the calculations in terms of the hole dis-
tribution f h

kτ (r, t ) = 1 − fkτ (r, t ), energy εh
kτ = −εkτ , chem-

ical potential μh
τ (r) = −μτ (r), and density p(i)

τ + pτ (r) =
L−2 ∑

k f̄ h
kτ (r). For the photoexcited density it holds that

δpτ (r) = −δnτ (r) and, if a band is entirely filled in the in-
trinsic system, p(i)

τ = 0, it also follows that pτ (r) = −nτ (r).
Using Eq. (8), we can express the gradient of the chemical

potential appearing in Eq. (5) as

∇rμτ (r) = ∂μτ (r)

∂εF(r)
∇rεF(r)

+ ∂μτ (r)

∂[kBT (r)]
∇r[kBT (r)] + ∂μτ (r)

∂δnτ (r)
∇rδnτ (r).

(9)

In principle, as discussed in the introduction, one would
need to solve the complete set of coupled transport equations
[13–15] with the charge current density given by Eq. (6)
(and a similar expression for the energy current density) to
determine the spatial profile of Fermi energy, temperature, and
photoexcited density, and calculate the gradients which appear
in the right-hand side of Eq. (9).

In the following, however, we introduce two parametriza-
tions which allow us to focus on the effective Seebeck
coefficient only. First, we assume that the relaxation lengths
of the photoexcited density in all bands have the same value,
which we parametrize in terms of the relaxation length of the
temperature:

1

δnτ (r)
∇rδnτ (r) = α

1

kBT (r)
∇r[kBT (r)], (10a)

where α is a band-independent dimensionless constant. This
is a very reasonable assumption, because the recombination
processes which are responsible for the relaxation of the pho-
toexcited carrier density couple different bands, and thus must
lead to comparable relaxation lengths. Second, we assume that
the local charge density is neutralized by the gate, adopting the
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so-called local capacitance approximation [31]

−en(r) = Cφ(r), C = ε

4πd
, (10b)

where d and ε are the thickness and the (relative) dielectric
constant of the gate layer, respectively, and C is the capaci-
tance per unit area of the parallel-plate capacitor consisting
of the gate and the graphene layer. (We use Gaussian electro-
magnetic units.) With the parametrization (10), the gradient of
the chemical potential in Eq. (9) reads

∇rμτ (r) = −C

e

∂μτ (r)

∂εF(r)

∂εF(r)

∂n(r)
∇rφ(r)

+
{

∂μτ (r)

∂[kBT (r)]
+ α

δnτ (r)

kBT (r)

∂μτ (r)

∂δnτ (r)

}
∇r[kBT (r)].

(11)

Using Eq. (11), we can rewrite Eq. (5) as

δ fkτ = −τkτ (r)vkτ ·
{

− e

ε
(e)
τ (r)

∇rφ(r)

+ εkτ − μ(e)
τ (r)

kBT (r)
∇r[kBT (r)]

}(
− ∂ f̄

∂εkτ

)
, (12)

where we have defined an effective dielectric constant
1

ε
(e)
τ (r)

= 1 + C

e2

∂μτ (r)

∂εF(r)

∂εF(r)

∂n(r)
(13)

and chemical potential

μ(e)
τ (r) = μτ (r) − α

∂μτ (r)

∂δnτ (r)
δnτ (r) − ∂μτ (r)

∂[kBT (r)]
kBT (r).

(14)
We notice that the band dependence has now disappeared from
the argument of the gradient operators in Eq. (12), so that,
inserting Eq. (12) into Eq. (6), one finds for the charge current
density

Jτ (r) = σ̄τ (r)[−∇rφ(r)] − σ̄τ (r)S̄τ (r)∇rT (r). (15)

The coefficients in Eq. (15) depend on summations over the
Brillouin zone. To make analytical progress, we assume that
the relaxation time depends on the band energy, but not on
k explicitly, τkτ (r) = ττ (εkτ , r), and that the band disper-
sion has azimuthal symmetry, i.e., ∇kεkτ = (∂εkτ /∂k)∇kk =
h̄vkτ (cos θkx̂ + sin θkŷ), where θk is the polar angle of the
wave vector k. We obtain the expressions

σ̄τ (r) = e2

h

1

ε
(e)
τ (r)

∫ ∞

∞
dε

ττ (ε, r)

h̄

(
−∂ fτ (ε)

∂ε

)
gτ (ε), (16a)

and

σ̄τ (r)S̄τ (r) = −kBe

h

∫ ∞

∞
dε

ττ (ε, r)

h̄

ε − μ(e)
τ (r)

kBT (r)

×
(

−∂ fτ (ε)

∂ε

)
gτ (ε), (16b)

with

gτ (ε) = π h̄2 1

L2

∑
k

v2
kτ δ(εkτ − ε). (16c)

Summing over the band indices, the total (charge)
current density reads J(r) = [

∑
τ σ̄τ (r)][−∇rφ(r)] −

[
∑

τ σ̄τ (r)S̄τ (r)]∇rT (r). Finally, the open-circuit condition
J(r) = 0 leads to the expression for the effective Seebeck
coefficient

S̄(r) = [
∑

τ σ̄τ (r)S̄τ (r)]/[
∑

τ σ̄τ (r)] (17)

in terms of Eqs. (16). Before discussing S̄ for photoexcited
graphene in Sec. III, let us consider two limiting behaviors of
Eq. (15).

(i) In the local equilibrium limit of vanishing photoexcita-
tion, δnτ (r) = 0, we have nτ (r) = n(0)

τ (r) and μτ (r) = μ(0)(r)
[defined in the paragraph leading to Eq. (7)]. In this limit,
a common electrochemical potential μ̃(r) = μ(0)(r) − eφ(r)
for all the bands is well-defined. The expansion in Eq. (9) is
not needed and, instead of Eq. (15), one finds the standard
expression [2,13,14,30]

Jτ (r) = στ (r)∇rμ̃(r)/e − στ (r)Sτ (r)∇rT (r), (18)

with the conductivity στ (r) and the Seebeck cofficient Sτ (r).
The expressions for στ (r) and Sτ (r) are obtained from
Eqs. (16a) and (16b) with the substitutions 1/ε (e)

τ → 1 and
μ(e)

τ (r) → μ(0)(r).
(ii) If the system is locally at equilibrium and the elec-

tron density is homogeneous, ∇rn(r) = 0 and ∇rεF(r) = 0.
In this case, the local-capacitance approximation (10b) leads
to ∇rφ(r) = 0, which limits the applicability of the theory,
unless we also assume C = 0 [or a full solution of the Poisson
equation is used to relate n(r) and φ(r), instead of Eq. (10b)].
Under these assumptions, Eq. (11) simplifies to

∇rμτ (r) = ∂μτ (r)

∂[kBT (r)]
∇r[kBT (r)]. (19)

This temperature-dependent variation of the chemical po-
tential has been discussed by Mahan and coworkers in
Refs. [6,7]. Making this dependence explicit allows us to
rewrite Eq. (15) as

Jτ (r) = στ (r)E(r) − στ (r)S̄τ (r)∇rT (r). (20)

This manipulation proves convenient because the authors of
Ref. [7] showed that S̄ [defined as in Eq. (17) with σ̄τ → στ ]
does not depend on doping and on the material’s details.
Moreover, S̄ directly relates the temperature gradient to the
electric field under the open-circuit condition J(r) = 0. The
consequences of a homogeneous electron density were also
investigated in Ref. [32], where it was shown that the tem-
perature dependence of the chemical potential is indeed the
crucial function governing the thermoelectric coefficients.

III. RESULTS

To evaluate Eqs. (16) for photoexcited graphene, let us
first summarize the main properties of the electronic disper-
sion in graphene: [17] the band energy is εkλ = λh̄vF‖k‖,
where vF is the Fermi velocity and λ indicates either the
index of the valence (v) and conduction (c) band or the
sign −1 and +1, respectively; the density of states is ν(ε) =
gSgV|ε|(h̄vF)−2(2π )−1, where gS = 2 and gV = 2 are the spin
and valley degeneracy, respectively; we suppose that the spin
and valley populations are balanced, hence in Eq. (6)

∑
kτ �→

gSgV
∑

kλ; the Fermi energy as a function of the electron
density is εF(r) = sign[n(r)]h̄vF

√
π |n(r)|; the intrisic density
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FIG. 2. (a) “Phenomenological” S and (b) effective S̄ Seebeck coefficient as a function of the electron density n at temperature T = 77 K
(red ×), 300 K (black �), and 1000 K (blue +), for vanishing photoexcited electron density δne = 0.

n(i) vanishes and n(r) ≷ 0 corresponds to a zero-temperature
electron or hole carrier density, respectively. Using the expres-
sions above, the quantity in Eq. (16c) simplifies to gλ(ε) =
2ε	(λε)/(gSgV), where 	 is the Heaviside function.

To evaluate Eqs. (16), it is also necessary to specify the
energy-dependence of the relaxation time ττ (ε, r), which de-
pends on the collision processes. Following the calculation
of the Seebeck coefficient by Das Sarma and coworkers in
Ref. [33], in this work we focus on electron scattering with
Coulomb impurities, which is the dominant scattering channel
at room temperature. In this way, we can provide explicit re-
sults for the effective Seebeck coefficient in the limit of weak
photoexcitation. We use the expression for the relaxation time
in the random-phase approximation, which has been discussed
extensively in the literature [34–37]. We remark that electron
scattering with acoustic and optical phonons in graphene can
dominate the transport coefficients in some regimes [38–43].
However, since the focus of the present paper is on the effects
of photoexcitation, we defer the investigation of other electron
scattering channels to future work.

The results shown in Figs. 2–6 have been obtained with
the following numerical parameters: Dirac cone slope h̄vF =
0.66 eV nm; dimensionless coupling constant e2/(ε̄ h̄vF) =
0.8, where ε̄ is the average dielectric constant; Coulomb im-
purity density ni = 1012 cm−2; and distance of the Coulomb
impurities from the graphene sheet di = 1 nm. In Figs. 2–4 we
take α = 0 and C = 0 (corresponding to a gate far-removed
from the graphene layer), while results with finite α and C are
shown in Figs. 5 and 6, respectively.

Figure 2 compares the “phenomenological” and effective
Seebeck coefficients at local equilibrium, i.e., in the absence
of photoexcitation. Let us focus on n > 0, as all the profiles
are skew symmetric. At high temperatures, the two coeffi-
cients display a similar dependence on the total density n,
although S̄ is smaller in magnitude. At low temperatures,
however, the behavior of the two coefficients around the neu-
trality point is the opposite, with S (S̄) diverging to negative
(positive) values as the density is reduced from larger val-
ues, where the two coefficients have the same sign. At room
temperature, with decreasing n, the profile of S̄ first follows
the low-temperature behavior towards positive values but,

approaching the charge neutrality point, bends towards neg-
ative values, always remaining much smaller than S. To
understand this behavior, let us consider the temperature
dependence of the chemical potential for vanishing photoex-
citation, which can be approximated as [17]

μc(T ) =
{

εF

(
1 − π2T 2

6T 2
F

)
T � TF

εF
1

4 ln 2
TF
T T � TF,

(21)

where TF = |εF|/kB is the Fermi temperature. Then, in
Eq. (14) we can substitute

∂μλ(r)

∂[kBT (r)]
kBT (r) =

{− kB
2π2T 2(r)
3εF (r) T (r) � TF(r)

−μλ(r) T (r) � TF(r),
(22)

FIG. 3. Effective Seebeck coefficient as a function of the electron
density n for a non-equilibrium system with photoexcited electron
density δne = 1010 cm−2 (red ×), 1011 cm−2 (black �), 1012 cm−2

(blue +), and 5 × 1012 cm−2 (magenta �) and temperature T =
1000 K.
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FIG. 4. Effective Seebeck coefficient as a function of the electron
density n for a non-equilibrium system with photoexcited elec-
tron density δne = 1012 cm−2 and temperature T = 300 K (red ×),
1000 K (black �), and 1500 K (blue +).

which finally yields

μ
(e)
λ (r) =

{
2μλ(r) |εF(r)| � kBT (r)

μλ(r) + kB
2π2T 2(r)
3εF (r) |εF(r)| � kBT (r).

(23)

Observing how μ
(e)
λ enters Eq. (16b), we can rationalize the

profiles in Fig. 2 as following. For large density, μ
(e)
λ tends to

μλ and the two coefficients S, S̄ have the same sign. As the
density decreases, μ

(e)
λ becomes larger than μλ in magnitude,

FIG. 5. Effective Seebeck coefficient as a function of the electron
density n for a non-equilibrium system with photoexcited electron
density δne = 1012 cm−2, temperature T = 1000 K, and gate layer
thickness d = 1 nm (red ×), 30 nm (black �), and 300 nm (blue +).

FIG. 6. Effective Seebeck coefficient as a function of the electron
density n for a non-equilibrium system with photoexcited electron
density δne = 1012 cm−2, temperature T = 1000 K, and relaxation
length ratio α = 0.01 (red ×), 1 (black �), and 100 (blue +).

contributing a positive (negative) quantity to S̄ for n > 0 (n <

0). Finally, if the density is sufficiently small, the sign of the
integral in Eq. (16b) is determined by the band energy ε and
not the chemical potential.

Figure 3 shows the effect of increasing the photoexcited
electron density δne on the effective Seebeck coefficient S̄.
This information is not available using the “phenomenolog-
ical” Seebeck coefficient, which is not defined unless the
electronic system is in local equilibrium. All profiles corre-
spond to the same electronic temperature T = 1000 K, which
can be easily reached in a photoexcited graphene system.
Indeed, with a heat capacity c ∼ 10−6 J/(K m2) [28], a tem-
perature increase �T ∼ 103 K requires an energy density �U
delivered to the electron gas on the order of �U ∼ 10−3 J/m2,
which is comparable to the product of graphene absorbance
αU ∼ 2.3% [17] and a laser pulse fluence F � 102 μJ/cm2.
We see that, increasing the photoexcited density, S̄ decreases
in magnitude. Of course, decoupling the temperature from
the photoexcited density is not possible, in general, in a real
experiment, where �U ∼ h̄ωδne, so that T will increase with
δne. (In our calculations, we do not solve the electron dy-
namics following photoexcitation, but consider δne and T as
fixed parameters.) However, these results show that photoex-
citation, although a very effective heating scheme, is not ideal
to generate a thermoelectric signal.

The degradation of the Seebeck coefficient with photoex-
citation was first reported by Tauc [9] in the 50s for n-type
Ge, and was generally understood in terms of a photo-induced
doping of the majority carriers. Our results in Fig. 3 not
only take into account the increase of the carrier density in
both bands due to photoexcitation, but also the change in the
relaxation time ττ (ε, r) due to the increased Coulomb screen-
ing. We point out that an anomalous increase of the Seebeck
coefficient with photoexcitation was reported by Harper et al.
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[10] in the 70 s for p-type Si, but its origin was traced back to
the phonon-drag effect , which we do not take into account in
the present theory.

Figure 4 shows the effect of increasing temperature at
fixed photoexcited density. A higher temperature corresponds
to a larger thermoelectric signal, which implies a nonlin-
ear response of the system to a temperature gradient. If the
temperature of the system was modulated periodically, one
could expect higher harmonics of the modulating frequency
in the resulting electrical signal. It is interesting that, at room
temperature, the effective Seebeck coefficient changes sign in
a large range of densities, being positive (negative) above (be-
low) the charge neutrality point. This behavior is a signature
of the sharp peak shown in Fig. 2(b) and discussed analytically
with Eqs. (21)–(23) in the local equilibrium case. The solution
of the transport equations in specific geometries might be
necessary to appreciate the consequences of this change of
sign. Indeed, if the temperature decreases in space (away from
the laser spot where photoexcitation takes place) on a shorter
length scale than the photoexcited density, (i.e., α 
 1,) it can
happen that neighboring spatial regions are characterized by
effective Seebeck coefficients with opposite sign, leading to
unexpected thermoelectric current patterns.

Finally, Figs. 5 and 6 show the dependence of S̄ on the
two coefficients α and C introduced in Eq. (10) to parametrize
the gradient expansion (11) of the chemical potential. We see
that S̄ changes very weakly when α and C vary over several
orders of magnitude. This reassures us that the results shown
in Figs. 2–4, where we fixed α = 0 and C = 0, are generally
valid. Moreover, the weak dependence of the results on α

and C emphasizes the role of the temperature dependence
of the chemical potential, Eq. (19), which was discussed in
Refs. [6,7,32] in the absence of photoexcitation.

IV. CONCLUSIONS AND PERSPECTIVES

In this Article we have formulated a theory of the Seebeck
effect when the temperature gradient is generated by photoex-
citation. We have discussed how the standard definition of

the Seebeck coefficient is not adequate in this case, because
it assumes the existence of a well-defined chemical poten-
tial, which is missing in a photoexcited multiband electron
system. We have thus formulated our theory in terms of the
effective Seebeck coefficient S̄, first introduced by Mahan and
co-workers [6], which is properly defined for photoexcited
electron systems, and we have provided explicit results in
the case of graphene. We have shown that S̄ decreases at
fixed temperature with increasing photoexcited density, im-
plying that photoexcitation, although effective at increasing
the electronic temperature, is not ideal to generate a thermo-
electric signal. Moreover, we have found that S̄ displays a
sign change at lower temperatures, which could lead to unex-
pected thermoelectric current profiles in specific geometries.
To investigate this issue, it will be necessary to use S̄ in the
framework of a complete set of transport equations.

Recently, an experimental technique has been introduced
which allows one to measure the Seebeck effect locally, with-
out resorting to photoexcitation [44,45], demonstrating that
the Seebeck coefficient can undergo variations of several or-
ders of magnitude due to purely geometric constraints on the
electronic motion. This technique is based on a scanning Joule
heating element and is characterized by high spatial resolu-
tion, comparable to the length-scale of a junction produced
by a split gate [20–24]. Moreover, local and ultrafast mea-
surement of the electronic temperature has also been recently
demonstrated [46]. Hence, it is becoming experimentally
feasible to measure the thermoelectric signal generated by
heating the same spot on a graphene sample, in the presence or
absence of a concurrent photoexcited density, extracting valu-
able information on the local electronic relaxation processes.
The theory described in this work can consistently treat both
cases on equal footing.
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