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Quality factor of plasmonic monopartite and bipartite surface lattice resonances
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Surface lattice resonance (SLR) is the collective excitation of nanoparticle resonances arising from the
hybridization between localized surface plasmons (LSPs) and propagating Rayleigh anomalies (RAs). When
comparing with the corresponding LSPs, SLRs exhibit a much higher quality factor. In fact, as the quality factor
depends on the constituting resonances and their hybridization, how one can parametrize it in an analytic form
is an important issue. We have studied the SLRs arising from two-dimensional Au monopartite nanoparticle
arrays by angle- and polarization-resolved reflectivity spectroscopy, temporal coupled mode theory (CMT),
and finite-difference time-domain simulation. The scattering matrix of the SLRs is formulated, revealing the
importance of the spectral detuning and the interaction strengths between the LSP and the RAs in governing
the quality factor. We then extend the CMT approach to study bipartite arrays where a nanoparticle dimer is
employed and find the coupling between two LSPs plays a major role in further boosting the quality factor.
Specifically, the coupling takes part in controlling the detuning factor as well as determining whether the coupled
bright or dark mode is hybridized with the RAs. The dark mode hybridization can strongly enhance the quality
factor, which is otherwise not possible in the monopartite counterparts.
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I. INTRODUCTION

Periodic plasmonic systems have gained worldwide at-
tention due to their ability to localize electromagnetic fields
beyond the diffraction limit, thus providing extraordinary
field enhancement [1–5]. In general, two classes of periodic
plasmonic systems are available and they are nanohole and
nanoparticle arrays [1–5]. While the nanohole array is a flat
metallic surface perforated with a lattice of subwavelength
holes, the nanoparticle array is a lattice of nanoparticles
placed on dielectric substrate [1–8]. Other than their com-
plementary system configurations, the plasmonic resonances
arising from nanohole and nanoparticle arrays are also differ-
ent [1–3,9–13]. Nanohole arrays support Bloch-like surface
plasmon polaritons (SPPs) which propagate on a flat metal
surface whereas nanoparticle arrays make use of the coupling
between the diffractive Rayleigh anomalies (RAs) and the
localized surface plasmons (LSPs) to support the so-called
surface lattice resonance (SLR) [1–3,9–13].

Because nanohole and nanoparticle arrays support different
resonances, they are expected to exhibit different dispersion
relations and interactions with far fields. As an example,
for a two-dimensional (2D) square lattice, the nondegener-
ate (−1,0) resonance propagates along the �-X direction.
For Bloch-like SPPs, since both the transverse and longitu-
dinal electric fields of SPPs lie in the plane defined by the
propagation direction, only p-polarized light can be used for
excitation, and the far-field radiation damping remains as p
polarized [14]. On the other hand, for SLR, the radiations from
the LSPs should align with the propagation direction defined
by the (−1,0) RA in order to couple all LSPs into a collec-

*hcong@phy.cuhk.edu.hk

tive resonance [10]. Therefore, s-polarized light, instead of
p-polarized light, is required to excite the (−1,0) SLR [10]. In
other words, if one compares the dispersion relations between
nanohole and nanoparticle arrays under p and s polarizations,
two are completely reversed, indicating the excitation and
decay mechanisms for two systems are completely different.

In addition, because of the low dissipative RAs, SLRs
enjoy a high quality (Q) factor, which is one to two orders
of magnitude higher than LSPs [15–17]. In fact, some studies
have reported the Q factor can go beyond 2000 in the near
infrared regime [18]. These studies are usually conducted on
monopartite systems where only one single nanoparticle is
present in a unit cell [15–19]. Remarkably, for some of the
bipartite systems, in which the unit cell has two nanoparticles,
they can exhibit a much higher Q factor than the monopartite
counterparts [20–23]. Such high Q factors are found to be
strongly dependent on the relative position and orientation
between two nanoparticles [21]. As the Q factor is determined
by how the SLRs decay, the study of the interactions between
LSPs and RAs deserves further attention. More importantly,
it is desired if the Q factor can be analytically formulated so
that one can tailor it at will.

Here, we have studied the Q factor of SLRs from 2D Au
nanodisk arrays. We first use angle- and polarization-resolved
reflectivity spectroscopy to map the dispersion relations of the
monopartite arrays and reveal a variety of resonances includ-
ing LSPs and SLRs. We then formulate the scattering matrix
for the SLRs based on temporal coupled mode theory (CMT)
to understand the dependence of the decay rates on the prop-
erties of the LSP and RAs as well as their interactions. From
CMT, we see the Q factor of SLRs depends strongly on the
spectral detuning and the coupling strength between the LSP
and RAs. It is inversely proportional to the coupling strength
and at the same time scales quadratically with the detuning.
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FIG. 1. (a) The illustration of the 2D nanodisk array used in
experiment and FDTD simulation. The nanodisks with height H and
radius R are arranged in a square lattice with period P. The �-X
direction is defined with respect to the x axis. The incident direction,
as indicated by the red arrow, is defined by θ and ϕ with respect
to the z and x axes. The incident polarization γ , as indicated by
the blue arrow, is defined with respect to the s polarization. The
inset shows the SEM image of the nanodisk array and the scale
bar is 200 nm. (b) The schematic of the optical microscope system
for angle- and polarization-resolved reflectivity spectroscopy. The
supercontinuum generation fiber laser is collimated by a convex lens
(L1) and polarized by a polarizer (P1), then is focused by a tube lens
(L2) onto the BFP of the oil-immersed objective lens (OBJ). The
laser illuminates the sample (S) as a collimated light and the reflected
light is captured again by the OBJ. A beamsplitter (BS) routes the
reflected light through an analyzer (P2) and is focused by a lens (L3)
to a CCD-based spectrometer (SP).

We further extend the CMT to the bipartite systems and find
the far-field interaction between the LSPs plays an important
role in determining whether a dark or a bright mode is coupled
with the RAs. While a low Q factor is observed from the
bright mode coupling, the dark mode coupling can result in
an extremely high Q factor that surpasses the monopartite
systems. We also demonstrate that varying the geometry of
the dimer can effectively control the far-field interaction and
thus the resulting Q factor.

II. METHOD

We have prepared 2D square lattice Au cylindrical nan-
odisk arrays on glass substrate by electron-beam lithography.
The scanning electron microscopy plane-view image of one
of the arrays is illustrated in the inset of Fig. 1(a), showing
the lattice has period P = 400 nm, and the basis has height
H and radius R = 50 and 80 nm. After sample prepara-
tion, the sample is then transferred to a homebuilt optical
microscope designed for polarization- and angle-resolved re-
flectivity spectroscopy [24] [see Fig. 1(a)]. The schematic of
the system is displayed in Fig. 1(b). Briefly, a supercontinuum
generation white light laser output from a nonlinear photonic
crystal fiber is first coupled to a collimator that expands the
beam size to 500 mm2 and then focused onto the back focal
plane (BFP) of a 100X oil-immersion objective lens. The light
exiting the objective lens will be collimated again at angle
θ defined by d = f sinθ , where f is the focal length of the
objective lens and d is the displacement between the focused

FIG. 2. The (a) s- and (b) p-polarized θ -resolved reflectivity
mappings of the array taken along the �-X direction, and the (c) s-
and (d) p-polarized ϕ-resolved reflectivity mappings at θ = 30◦. The
white dashed lines are the RAs calculated by the phase matching
equation, showing (−1,0) and (0,±1) RAs. The LSP and different
(−1,0) and (0,±1) SLRs are also observed and labeled.

beam spot on the BFP and the optical axis of the objective
lens [24,25]. By placing the entire illumination optics on a
motorized translation stage so that we can translate the beam
across the BFP, the incident polar angle θ can be varied from
0° to 60° with angular resolution as small as 0.1°, provided
the numerical aperture of the objective lens is 1.3. The sample
is placed on a motorized rotation stage so that the azimuthal
angle ϕ, defined with respect to the �-X direction, can be var-
ied as well. Because of the refractive index matching oil, the
nanodisk array is immersed in a homogeneous environment.
The specular reflection from the sample is then collected
by the same objective lens and is routed to a spectrometer
coupled with a CCD detector for spectroscopy. Finally, the
polarization can be controlled by placing a pair of polarizer
and analyzer in the incident and detection paths.

III. EXPERIMENTAL RESULTS

Figures 2(a) and 2(b) show the s- and p-polarized θ -
resolved reflectivity mappings of the sample taken along the
�-X direction, i.e., ϕ = 0◦, whereas Figs. 2(c) and 2(d) show
the corresponding ϕ-resolved reflection mappings with θ =
30◦. One can see the dispersive and nondispersive modes,
which are identified as RAs, LSP, and SLRs. For the dispersive
modes, the RAs, as indicated by the white dashed lines in
Figs. 2(a)–2(d), are calculated by the phase matching equation
given as [1–3]

(
2π

λ

)2

=
(

2π

λ
sin θ cos ϕ + n2π

P

)2

+
(

2π

λ
sin θ sin ϕ + m2π

P

)2

, (1)
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FIG. 3. The (a) s- and (b) p-polarized (−1,0) SLR reflection
spectra taken along the �-X directions for different θ . The (c) s-
and (d) p-polarized (−1,0) SLR reflection spectra taken at θ = 30◦

for different ϕ. The black dashed lines are the best fits by CMT for
determining �rad, �abs, and α.

where λ is the wavelength and (n, m) is the mode order of the
RA. We see the dispersive modes match very well with the
(−1,0) and (0,±1) RA. On the other hand, the nondispersive
mode at λ = 790 nm [see Fig. 2(b)] is attributed to the LSP
arising from the nanodisks. In fact, by performing FDTD on a
single nanodisk, the resonance is found to be 779 nm, which
agrees with the experimental result [26]. The high reflection
peaks adjacent to the RAs are assigned as SLRs. For example,
in the s-polarized θ -resolved mapping in Fig. 2(a), the LSP
interacts with the (−1,0) RA to form (−1,0) SLR along the �-
X direction. Likewise, in the ϕ-resolved mapping in Fig. 2(c),
we see the LSP mode couples with the (−1,0) and (0,−1)
RAs, lifting the LSP to ≈ 700 nm at ϕ = 0◦–20◦ and 70°–
90° and at the same time forming (−1,0) and (0,−1) SLRs.
However, for the p-polarized counterparts in Fig. 2(b) taken
along the �-X direction, as the radiation fields from the LSP
are no longer aligned with the RAs, no SLRs are observed
[10]. Other than the nondegenerate (−1,0) and (0,−1) SLRs,
we also see the degenerate (0,±1) SLRs can be excited by both
s- and p-polarized lights in Figs. 2(a) and 2(b). The (0,±1)
RAs both can collectively couple with the fields radiated from
s- and p-excited LSPs. In addition, in analogy to the Bloch-
like SPPs, the (0,±1) SLRs excited by different polarizations
possess different field symmetries with respect to the incident
plane [27]. While p-excited SPPs are symmetric in accordance
with the incident wave, s-excited SLRs are antisymmetric
[10]. A few SLR spectra are illustrated in Figs. 3(a)–3(d),
showing the SLRs are Fano-like [8]. For now, we will focus
on formulating the scattering matrix for the nondegenerate
(−1,0) SLR where its resonant wavelength is longer than that
of the LSP.

IV. TEMPORAL COUPLED MODE THEORY

We study the properties of SLR within the framework of
temporal CMT [28,29]. Since SLR arises from the interactions

between a LSP and two s- and p-RAs, their dynamics can be
written as

d

dt

⎡
⎣a1

a2

a3

⎤
⎦ = i

⎡
⎣ ω̃1 
12 
13


12 ω̃2 0

13 0 ω̃3

⎤
⎦

⎡
⎣a1

a2

a3

⎤
⎦ + K|S+〉, (2)

where ω̃1−3 = ω1−3 + i�1−3/2, and a1−3, ω1−3, and �1−3 are
the mode amplitudes, resonant frequencies, and total decay
rates of the LSP and s- and p-RAs. 
12 and 
13 are the
coupling constants between the LSP and s-RA and the LSP
and p-RA, respectively, and K and |S+〉 are the complex in-
coupling matrix and the incident power amplitude vector [30].
We expect the s- and p-RAs are degenerate but do not interact
due to their orthogonality. Both the s- and p-RAs are dark
modes in which �2 and �3 are identical and small compared
to ω1−3 so that they are not driven by the incident light [8]. In
addition, the LSP radiates over the entire space in a homoge-
neous environment with the total decay rate defined as �1 =
�1,abs + ∫

�
θ,ϕ
1,radd
, where �1,abs is the absorption decay rate

and �
θ,ϕ
1,rad is the radiative decay rate at θ and ϕ, and d
 =

sin θdθdϕ is the differential solid angle [31]. By solving the
determinant of the homogeneous part of Eq. (2), we have

ω̃′
1,2 = ω̃1+ω̃2

2 ±
√

( ω̃1−ω̃2
2 )

2 + 
2
12 + 
2

13 and ω̃′
3 = ω̃2 for the

eigenfrequencies and a′
1,2 = [ ω̃2 − ω̃′

1,2 −
12 −
13 ]T

and a′
3 = [ 0 
13 −
12 ]T for the eigenvectors. In fact,

as illustrated in the Supplemental Material [26], Eq. (2) is
diagonalizable so that after transformation we can treat the
nondegenerate SLR as a single mode [32]. If ω1 > ω2,3 for
our case, the (−1,0) SLR has mode amplitude a, following

da

dt
= iωoa − �tot

2
a +

√
�rad

2
〈κ∗|s+〉, (3)

where ω0 is the resonant frequency and �tot is the total decay
rate of SLR, which is the summation of the absorption and
radiative decay rates, �abs and �rad [32]. Since the SLR
supports only the specular transmission and reflection, the
incident wave vector |s+〉 = [ sR

+,s sR
+,p sT

+,s sT
+,p ]T

and the in-coupling constant vector |κ〉 =
[ eiδs cos α eiδp sin α eiδs cos α eiδp sin α ]T , where
the subscripts s/p define the polarizations, the superscripts
R/T are the reflection and transmission sides, α is the best
incident polarization angle, and δs/p are the in-coupling
phase shifts [30]. The incident wave vector is normalized
as 〈s+|s+〉 = 1. Under the conservation of energy and time
reversal symmetry, the outgoing fields can be expressed as
[28–30]

|s−〉 = C|s+〉 +
√

�rad

2
a|κ〉, (4)

where C is the direct scattering matrix given as[
to,s 0 ro,s 0
0 to,p 0 ro,p

ro,s 0 to,s 0
0 ro,p 0 to,p

⎤
⎥⎦ in which to,s/p and ro,s/p are the

direct transmission and reflection coefficients and there is
no polarization conversion arising from direct scattering.
As shown by Fan and coworkers [29,33], the direct
scattering matrix should be unitary, i.e., C†C = I , the in-
and out-coupling constants are normalized as 〈κ|κ〉 = 2, and
they together should satisfy C|κ∗〉 = −|κ〉.
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To obtain the far fields of the SLR under the excita-
tion from the reflection side, we solve Eq. (3) to have a =√

�rad
2

〈κ∗|s+〉
i(ω−ωo)+�tot/2 . With the aid of Eq. (4), we can now write

the scattering matrix S defined as |s−〉 = S|s+〉 as

S = C + �rad

2

|κ〉〈κ∗|
i(ω − ωo) + �tot/2

. (5)

Once the scattering matrix is available, we formulate the
s- and p-transmission and reflection spectral profiles. The
s- and p-polarized transmissions can be written as Ts =
|to,s + �rade2iδs cos2α/2

i(ω−ωo)+�tot/2 |2 and Tp = |to,p + �rade2iδp sin2α/2
i(ω−ωo)+�tot/2 |2 under

|s+〉 = [1 0 0 0]T and |s+〉 = [0 1 0 0]T . On the
other hand, the s- and p-polarized reflections are Rs =
|ro,s + �rade2iδs cos2α/2

i(ω−ωo)+�tot/2 |2 and Rp = |ro,p + �rade2iδp sin2α/2
i(ω−ωo)+�tot/2 |2, respec-

tively. They show the far-field spectra consist of two parts
and they are direct scattering and radiation damping from the
SLR mode, which follows a Lorentzian line shape with the
linewidth defined by �tot. In the homogeneous environment,
although the direct reflection is weak, it interferes with the ra-
diation damping from SLR, yielding a Fano peaklike spectrum
[8,34], which is consistent with our experimental results.

V. STUDIES OF DECAY MECHANISM AND Q FACTOR

We then study the decay mechanism of the SLR by FDTD
and experiment. We first verify the CMT by FDTD for de-
termining �rad and �abs. The simulations are performed on
a unit cell with P = 400 nm, H = 50 nm, and R = 70 nm.
The nanodisks are made of Au with the complex dielectric
constants obtained from Ref. [35] and they are immersed in a
homogeneous medium with refractive index = 1.5. The Bloch
boundary condition is applied to four sides of the unit cell
while perfectly matched layers are set at the top and bottom.
Several simulated transmission and reflection spectra taken
along the �-X direction and at incident polar angle θ = 30◦
and azimuthal angle ϕ = 6◦−30◦ under s and p polarizations
are shown in Figs. 4(a)–4(h). The spectra are then fitted with
Ts/p and Rs/p to determine �rad, �abs, and α, and the results
are shown in Figs. 5(a) and 5(b) as a function of resonant
wavelength and ϕ. The best fits are also shown as the dashed
lines in the figures, demonstrating good fits.

To verify the fitted values of �rad and �abs, we have con-
ducted independent time-domain simulations on the same
system [26]. The time-domain results are overlaid in Fig. 5(a)
and they agree very well with the CMT results. On the other
hand, for the confirmation of α, for each excitation angle, we
calculate the absorption of the SLR mode as a function of
the incident polarization angle γ defined with respect to the
s polarization and identify the best γ that yields the strongest
absorption [30]. The results are provided in Fig. 5(b), showing
the error is within 5%. Therefore, we conclude the scattering
matrix is adequate to describe the angle- and polarization-
dependent transmission and reflection spectra of (−1,0) SLR.

Our formalism also reveals the decay mechanism and
the Q factor of the SLR. First, if both s- and p-RAs
are considered as almost completely dark, far-field
interactions between them and the LSP are forbidden.
As only near-field interactions prevail, both 
12 and 
13

are real values [36]. The total decay rate �tot is

FIG. 4. The FDTD simulated (a), (b) s- and (c), (d) p-polarized
transmission and reflection spectra of (−1,0) SLRs taken along the
�-X direction for different θ . The (e), (f) s- and (g), (h) p-polarized
transmission and reflection spectra of (−1,0) SLRs taken at θ = 30◦

for different ϕ. The black dashed lines are the best fits by CMT for
determining �rad, �abs, and α.

FIG. 5. (a) The plots of the FDTD �rad (blue square) and �abs (red
circle) against the (−1,0) SLR resonant wavelength in log-log scale.
The black dashed line is the linear best fit, indicating the slope is 8.7
or �rad ∝ λ−8.7. The time-domain simulated �rad (green up triangle)
and �abs (magenta down triangle) are also plotted for comparison.
(b) The plot of the FDTD α (black square) against ϕ. The data (red
circle) obtained from the γ that yields the strongest absorption are
also overlaid for comparison. (c) The plot of the FDTD 1/�tot against
(ω1 − ω2)2, exhibiting a linear dependence. (d) The plot of the FDTD
Q factor, defined as ωo/�tot , against ω2(ω1 − ω2)2, showing a linear
dependence.
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�1+�2
2 − Im(

√
[ω1 − ω2 + i

2 (�1 − �2)]
2 + 4(
2

12 + 
2
13)),

which indicates its dependence on the properties of
LSP and RAs. By expanding the imaginary part of
the square root, we find �tot can be approximated as
�2 + �1

4 ( (ω1−ω2 )2+(�1/2)2

4(
2
12+
2

13 )
+ 1)−1, showing it scales with

the decay rates of RAs and LSP, in which the rate of LSP
is further modified by a factor that depends on the interplay
between the LSP and RA spectral detuning, i.e., ω1 − ω2, and
the coupling constants 
12 and 
13 [26]. In particular, for a
system with fixed 
12 and 
13, �tot decreases quadratically
with the spectral detuning. We plot 1/�tot against (ω1 − ω2)2

in Fig. 5(c) and it clearly shows a linear dependence.
Likewise, we find the Q factor, which is defined as ωo/�tot,
can be approximated as

4

�1

[
ω2

(
(ω1 − ω2)2 + (�1/2)2

4
(

2

12 + 
2
13

) + 2

)
− ω1

]
. (6)

A linear dependence is shown in Fig. 5(d) where the Q factor
is plotted as a function of ω2(ω1 − ω2)2. On the other hand,
�rad in Fig. 5(a) shows a λ−n dependence, where n is fitted
to be 8.7, showing the radiation damping of the SLR follows
quadrupolelike Mie scattering [37,38]. Considering the size of
the nanodisk ≈ 1/5 of the resonant wavelength, higher order,
instead of dipolar, Mie scattering thus is expected.

We are now in the position of applying the CMT to fit our
experimental spectra to determine �rad, �abs, and α. We fit the
reflectivity spectra in Figs. 3(a)–3(d) by using Rs/p and the
best fits are displayed as the dashed lines. The results together
with �tot are plotted in Figs. 6(a)–6(c). From the figures, they
show the trends of �rad, �abs, α, and �tot follow well as the
simulations in Figs. 5(a)–5(c). In particular, �rad in Fig. 6(a)
shows a similar λ dependence in which n is determined to be
13.9 whereas 1/�tot in Fig. 6(c) displays a linear dependence
on (ω1 − ω2)2. Figure 6(d) verifies the linear dependence of
the Q factor on ω2(ω1 − ω2)2. On the other hand, as α is inter-
preted as the angle where the overlap between the projection
of the incident polarization and the SLR transverse near field
is maximal so that the energy transfer between the far and near
fields is optimal, we can expect tan α = cos θ tan ρ, where ρ

is the propagation direction of SLR defined with respect to
the incident plane [24,30]. The results are then overlaid in
Fig. 6(c), consistent with the experiment.

VI. BIPARTITE SYSTEMS

After studying the monopartite systems, we then extend the
CMT approach to bipartite nanoparticle arrays. For dimer ar-
rays shown in the inset of Fig. 7(a), they support two identical
LSPs that couple differently in the x and y directions, but only
when the radiation fields aligning with the RA yield SLRs. If
the RA propagates in the x direction, we simply neglect the
coupling of the LSPs in the x direction. We therefore extend
Eq. (2) to the bipartite system as

d

dt

⎡
⎢⎣

a1

a2

a3

a4

⎤
⎥⎦ = i

⎡
⎢⎢⎣

ω̃1 
̃12 
13 
14


̃12 ω̃1 
13 
14


13 
13 ω̃3 0

14 
14 0 ω̃3

⎤
⎥⎥⎦

⎡
⎢⎣

a1

a2

a3

a4

⎤
⎥⎦ + K|S+〉 (7)

FIG. 6. (a) The plots of the experimental �rad (blue square) and
�abs (red circle) against the (−1,0) SLR resonant wavelength in
log-log scale. The dashed line is the linear best fit, indicating the
slope is 13.9 or �rad ∝ λ−13.9. (b) The plot of the experimental
α (black square) against ϕ. The data (red circle) obtained from
tan α = cos θ tan ρ are also overlaid for comparison. (c) The plot
of the experimental 1/�tot against (ω1 − ω2)2, exhibiting a linear
dependence. (d) The plot of the experimental Q factor, defined as
ωo/�tot , against ω2(ω1 − ω2)2, showing a linear dependence. The
behaviors of the experimental �tot and Q factor agree with the FDTD
simulated results.

FIG. 7. The (a) transmission and (b) reflection spectra of the
(−1,0) SLRs taken under s incidence at θ = 24◦ along the �-X
direction for dx = 25–175 nm. The black dashed lines are the best
fits by CMT for determining the Q factor. The inset shows the unit
cell of the bipartite nanoparticle array, characterized by the relative
displacement vector d = dx x̂ + dyŷ, as indicated by the red arrow.
(c) The plot of the Q factor against 
′′

12, showing the analytical CMT
and FDTD simulations are consistent.
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where a1,2 are the mode amplitudes of the LSPs with resonant
frequency ω̃1, a3,4 are the mode amplitudes of the s- and
p-RAs that have ω̃3, 
̃12 is the coupling constant between
two LSPs, and 
13 and 
14 are the coupling constants
between the LSPs and the RAs. In addition, unlike 
13 and

14, which are real constants, 
̃12 = 
′

12 + i
′′
12 is complex

so that both near- and far-field interactions take place
considering the nanoparticles are highly radiative [31,36,39–
40]. In particular, 
′′

12 is an anti-Hermitian coupling constant
that associates primarily with far-field interaction [41].
We diagonalize the homogeneous part of Eq. (7) and find
the eigenfrequencies to be ω̃′

1 = ω̃1 − 
̃12, ω̃′
2 = ω̃3, and

ω̃′
3,4 = ω̃1+
̃12+ω̃3

2 ±
√

( ω̃1+
̃12−ω̃3
2 )

2 + 2(
2
13 + 
2

14) [26].
At the same time, the corresponding eigenvectors are

a′
1 = [−1 1 0 0]T , a′

2 = [0 0 
14 −
13]T , and
a′

3,4 = [ ω̃3 − ω̃′
3,4 ω̃3 − ω̃′

3,4 −2
13 −2
14 ]T . We
see, after the transformation, ω̃′

1,2 remain as nondispersive
LSP- and dispersive RA-like. On the other hand, for
ω1 > ω3, we can identify a′

4 as the (−1,0) SLR in

which its resonant frequency is ω′
4 = ω1+
′

12+ω3

2 − Re

(
√

( ω̃1+
̃12−ω̃3
2 )

2 + 2(
2
13 + 
2

14)) and total decay rate is �′
4 =

�1+2
′′
12+�3

2 − Im(
√

(ω̃1 + 
̃12 − ω̃3)
2 + 8(
2

13 + 
2
14)).

Following the Supplemental Material [26], we ap-
proximate the total decay rate of the SLR as �′

4 ≈
�3 + �1+2
′′

12
4 ( (ω1+
′

12−ω3 )2+(�1/2+
′′
12 )2

8(
2
13+
2

14 )
+ 1)−1, so that the

Q factor, i.e., ω′
4/�

′
4, can be approximated as

4

�1 + 2
′′
12

[
ω3

(
(ω1 + 
′

12 − ω3)2 + (�1/2 + 
′′
12)2

8
(

2

13 + 
2
14

) + 2

)
− (ω1 + 
′

12)

]
. (8)

Compared with the monopartite Q factor in Eq. (6), we see
Eq. (8) contains additional terms given by 
̃12 and the bi-
partite Q factor can be enhanced or reduced depending on
the signs and magnitudes of both 
′

12 and 
′′
12. Interestingly,

when 
′′
12 is tuned to be close to −�1/2, the Q factor tends

toward infinity. On the other hand, for a fixed 
̃12, the spectral
detuning factor now becomes (ω1 + 
′

12 − ω3)2. As 
̃12 is
geometry dependent, one can control it simply by changing
the nanoparticle shape and the relative position and orientation
between two nanoparticles [42].

We demonstrate the manipulation of 
̃12 by FDTD sim-
ulations on Au nanodisk dimer arrays following the work of
Ref. [21]. Two identical nanodisks in the inset of Fig. 7(a)
have H = 50 nm and R = 50 nm and their relative displace-
ment is denoted as d = dxx̂ + dyŷ. The dimer is then placed
in a square lattice unit cell with P = 400 nm and the bottom
nanoparticle is always fixed at −100x̂ − 100ŷ nm from the
center of the unit cell. The arrays again are enclosed in a ho-
mogeneous medium with refractive index = 1.5. At θ = 24◦

along the �-X direction, we calculate the s-polarized transmis-
sion and reflection spectra of the arrays with dx = 25–175 nm
and dy = 100 nm in Figs. 7(a) and 7(b). The (−1,0) SLRs
are identified at ≈ 927–977 nm. Apparently, consistent with
Ref. [21], we note the linewidth of the SLRs decreases pro-
gressively with increasing dx. To elucidate the dependence
of the Q factor on 
̃12, we determine 
′

12 and 
′′
12 by sim-

ulating the s-polarized transmission and reflection spectra in
Figs. 8(a) and 8(b) at θ = 30◦ where |ω̃1 + 
̃12 − ω̃3|2 	
(
2

13 + 
2
14) so that ω̃′

1,3 become ω̃1 ± 
̃12, which are also
known as the bright and dark modes [42–45], and are spec-
trally differentiable from the SLRs and RAs. The real and
imaginary parts of 
̃12 can then be straightforwardly de-
duced from the differences in the peak positions and the
linewidths, which are extracted by fitting the profiles using
two Lorentzian peaks. We plot 
′

12 and 
′′
12 as a function

of dx in Fig. 8(c), showing that, while 
′
12 increases grad-

ually with dx and eventually saturates at dx = 100 nm, 
′′
12

decreases monotonically and flips sign at dx = 125 nm. As

a result, the bright and dark modes are located at long and
short wavelengths when 
′′

12 is positive but reversed when

′′

12 flips to negative. More importantly, for negative 
′′
12, the

dark mode couples with the RAs to form the SLRs, yielding
a high Q factor. We follow the earlier approach to formulate
the scattering matrix as well as Ts and Rs to fit the spectra for
determining the Q factors and the results are plotted with 
′′

12
in Fig. 7(c). Given the single nanodisk determined by FDTD
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FIG. 8. The (a) transmission and (b) reflection spectra of the
bright and dark modes taken under s incidence at θ = 30◦ along the
�-X direction for dx = 25–175 nm. The black dashed lines are the
best fits for determining 
̃12. (c) The plot of the real and imaginary
component of 
̃12 against dx . The imaginary component decreases
monotonically from positive to negative, while the real part increases
progressively and saturates at dx = 100 nm.
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has ω̃1 = (2765 + 255i) ps−1 [26], we calculate
√


2
13 + 
2

14

to be 91.8 ps−1 for dx = 100 nm. We then proceed to estimate
the Q factor by Eq. (8) and the results are plotted in Fig. 7(c),
consistent with the FDTD results. We see in Fig. 7(c) that,
when 
′′

12 is approaching −�1/2, 1/(�1 + 2
′′
12) becomes

more and more dominant over (�1 + 2
′′
12)2, strongly enhanc-

ing the Q factor to almost 600.

VII. CONCLUSION

In summary, we have studied the optical properties of SLRs
arising from 2D monopartite and bipartite nanodisk arrays
by using polarization- and angle-resolved reflectivity spec-
troscopy, temporal CMT, and FDTD. The scattering matrices
for the (−1,0) SLRs have been formulated analytically by

using CMT and verified by FDTD. The matrices are found to
describe the reflection and transmission spectra of the SLRs
well. In addition, we show the interplay between the spectral
detuning and the coupling constants between the LSPs and
RAs plays an important role in governing the decay rate and
the Q factor of SLRs. The Q factor increases quadratically
with the detuning but depends on the coupling constants in a
nontrivial manner. In particular, it is shown in the bipartite sys-
tems that controlling the far-field coupling constant between
the LSPs can have a dramatic effect on the Q factor.
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