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Andreev reflection and Josephson effect in the α − T3 lattice
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We investigate the Andreev reflection and the Josephson effect in the α − T3 lattice, which falls between
graphene (α = 0) and the dice lattice (α = 1), by adjusting the parameter α. In the regime of the specular
Andreev reflection, when the incident energy of the electron is small, the probability of Andreev reflection
decreases as the parameter α increases. On the contrary, when the incident energy is large, the probability of
Andreev reflection increases as the parameter α increases. Interestingly, when the incident energy approaches
the superconducting energy gap function, the Andreev reflection with approximate all-angle perfect transmission
happens in the case of α = 1. In the regime of Andreev retroreflection, when the parameter α increases, the
probability of Andreev reflection increases regardless of the value of incident energy. When the incident energy
approaches the superconducting energy gap function, the Andreev reflection with approximate all-angle perfect
transmission happens regardless of the value of α. We also give the differential conductance in these two regimes
and find that it increases as the parameter α increases generally. In addition, the α − T3 lattice-based Josephson
current increases as α increases. When the length of the junction approaches zero, the critical Josephson currents
in the different values of α approach the same value.
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I. INTRODUCTION

With the rise of graphene [1], the honeycomblike lattices
such as silicene, two-dimensional transition metal dichalco-
genides, and black phosphorus have been researched widely
due to expected nanotechnology applications in the future
[2–5]. There is a special honeycomblike lattice named the
α − T3 lattice whose geometry is an additional atom sitting
at the center of each hexagon [6–11], shown in Fig. 1(a).
The continuous evolution of α from 0 to 1 can be linked to
a smooth transition from graphene (pseudospin S = 1

2 ) to a
dice or T3 lattice (pseudospin S = 1). Recently, the material
Hg1−xCdxTe at the critical doping could be mapped onto the
α − T3 lattice with the parameter α = 1/

√
3 [12]. The Hamil-

tonian of the α − T3 lattice is described by the Dirac-Weyl
equation, and its electronic structure consists of a pair con-
sisting of a linear Dirac cone and a flat band passing through
the Dirac point exactly.

The variable Berry phase (from π to 0) in the α − T3 lattice
has attracted many researchers to investigate Berry-phase-
based electronic properties such as Berry-phase-dependent
direct current (DC) Hall conductivity [13], Berry-phase-
modulated valley-polarized magnetoconductivity [14], and
the photoinduced valley and electron-hole symmetry break-
ing [15]. Someone even designed a chaos-based Berry phase
detector in the α − T3 lattice [16]. There are also many
unusual electronic properties to be discussed such as the
minimal conductivity [17,18], super-Klein tunneling [19–22],
magneto-optical conductivity and the Hofstadter butterfly
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[23–25], gap generation and flat band catalysis [26,27], non-
linear optical response [28], thermoelectric performance in a
nanoribbon made of a α − T3 lattice [29], topological phase
transition [30–34], and electronic and optical properties in
the irradiated α − T3 lattice [35,36]. In addition, flat-band-
induced diverging DC conductivity [37], nontrivial topology
[38–43], and ferromagnetism were studied [44,45].

Unfortunately, the Andreev reflection and Josephson ef-
fect, as important transport properties in condensed matter
physics, are not discussed in the α − T3 lattice. The Andreev
reflection was described as the electron-hole conversion at the
interface of the normal metal-superconductor [46]. Beenakker
[47] discussed the Andreev reflection in a graphene-based
superconducting junction and found that the electron-hole
conversion in different bands (interband conversion) leads
to the specular Andreev reflection (SAR), which is different
from the case in a general metal-superconductor junction
where only Andreev retroreflection (ARR) happens in the
same band (intraband conversion) [46]. After that, many re-
searchers focused on the Andreev reflection in graphenelike
materials such as silicene [48], MoS2 [49], and phosphorene
[50]. Recently, the anomalous Andreev reflection, interband
(intraband) conversion-induced ARR (SAR) was found in an
8-Pmmn borophene-based superconducting junction [51].

Josephson [52,53] predicted that the supercurrent carried
by Cooper pairs will tunnel in a sandwich structure which
is made of two superconductors (with different macroscopic
phases) separated by a thin insulating barrier. His theory was
verified in experiment by Anderson and Rowell. [54], and this
effect was named the Josephson effect. When the insulating
barrier is replaced by a normal metal, based on Andreev re-
flection, some split energy levels below the energy gap of the
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FIG. 1. (a) α − T3 lattice-based normal metal-superconductor
(NS) junction and (b) superconductor-normal metal-superconductor
(SNS) junction. There are three atoms per unit cell at sites A (red) and
B (blue), connected via hopping t , and an additional site C (green) at
the center of the hexagons, connected with B via a variable hopping
parameter αt . φL(R) is the the macroscopic phase in the left (right)
superconducting region.

superconductor are produced in the normal metal. These split
energy levels are called Andreev bound states, which support
the transport of Cooper pairs between the left and right su-
perconductors and then generate supercurrent [55]. Generally,
by calculating the phase-difference-dependent Josephson free
energy, the minimal Josephson free energy appears at phase
difference φ = 0, and this Josephson junction is called the 0
junction. If the middle region is a ferromagnetic metal, i.e.,
superconductor-ferromagnet-superconductor junction, the di-
rection of the critical supercurrent will be reversed, which was
predicted by Buzdin et al. [56] and later reviewed by Buzdin
[57]. In this case, the minimal Josephson free energy appears
at phase difference φ = π , and this Josephson junction is
called the π junction, which is suggested as a promising
device to realize qubits [58,59]. The ϕ junction, the minimal
Josephson free energy at the phase difference φ = ±ϕ, was
predicted and observed in a structure consisting of periodic
alternating 0 and π junctions [60,61]. The ϕ0 junction, the
minimal Josephson free energy at the phase difference φ =
ϕ0, was discussed in the nanowire-based Josephson junction
applied by the Rashba spin-orbit coupling and the Zeeman
field [62,63], the helical edge states of a quantum spin-Hall
insulator applied by the magnetic field [64], the magnetized
topological insulator interfaces [65], and the silicene nanorib-
bon applied by an antiferromagnetic exchange magnetization
or irradiated by a circularly polarized off-resonant light [66].
These Josephson junctions play an important role in the design

of superconducting circuits, which stimulates researchers to
study the Josephson effect constantly.

We find that the Andreev reflection was investigated in the
case of α = 0 (such as graphene [47]) and α = 1 (such as the
T3 lattice [67]), while the Josephson effect was only studied
in the case of α = 0 (such as graphene [68]). Therefore, an
interesting question to discuss the continuous evolution of the
Andreev reflection and the Josephson effect from α = 0 to 1
is lacking, which inspires us to discuss the Andreev reflection
and the Josephson effect in the α − T3 lattice. We firstly give
the model and basic formalism. Then the numerical results
and theoretical analysis about the probability of Andreev re-
flection, the differential conductance, and the Josephson effect
are presented and discussed. Finally, the main results of this
paper are summarized.

II. MODEL AND FORMALISM

The Bogoliubov–de Gennes (BdG) equation in the α − T3

lattice-based superconducting junction shown in Fig. 1(a) is
written as [47,69](

H − EF �0eiφσ0

�0e−iφσ0 EF − T HT −1

)(
ue

vh

)
= ε

(
ue

vh

)
. (1)

Here, EF is the Fermi energy of system; φ is the macro-
scopic phase in the superconducting region; T = σx ⊗ τC
is the time-reversal operator, with σx the Pauli matrix, τ =(

1 0 0
0 −1 0
0 0 1

)
, and C the operator of complex conjugation; ε

is the excited energy of electron and hole; ue and vh are the
electron (electronlike) and hole (holelike) wave functions in
the normal (superconducting) region, respectively; �0 is the
zero temperature energy gap function, which is induced in the
α − T3 lattice by approaching a conventional s-wave super-
conductor; and σ0 denotes a unit matrix. The Hamiltonian in
the α − T3 lattice is

H =
(
H+ 0
0 H−

)
, (2)

in which H± = h̄vFS · k + U (x) with

Sx = ±
⎛
⎝ 0 cos ϕ 0

cos ϕ 0 sin ϕ

0 sin ϕ 0

⎞
⎠, and (3)

Sy = −i

⎛
⎝ 0 cos ϕ 0

− cos ϕ 0 sin ϕ

0 − sin ϕ 0

⎞
⎠. (4)

Here, the Fermi velocity vF = 106 m/s, the label ± denotes
the K and K′ valleys, respectively, the angle ϕ is related to the
strength of the coupling α as α = tan ϕ, and U (x) = −U0
(x)
with the Heaviside step function 
 can be adjusted by doping
or a gate voltage in the superconducting region and is zero in
the normal region.

Owing to the time-reversal symmetry of the α − T3 lattice,
the Hamiltonian is time-reversal invariant, i.e., T HT −1 = H.
Then by matrix transformation, Eq. (1) can be decoupled into
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two sets of six equations with the form(
H± − EF �0eiφσ0

�0e−iφσ0 EF − H±

)(
ue

vh

)
= ε

(
ue

vh

)
. (5)

For the convenience of discussion, we consider the set with
H+ because of the valley degeneracy. The uniform spectrum
is written as ε =

√
(EF + U (x) ± h̄vF|k|)2 + �2

0
(x), with
|k| =

√
k2

x + k2
y in both normal and superconducting regions.

When ε and transverse momentum ky are given, we obtain
four eigenstates in the normal region by solving Eq. (5):

ψ±
e = exp (±ikxex + ikyy)

×(±e∓iθ cos ϕ, 1,±e±iθ sin ϕ, 0, 0, 0)T,

ψ±
h = exp (±ikxhx + ikyy)

×(0, 0, 0,∓e∓iθ ′
cos ϕ, 1,∓e±iθ ′

sin ϕ)T. (6)

The state ψ+
e (ψ+

h ) denotes the electron (hole) moves in the
+x direction [toward the normal metal-superconductor (NS)
junction], while ψ−

e (ψ−
h ) denotes the electron (hole) moves

in the −x direction (away from the NS junction). The angles
θ = arcsin[h̄vFky/(ε + EF)] and θ ′ = arcsin[h̄vFky/(ε − EF)]
are the incident angle of an electron and the reflected angle
of the corresponding hole, respectively. The wave vector kxe

(kxh) is the longitudinal wave vector of the electron (hole). We
consider the regime of U0 � EF and ε in the superconducting
region; then the simplified wave functions are obtained as

ψ±
S =

⎛
⎜⎜⎜⎜⎜⎜⎝

e±iβ

± 1
cos ϕ

e±iβ

tan ϕe±iβ

e−iφ

± 1
cos ϕ

e−iφ

tan ϕe−iφ

⎞
⎟⎟⎟⎟⎟⎟⎠

exp (±ik0x + ikyy − κx). (7)

Here, k0 = U0/h̄vF, κ = (�0/h̄vF)/ sin β, and β is defined as

β =
{

arccos
(

ε
�0

)
ε < �0,

−iarcosh
(

ε
�0

)
ε > �0.

(8)

The state ψ+
S (ψ−

S ) represents the wave function of a quasihole
(quasielectron) for ε > �0, while this state is the coherent
superposition of the electron and hole excitations for ε < �0

in the superconducting region. According to the derivation of
probability current in Ref. [51], assuming a wave function in
the general form � = (ψA, ψB, ψC )T, the x component of the
probability current is Jx = 2Re[ψ∗

B (ψA cos ϕ + ψC sin ϕ)]. By
using the method in Refs. [7,20,21], the wave function ψB and
the linear combination ψA cos ϕ + ψC sin ϕ are continuous
across an interface, which corresponds to the conservation of
the probability current Jx. Therefore, the matching conditions
for the wave functions across the α − T3 lattice-based inter-
face (x = 0) are

ψB|x=0+ = ψB|x=0− ,

ψA cos ϕ|x=0+ + ψC sin ϕ|x=0+

= ψA cos ϕ|x=0− + ψC sin ϕ|x=0− . (9)

The wave functions in the normal and superconducting re-
gions are given as

�N = ψ+
e + rψ−

e + rAψ−
h ,

�S = aψ+
S + bψ−

S , (10)

where r is the reflected amplitude for an incident electron,
rA is the reflected amplitude for a reflected hole, and a (b) is
the transmitted amplitude for an electronlike (holelike) quasi-
particle. Using the matching conditions in Eq. (9) at x = 0, a
system of four equations is obtained:

1 + r = 1

cos ϕ
(aeiβ − be−iβ ),

χei + rχer = 1

cos ϕ
(aeiβ + be−iβ ),

rA = 1

cos ϕ
(ae−iφ − be−iφ ),

rAχhr = 1

cos ϕ
(ae−iφ + be−iφ ). (11)

Here, χei(er) and χhr in the above equations are given

χei = e−iθ cos2 ϕ + eiθ sin2 ϕ,

χer = −eiθ cos2 ϕ − e−iθ sin2 ϕ,

χhr = eiθ ′
cos2 ϕ + e−iθ ′

sin2 ϕ. (12)

By solving Eq. (11), we have the amplitudes of the normal and
Andreev reflections, respectively:

r = (χei − χhr ) cos β + i(χeiχhr − 1) sin β

(χer − χhr ) cos β + i(χerχhr − 1) sin β
,

rA = χer − χei

(χei − χhr ) cos β + i(χerχhr − 1) sin β
. (13)

In this paper, the probability current is conserved in the x
direction. Then by using the same derivation in Ref. [51],
the corresponding incident probability current of the electron
along the x direction is Jxei = χei + χ∗

ei, the corresponding re-
flected probability current of the electron is Jxer = χer + χ∗

er ,
and the corresponding reflected probability current of hole is
Jxhr = χhr + χ∗

hr . Thus, the reflected and Andreev reflected
probabilities are written as R = | Jxer

Jxei
|r∗r and Ra = | Jxhr

Jxei
|r∗

a ra,
respectively.

III. RESULTS AND ANALYSIS

A. Andreev reflected probability

In Fig. 2, the incident angle of the electron-dependent
Andreev reflected probability is plotted with the different
incident energies and the different values of α in EF = 0. In
Fig. 2(a), the Andreev reflected probability decreases as α

increases when the incident energy is equal to 0.2�0. With
the increase of the incident energy, shown in Figs. 2(b)–2(d),
the Andreev reflected probability has a trend that its value
increases as α increases. We choose a limit value of the in-
cident energy (ε = 0.99�0) in Fig. 3. Then this phenomenon,
i.e., Ra increases as α increases, is obvious. Interestingly, an
approximately perfect transmission (Ra = 1) in a wide range
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FIG. 2. (a)–(d) The incident angle of electron-dependent An-
dreev reflected probability in the case of different incident energies
and different values of α. Here, �0 = 1 meV, U0 = 150�0, and
EF = 0.
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FIG. 3. The incident angle of the electron-dependent Andreev
reflected probability in the case of different values of α with the
incident energy ε = 0.99�0. The other parameters are the same as
the ones in Fig. 2.

of incident angles is shown when α = 1 in Fig. 3, which is
called a super-Andreev reflection by some researchers [67].

Let us do some qualitative analysis. In the case of EF = 0,
it is easy to obtain θ ′ = θ . Then from Eq. (13), we give the
Andreev reflected probability:

Ra = 4 cos2 θ

X cos2 β + Y sin2 β + Z
, (14)

in which X, Y, and Z are defined as

X = 4(1 − sin2 θ sin2 2ϕ),

Y = 4 cos2 θ + sin4 θ sin4 2ϕ,

Z = sin 4ϕ sin 2β sin3 θ sin 2ϕ. (15)

In the case of ε � �0, we obtain cos β → 0, while sin β → 1
by a simple calculation. The Andreev reflected probability
becomes

Ra → 4 cos2 θ

4 cos2 θ + sin4 θ sin4 2ϕ
. (16)

Obviously, the Andreev reflected probability decreases as
α increases. When α approaches 0, then sin4 2ϕ → 0 in
Eq. (16), and then Ra → 1. These results are consistent with
the ones in Fig. 2(a). When the incident energy ε approaches
�0, then cos β → 1, while sin β → 0. The Andreev reflected
probability becomes

Ra → cos2 θ

1 − sin2 θ sin2 2ϕ
. (17)

We can easily obtain a conclusion that the Andreev reflected
probability increases as α increases, and Ra → 1 when α ap-
proaches 1, which are consistent with the results in Figs. 2(d)
and 3. We will show that this property does not only happen in
α = 1 in the next paragraph. In fact, this property can happen
regardless of the value of α in the proper parameters.

In Fig. 4, the incident angle of the electron-dependent
Andreev reflected probability is plotted with the different in-
cident energies and the different values of α in EF = 100�0.
The Andreev reflected probability increases as α decreases
regardless of the value of the incident energy. However, when
ε = 0.99�0 in Fig. 5, the super-Andreev reflection is shown
regardless of the value of α. The range of incident angles
of the super-Andreev reflection increases as α increases.
Similarly, some qualitative analyses are given below. When
EF � ε, we can get θ ′ ≈ −θ , and then the Andreev reflected
probability is written as

Ra → 4 cos2 θ

4 cos2 θ + [(2 − sin2 θ sin2 2ϕ)2 − 4 cos2 θ ] sin2 β
.

(18)
In this equation, the value of sin2 2ϕ increases as α increases,
which leads to the fact that Ra increases as α increases. This
conclusion corresponds with the numerical result in Fig. 4.
For clarity, we consider ε � �0. Then sin β → 1, and the
Andreev reflected probability becomes

Ra → 4 cos2 θ

(2 − sin2 θ sin2 2ϕ)2
. (19)

Thus, it is easy to find that Ra increases as α increases, which
is consistent with the result in Fig. 4(a). When ε approaches
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and different values of α. Here, EF = 100�0, U0 = 150�0, and the
other parameters are the same as the ones in Fig. 2.

1.0

0.5

0

1.0

0.5

Ra

α = 0
α = 0.25
α = 0.5
α = 0.75
α= 1

30º

60º

0º

-30º

90º

-60º
-90º

ε= 0.99∆0

FIG. 5. The incident angle of the electron-dependent Andreev
reflected probability in the case of the different values of α with the
incident energy ε = 0.99�0 and U0 = 150�0. The other parameters
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FIG. 6. (a)–(d) The incident energy-dependent differential con-
ductance of the normal metal-superconductor (NS) junction in the
case of different Fermi energies. The unit for differential conductance
is G0. The other parameters are the same as the ones in Fig. 2.

�0, then sin β → 0, and the Andreev reflected probability
[Eq. (18)] becomes Ra → 1 regardless of the value of α,
which is consistent with the result in Fig. 5. In Ref. [67], the
authors give a conclusion that the super-Andreev reflection
cannot appear in α = 0. Thus, in this paper, we deepen their
research.

B. Differential conductance of the NS junction

In the regime of zero temperature, the differential con-
ductance of the NS junction following the Blonder-Tinkham-
Klapwijk formula is [70]

G = G0

∫ π
2

0
(1 − R + Ra) cos θdθ. (20)

Considering the twofold spin and valley degeneracies, G0 =
4e2

h N (ε) is the ballistic conductance with N (ε) = W (ε+EF )
π h̄vF

the
transverse modes in the α − T3 lattice with the width W .

The incident energy-dependent differential conductances
of the NS junction in the case of different Fermi energies are
shown in Fig. 6. In the case of EF = 0, using the relation
R + Ra = 1 and Eq. (16), we obtain G → 2G0 for α = 0,
G → 1.96G0 for α = 0.25, G → 1.84G0 for α = 0.5, G →
1.76G0 for α = 0.75, and G → [3

√
2 arctanh(

√
2

2 ) − 2]G0 ≈
1.74G0 for α = 1 when ε � �0. When the incident energy ε

approaches �0, using Eq. (17), we get G → 4
3 G0 for α = 0,

which reproduces the result in the graphene-based supercon-
ducting junction, and the formula below for α �= 0:

G → 2[sin 2ϕ − cos2 2ϕ arctanh(sin 2ϕ)]

sin3 2ϕ
G0. (21)

From the formula above, it is easy to obtain that G → 1.4G0

for α = 0.25, G → 1.58G0 for α = 0.5, G → 1.83G0 for α =
0.75, and G → 2G0 for α = 1. These results are shown in
Fig. 6(a).

With the increase of EF, shown in Figs. 6(b)–6(d), the value
of G increases as α increases generally. For EF < �0, the
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FIG. 7. Parameter α-dependent differential conductance G in the
case of ε � �0. The unit for differential conductance is G0.

differential conductance vanishes at ε = EF regardless of α

due to the disappearance of the Andreev reflection, shown in
Fig. 6(b). Interestingly, the value of G will tend to 2G0 when
ε → �0, shown in Fig. 6(d). Now we give a brief analysis
below. In the case of EF � ε, when ε � �0, using Eq. (19),
G → 4/3G0 ≈ 1.33G0 for α = 0, which also reproduces the
result in the graphene-based superconducting junction, and
the formula below for α �= 0:

G →
√

2(2 + sin2 2ϕ) arctanh
( sin 2ϕ√

2

) − 2 sin 2ϕ

sin3 2ϕ
G0. (22)

By a simple calculation, G → 1.4G0 for α = 0.25, G →
1.55G0 for α = 0.5, G → 1.69G0 for α = 0.75, and G →
[3

√
2 arctanh(

√
2

2 ) − 2]G0 ≈ 1.74G0 for α = 1. When ε ap-
proaches �0, then sin β → 0, the Andreev reflected probabil-
ity becomes Ra → 1, and the reflected probability becomes
R → 0 regardless of the value of α. Thus, the value of G
tends to 2G0 regardless of the value of α. These results can
be verified in Fig. 6(d).

When ε � �0, then Ra → 0, sin β → −i ε
�0

, cos β → ε
�0

,
and the reflected probability is written as

R → (cos θ − 1)2 + (sin θ cos 2ϕ)2

(cos θ + 1)2 + (sin θ cos 2ϕ)2
. (23)

We obtain G → (4 − π )G0 ≈ 0.86G0 for α = 0 and G →
(2π − 16/3)G0 ≈ 0.95G0 for α = 1, which reproduce the
results in Refs. [47,67]. For α �= 0 and 1, the differential
conductance G becomes

G → 2 csc2 4ϕ(M − N )G0, (24)

in which M and N are defined as

M = 4(sin2 2ϕ + π cos2 2ϕ),

N = arctan(cos 2ϕ)(3 + cos 4ϕ)2 sec 2ϕ. (25)

Then we give the α-dependent differential conductance G in
Fig. 7. The value of G increases as α increases regardless of
the value of EF [between (4 − π )G0 and (2π − 16

3 )G0].

C. Josephson current of the superconductor-normal
metal-superconductor junction

The α − T3 lattice-based Josephson junction, shown in
Fig. 1(b), is also described by Eq. (5) with U0 applied only
in two superconducting regions. The eigenstates in left and
right superconducting regions are

ψ±
SL =

⎛
⎜⎜⎜⎜⎜⎜⎝

e±iβ

∓ 1
cos ϕ

e±iβ

tan ϕe±iβ

e−iφL

∓ 1
cos ϕ

e−iφL

tan ϕe−iφL

⎞
⎟⎟⎟⎟⎟⎟⎠

exp (±ik0x + ikyy + κx),

ψ±
SR =

⎛
⎜⎜⎜⎜⎜⎜⎝

e±iβ

± 1
cos ϕ

e±iβ

tan ϕe±iβ

e−iφR

± 1
cos ϕ

e−iφR

tan ϕe−iφR

⎞
⎟⎟⎟⎟⎟⎟⎠

exp (±ik0x + ikyy − κx). (26)

We analyze the Josephson effect in the experimentally most
relevant short-junction regime that the length L of the normal
region is smaller than the superconducting coherence length,
i.e., h̄vF/L � �0. The wave functions in the middle and both
superconducting regions are given as

�M = f ψ+
e + gψ−

e + hψ+
h + mψ−

h ,

�SL = aψ−
SL + bψ+

SL,

�SR = cψ−
SR + dψ+

SR. (27)

Using the matching conditions in Eq. (9) at x = 0 and x = L,
a system of eight equations is obtained:

f + g = 1

cos ϕ
(ae−iβ − beiβ ),

f χei + gχer = 1

cos ϕ
(ae−iβ + beiβ ),

h + m = 1

cos ϕ
(ae−iφL − be−iφL ),

hχhi + mχhr = 1

cos ϕ
(ae−iφL + be−iφL ),

f ′ + g′ = 1

cos ϕ
(−c′e−iβ + d ′eiβ ),

f ′χei + g′χer = 1

cos ϕ
(c′e−iβ + d ′eiβ ),

h′ + m′ = 1

cos ϕ
(−c′e−iφR + d ′e−iφR ),

h′χhi + m′χhr = 1

cos ϕ
(c′e−iφR + d ′e−iφR ), (28)

where c′ = c exp(−ik0L − κL), d ′ = d exp(ik0L − κL), f ′ =
f exp(ikxeL), g′ = gexp(−ikxeL), h′ = h exp(ikxhL), m′ =
m exp(−ikxhL), and χhi = −e−iθ ′

cos2 ϕ − eiθ ′
sin2 ϕ. To en-

sure the nonzero solution of Eq. (28), considering EF � ε,
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FIG. 8. Phase difference φ-dependent Josephson current in the
case of the different values of α. Here, L = 20 nm, U0 = 150�0, and
EF = 100�0. The unit for differential conductance is J0.

the below condition needs to be satisfied:

A
ε2

�2
0

+ B = 0. (29)

Parameters A and B are defined as

A = (64 cos2 θ − P) sin2(kxL) − 64 cos2 θ,

B = (P − 64 cos2 θ ) sin2(kxL)

+ 32 cos2 θ (1 + cos φ), (30)

where P = (4 sin2 θ sin2 2ϕ − 8)2, kx = EF
h̄vF

cos θ , and phase
difference φ = φR − φL. We can obtain the Andreev bound
level ε from Eq. (29) and then the relation between the Joseph-
son current J passing through the junction with transverse
width W and the positive Andreev bound level at zero tem-
perature is given as

J = −4e

h̄

W EF

π h̄vF

∫
dε

dφ
cos θdθ, (31)

in which the factor of 4 denotes the twofold spin and
valley degeneracies. The unit for the Josephson current is
J0 = 4e

h̄
W EF
π h̄vF

�0.
In Fig. 8, the phase difference φ-dependent Josephson

current is plotted by varying parameter α. The value of the
Josephson current increases as α increases. We can give dε

dφ
=

− 16 cos2 θ sin φ√−AB
�0 because of A < 0. When α increases, the val-

ues of −A and B decrease from Eq. (30), then the value of dε
dφ

increases, and the increase of the Josephson current is shown
in Fig. 8. We also give the length of the junction L-dependent
critical Josephson current Jc (the maximal Josephson current)
in Fig. 9. The value of Jc oscillates as L varies and increases as
α increases. By considering the limiting behavior L → 0, then
sin(kxL) → 0, and the critical Josepshson current Jc → 1

2 J0

regardless of the value of α, which is shown in Fig. 9.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have investigated the continuous evolu-
tion of the Andreev reflection and the Josephson effect by
adjusting the parameter α in the α − T3 lattice system. Now

FIG. 9. Length of junction L-dependent critical Josephson cur-
rent Jc in the case of the different values of α. Here, EF = 100�0,
U0 = 150�0, and the unit for critical Josephson Jc is J0.

we give some discussions about the possible material candi-
dates in experiment. The material Hg1−xCdxTe at the critical
doping can be mapped onto the α − T3 lattice with parameter
α = 1/

√
3 [12]. Additionally, there are several realistic mate-

rial candidates, including monolayer Mg2C [71], monolayer
Na2O and K2O [72], and a trilayer structure of cubic lattices
such as SrTiO3/SrIrO3/SrTiO3 in the (111) direction [73]. To
fabricate a superconducting interface, a conventional s-wave
superconductor approaches the α − T3 lattice, and then the
superconductivity is induced in the α − T3 lattice by proximity
effect.

Finally, we want to mention two open topics. First, for
the graphene system, the different pairing symmetry, such as
d-wave, f-wave, or p-wave pairings, showed a strong effect
on the Andreev reflection and the Josephson effect [74–76].
For the α − T3 lattice, this is an open topic by considering
different pairing symmetry in the superconducting region,
which could be discussed in future works. Second, the role
of the flat band in the Andreev reflection and the Josephson
effect is worth discussing. The self-consistent treatment of
the pairing amplitude may give us some inspiration [77]. The
Fermi energy-dependent superconducting energy gap function
was predicted due to the presence of a flat band, which will
affect the value of differential conductance and the Josephson
current in our work. However, the perfect Andreev reflection
(unit efficiency at normal incidence) and the large Andreev
reflection effect will not be affected in our work if the incident
energy approaches the superconducting energy gap function.

In conclusion, we discuss the Andreev reflection and the
Josephson effect in the α − T3 lattice-based superconducting
junction by solving the BdG equation. In the regime of SAR,
the probability of Andreev reflection decreases as the param-
eter α increases when the incident energy of the electron is
small. As the incident energy increases, the probability of
Andreev reflection increases as the parameter α increases.
There is an interesting property that the Andreev reflection
with approximate all-angle perfect transmission happens in
the case of α = 1 when the incident energy approaches the
superconducting energy gap function.
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In the regime of ARR, the probability of Andreev reflection
increases as α increases regardless of the incident energy of
electron. Interestingly, when the incident energy approaches
the superconducting energy gap function, the Andreev reflec-
tion with approximate all-angle perfect transmission happens
regardless of the value of α, which is different from the case
in the regime of SAR.

The measurable differential conductances of the NS junc-
tion in experiments are shown in these two regimes. We find
that the differential conductances show the same property that
their values increase as α increases generally in both regimes.
Additionally, there is a difference that the value of differential
conductance tends to 2G0 regardless of the value of α when
the incident energy ε approaches the superconducting energy
gap function �0 in the case of EF � ε.

In addition, we find that the α − T3 lattice-based Josephson
current increases as α increases. The critical Josephson cur-

rents oscillate as the length of the junction varies and approach
the same value when the length of the junction approaches
zero in the different values of α. This paper gives the proper-
ties of continuous evolution of the Andreev reflection and the
Josephson effect when the pseudospin of the fermion varies
from pseudospin S = 1

2 to pseudospin S = 1 continuously.
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