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High harmonic generation in fullerene molecules
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Using dynamical Hartree-Fock mean-field theory, we study the high harmonic generation (HHG) in the
fullerene molecules C60 and C70 under strong pump wave driving. We consider a strong-field regime and
show that the output harmonic radiation exhibits multiple plateaus, whose borders are defined by the molecular
excitonic lines and cutoff energies within each plateau scale linearly with the field strength amplitude. In contrast
to atomic cases for the fullerene molecule, with the increase of the pump wave photon energy the cutoff harmonic
energy is increased. We also show that with the increase of the electron-electron interaction energy overall the
HHG rate is suppressed. We demonstrate that the C70 molecule shows richer HHG spectra and a stronger high
harmonic intensity than the C60.
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I. INTRODUCTION

An intense light interaction with a quantum system can
excite the system’s electrons towards extreme nonequilibrium
states during a fraction of its cycle [1,2]. Excited by the wave
field and subjected to the internal forces inside the system,
the electrons emit coherent electromagnetic (EM) radiation
that can contain from tens to many hundreds of harmonics
of an incident light [3,4]. This is one of the fundamental
processes in the intense laser-matter interaction called high
harmonic generation (HHG) [5]. The HHG process in atoms
or molecules with the three-step model [6] explanation is a
well-demonstrated method for producing coherent extreme
ultraviolet radiation. The coherent spectrum of HHG implies
access to the extreme time resolution of the underlying quan-
tum dynamics that opens the way for attosecond physics
[7,8] and ultrafast imaging methods for emitters themselves.
In particular, using HHG spectroscopy one can reconstruct
the crystal potential [9], observe Mott [10] and Peierls [11]
transitions, and retrieve the band structure [12,13].

For HHG it is crucial to increase HHG conversion effi-
ciency and to extend the harmonics cutoff [14]. Specifically,
the conversion efficiency of the HHG process strongly de-
pends on the density of emitters and the density of states of
emitters. The use of molecular systems, clusters, and crystals
can significantly increase the harmonic intensity by utiliz-
ing multiple excitation channels [15–17]. Thus, in the last
decade, there has been a growing interest to extend HHG
to crystals [18–26] and two-dimensional nanostructures, such
as semimetallic graphene [27–38], semiconductor transition
metal dichalcogenides [39,40], and dielectric hexagonal boron
nitride [41]. Currently, this is a new growing research field—
extreme nonlinear optics of nanostructured materials.

Among the variety of nanostructured materials, carbon al-
lotropes play a central role. The discovery of fullerene C60
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[42] through laser evaporation of graphite and its synthesis
in macroscopic amounts [43] triggered the study of many
other carbon nanostructures, such as carbon nanotubes [44],
graphene, and its derivatives [45]. Currently, carbon nanoma-
terials are promising materials for many applications, and in
particular for extreme nonlinear optics. Being a member of
the carbon allotropes, a strong HHG from fullerene molecules
is expected. Experimentally, in Refs. [46,47] is reported a
strong harmonic signal from C60 plasma. Theoretical works
predicted a strong HHG from a C60 molecule [48–50] and
solid C60 [51]. The theoretical analyses in Refs. [48–50]
are dominated by a single-particle picture, but it is unclear
how the electron-electron Coulomb interaction leaves its mark
on HHG and subcycle electronic response in these mate-
rials. In addition, in [48], moderately strong fields were
considered, and excitonic lines were termed as noninteger
harmonics. However, these intrinsic exciton lines are the re-
sult of Raman scattering of light, not harmonic radiation.
Another problem is how the symmetry groups of the most
abundant fullerenes C60 and C70, namely, the icosahedron
group and the dihedral group, affect the HHG process in these
materials.

In the present work, we develop a microscopic the-
ory of a fullerene molecule nonlinear interaction with
strong EM radiation of linear polarization taking into ac-
count electron-electron interaction (EEI). In particular, we
consider C60 and C70 molecules as the most abundant ex-
amples of fullerene molecules with different point-group
symmetries. By means of the dynamical Hartree-Fock ap-
proximation, we reveal the general and basal structure
of the HHG spectrum and its relation to the molecular
excitations.

The paper is organized as follows. In Sec. II, the con-
sidering model with the Hamiltonian in the tight-binding
approximation and the master equation for the density matrix
are presented. In Sec. III, we present the calculated HHG
spectra and examine its fundamental structure. Finally, the
conclusions are given in Sec. IV.
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FIG. 1. A sketch of the interaction geometry with schematic
structures of C60 and C70.

II. THE TIGHT-BINDING HAMILTONIAN AND THE
MASTER EQUATION FOR THE DENSITY MATRIX

Let a fullerene molecule, C60 or C70, interact with strong
coherent EM radiation that results in HHG. A sketch of the
interaction geometry with an incident wave, output harmon-
ics, and schematic structures of C60 and C70 is shown in
Fig. 1. The C60 molecule is invariant under the inversion with
respect to the center of mass and has icosahedral (Ih) point-
group symmetry. The C70 molecule has pentagonal (D5h)
point-group symmetry. The z axis is chosen along the fivefold
rotation axes. This means that the C70 molecule is mapped
onto itself at (x, y, z) → (x, y,−z).

We assume neutral fullerene molecules, which will be
described in the scope of the tight-binding theory where
the interball hopping is much smaller than the on-ball
hopping, and EEI is described in the extended Hub-
bard approximation [52–55]. Hence, the total Hamiltonian
reads

Ĥ = Ĥ0 + Ĥint, (1)

where

Ĥ0 = −
∑
〈i, j〉σ

ti jc
†
iσ c jσ + U

2

∑
iσ

niσ niσ + 1

2

∑
〈i, j〉

Vi jnin j (2)

is the free fullerene Hamiltonian. Here c†
iσ creates an elec-

tron with the spin polarization σ = {↑,↓} at site i (σ is the
opposite to σ spin polarization), and 〈i, j〉 runs over all the
first nearest-neighbor hopping sites with the transfer energy
ti j . The density operator is niσ = c†

iσ ciσ , and the total electron
density for site i is ni = ni↑ + ni↓. The second and third terms
in (2) describe the EEI Hamiltonian with on-site and intersite
Coulomb repulsion energies U and Vi j , respectively. Since
the distance di j between the nearest-neighbor pairs varies
over the system, we scale intersite Coulomb repulsion: Vi j =
V dmin/di j , where dmin is the minimal nearest-neighbor dis-
tance. For all calculations we use the ratio V = 0.4U [52,54].
In the Hamiltonian, we neglected the lattice vibrations. In the
calculations, the light-matter interaction is described in the
length gauge via the pure scalar potential

Ĥint = e
∑

iσ

ri · E(t )c†
iσ ciσ , (3)

with the elementary charge e, position vector ri, and the
electric field strength E(t ) = f (t )E0ê cos ωt , with the fre-
quency ω, polarization ê unit vector, pulse envelope f (t ) =

sin2(πt/T ), and the pulse duration T . From the Heisenberg
equation one can obtain evolutionary equations for the single-
particle density matrix ρ

(σ )
i j = 〈c†

jσ ciσ 〉. In addition, we will
assume that the system relaxes at a rate γ to the equilibrium
ρ

(σ )
0i j distribution. To obtain a closed set of equations for the

single-particle density matrix ρ
(σ )
i j = 〈c†

jσ ciσ 〉, EEI will be
considered under the Hartree-Fock approximation. (Details
are provided in Appendix A.) Thus, we obtain the following
equation for the density matrix:

ih̄
∂ρ

(σ )
i j

∂t
=

∑
k

(τk jσ ρ
(σ )
ik − τikσ ρ

(σ )
k j ) + (Viσ − Vjσ )ρ (σ )

i j

+ eE(t )(ri − r j )ρ
(σ )
i j − ih̄γ (ρ (σ )

i j − ρ
(σ )
0i j ), (4)

where Viσ = ∑
jα Vi j (ρ

(α)
j j − ρ

(α)
0 j j ) + U (ρ (σ )

ii − ρ
(σ )
0ii ) and

τi jσ = ti j + Vi j (ρ
(σ )
ji − ρ

(σ )
0 ji ) are defined via the density

matrix ρ
(σ )
i j and its initial value.

We numerically diagonalize the tight-binding Hamiltonian
Ĥ0 (see Appendix A) with the parameters that provide molec-
ular orbitals close to experiment [56,57], and construct the
initial density matrix ρ

(σ )
0i j via the filling of electron states in

the valence band according to the zero temperature Fermi-
Dirac distribution ρ

(σ )
0i j = ∑N−1

μ=N/2 ψ∗
μ( j)ψμ(i), where ψμ(i) is

the eigenstate of Ĥ0.

III. RESULTS

The HHG spectrum is evaluated from the Fourier trans-
formation a(�) of the dipole acceleration a(t ) = d2d/dt2.
Corresponding dipole momentum is defined as d(t ) =
e
∑

iσ riρ
(σ )
ii (t ). Then, for convenience, we normalize the

dipole acceleration by the factor a0 = eω2d, where ω =
1 eV/h̄ and d = 1 Å. The power radiated at the given fre-
quency is proportional to |a(�)|2.

As a first step and to verify our model, we make calcula-
tions for the parameters of Ref. [48] when EEI is neglected:
U = 0. The corresponding spectrum for C60 is shown in
Fig. 2. As seen from this figure, except for the low-frequency
peak associated with the lattice vibration, our model com-
pletely reproduces the result of Ref. [48]. In particular, we see
that above the seventh order, there are fractional harmonics.
As was shown in Ref. [48], these peaks result from the in-
trinsic electronic excitations that present multiple electronic
transitions between the molecular orbitals. As we will see
below, these peaks also have imprints on the HHG spectra at
stronger laser fields.

In order to clarify the main aspects of HHG in C60

and C70 for strong pump fields, we assume the exci-
tation frequency is much smaller than the typical gap
of ∼2 eV. For all further calculations the wave is as-
sumed to be linearly polarized and the pulse duration T
is taken to be 20 wave cycles: T = 40π/ω. Prior to the
Fourier transform, we apply a window function to the
dipole acceleration (see Appendix B), to filter out noise
at the beginning and at the end of the time evolution. Orienting
the linearly polarized pump wave along different axes results
in different harmonics spectra. The difference is essential for
C70. This is because for C70 the inversion symmetry takes
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FIG. 2. The HHG spectrum in logarithmic scale via the normal-
ized dipole acceleration Fourier transformation a(�)/a0 (in arbitrary
units) for C60. The light polarization is assumed along the x axis.
The frequency is ω = 0.4 eV/h̄, pulse duration is 32 laser cycles,
and the field strength is taken to be E0 = 0.02 V/Å. The relaxation
is neglected.

place only for the fivefold rotation axes, Fig. 1. For C60 the
HHG spectrum is almost independent of light polarization. In
Figs. 3(a)–3(c), we show the HHG spectra in the strong field
regime for the C60 molecule. For the C60 molecule, because of
the inversion symmetry only the odd harmonics appear in the
HHG spectrum. As expected, with the increase of the pump
wave field strength the HHG rate and the cutoff harmonic

order increase. In Figs. 3(d)–3(f), we show the HHG spectra in
the strong-field regime for the C70 molecule. For the latter we
have both even and odd harmonics except at the z polarization
of the pump wave, Fig. 3(f). The insets in Figs. 3(a) and
3(d) show low harmonics, where the difference in symmetry
for C60 and C70 is clearly visible (see also Appendix A for
a relatively weak field). As seen from Fig. 3, in both cases
HHG spectra have a multiplateau structure that is connected
with the intrinsic molecular excitations between the occupied
molecular orbitals and the unoccupied molecular orbital. To
show this in a more transparent way, in Fig. 3 the molecular
excitonic lines are also shown. To obtain the latter, the method
of coherent laser spectroscopy is used. That is, we examined
the spectra of C60 and C70 upon excitation by a laser pulse
of a relatively high frequency. Due to the higher energy of
the photon, it is able to excite higher electron orbitals, or, in
other words, electron-hole pairs. These pairs upon subsequent
recombination through radiation lead to a series of peaks in
the spectrum, and since our model takes into account the EEI,
we call them molecular exciton lines. In particular, the lines
near 2.7 and 1.7 eV for C60 and C70, respectively, are close to
the first dipole-allowed transition from the highest occupied
molecular orbital to the lowest unoccupied molecular orbital.
These excitonic lines were termed as noninteger harmonics in
[48] and have their fingerprints in the multiplateau structure
for the HHG spectra in the strong-field regime. As is seen,
plateaus’ borders are defined by these lines. In addition, for
C70 there are close lines which enhance the HHG yield com-
pared with C60.
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FIG. 3. The HHG spectra in the strong-field regime in logarithmic scale via the normalized dipole acceleration Fourier transformation
a(�)/a0 (in arbitrary units) for C60 (a)–(c) and for C70 (d)–(f). The frequency is ω = 0.1 eV/h̄. The relaxation rate is taken to be h̄γ = 50 meV.
The spectra are shown for moderate EEI energy: U = 2 eV. The light polarization is assumed along the x axis for C60 with the field strengths
E0 = 0.5 V/Å (a), E0 = 0.4 V/Å (b), and E0 = 0.3 V/Å (c). For C70 the field strength is taken to be E0 = 0.5 V/Å and the light polarization
is assumed along the different axes. The molecular excitonic lines (lower/blue curves, except the line near 0.5 eV) are also shown. The latter
is obtained at the excitation of C60 and C70 with a probe laser pulse of frequency 0.5 eV/h̄ and E0 = 10−4 V/Å. The relaxation rate is taken to
be h̄γ = 0.5 meV.
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FIG. 4. The envelopes of HHG spectra (only peaks are connected) in the strong-field regime for different EEI energies in logarithmic
scale via the normalized dipole acceleration Fourier transformation a(�)/a0 (in arbitrary units) for C60 (a) and C70 (b). The frequency is
ω = 0.1 eV/h̄ and the field strength is taken to be E0 = 0.5 V/Å. The relaxation rate is taken to be h̄γ = 50 meV. In (c) we show HHG for
C60 versus C70.

Since the boundaries of the plateaus are determined by
dipole-allowed multiple electronic transitions between the
molecular orbitals, it can be argued that for the frequencies
h̄ω 	 ti j these boundaries are almost invariant with respect
to the pump wave frequency. They are determined through
the intrinsic features of the free fullerene. Note also that the
position of excitonic lines and relative intensities depend also
on EEI. In addition, as was shown in [58], the on-site EEI
suppresses the charge fluctuation and reduces the absorbed
energy. It is also expected that HHG yields suppression due to
EEI. The latter is shown in Fig. 4, where the HHG spectra in
the strong-field regime for different EEI energies are shown.
To obtain the mean picture which does not depend on the ori-
entation of the molecule with respect to laser polarization, we
take the wave polarization unit vector as ê = 1/

√
3{1, 1, 1}.

To make the plateaus more visible in Figs. 4(a) and 4(b) we
show the envelopes of HHG spectra. As seen from Figs. 4(a)
and 4(b), with the increase of the EEI energy overall the
HHG rate is suppressed. Another interesting aspect of HHG in
fullerene is the qualitative and quantitative difference between
both molecules. As is seen, the C70 molecule shows more
pronounced nonlinear properties [Fig. 4(c)]. Due to broken
inversion symmetry in the case of C70, we have even harmon-
ics; in addition, due to the smaller energy gap and the larger
density of states, the HHG rate is larger by one to two orders
compared with C60. For comparison, in Fig. 4(c) we show
the first four plateaus for both molecules. The suppression
of HHG with the increase of EEI energy is connected with
the fact that at strong on-site and intersite electron-electron
repulsion the polarizability of molecules, or in other words
electrons migration from the equilibrium states, is suppressed.
To show this visually, in Fig. 5 we display site occupa-
tions ni = 〈c†

i↑ci↑〉 + 〈c†
i↓ci↓〉 via three-dimensional (3D) color

mapped molecular structures at the peak of the laser field
for the z-polarized wave for the same interaction parameters.
The color bar represents site occupation. As can be seen
from Fig. 5, the deviation from the equilibrium position and,
therefore, the polarization is maximum for vanishing EEI.

We also investigated the HHG spectra dependence versus
pump wave frequency and intensity. In Figs. 6(a) and 6(b)
we plot the HHG spectra versus pump wave frequency at
moderate EEI energy U = 2 eV, for C60 and C70, respec-
tively. For both molecules, the cutoff harmonic position is

well approximated by the dependence Ncut ∼ ω−1/2 which is
plotted along with density. Note that for atomic HHG via
free continuum Ncut ∼ ω−3 [6]. In the case of a two-level
atom Ncut ∼ ω−1 [59]. Thus, in contrast to atomic cases for a
fullerene molecule, with the increase of the pump wave pho-
ton energy the cutoff harmonic energy (h̄ωNcut) is increased.

Next, we consider the HHG spectra as a function of pump
wave intensity. In Figs. 6(c) and 6(d), we show the HHG
spectra as a function of field amplitude and the harmonic
order for a fixed frequency. The HHG spectra have interesting
structures. First of all, excitonic lines (marked by the white
horizontal lines) are clearly seen. These excitonic lines define
the borders of the plateaus and within each plateau, the cutoff
harmonic linearly increases with increasing the field strength.

y

ni

C70  equilibrium

z
x

y

ni

U=0.0 eV

z
x

y

ni

U=3 eV

z
x

y

ni

U=6 eV

z
x

 0.92
 0.94
 0.96
 0.98
 1
 1.02
 1.04
 1.06
 1.08

FIG. 5. The site occupations ni in 3D color mapped molecular
structures for C70. The wave is assumed to be linearly polarized along
the z axis. The first configuration is the equilibrium, the next three
configurations are at the peak of the laser field t = T /2 for different
EEI energies.
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FIG. 6. The HHG spectra versus pump wave frequency (a),(b) and intensity (c),(d). The color bar represents the emission rate via dipole
acceleration Fourier transformation a(�)/a0 in the logarithmic scale for C60 (a),(c) and C70 (b),(d). The wave is assumed to be linearly polarized
with polarization unit vector ê = 1√

3
{1, 1, 1}. The field strength is fixed E0 = 0.5 V/Å for (a) and (b), while for (c) and (d) the frequency is

fixed ω = 0.1 eV/h̄. The spectra are shown for moderate EEI energy: U = 2 eV. The relaxation rate is taken to be h̄γ = 50 meV. The white
lines in (a) and (b) are envelopes α/

√
ω which show the cutoff harmonic positions. The white horizontal lines in (c) and (d) are excitonic

resonances that show each plateau’s borders.

Then, reaching the harmonic ∼160 which corresponds to the
transition of the lowest occupied molecular orbital to the high-
est unoccupied molecular orbital, the HHG rate is saturated.
Note that linear dependence of the cutoff harmonics on the
field strength is inherent to HHG via discrete levels [59], or in
crystals with linear energy dispersion [22,23,37].

We now consider the origin of the HHG in fullerene
molecules. There are two contributions to the current: the
electron/hole transitions within unoccupied/occupied molec-
ular orbitals and the electron-hole creation (transitions from
occupied molecular orbitals to unoccupied ones) and subse-
quent recombination. The former makes a contribution only
for low harmonics and is analogous to the intraband current in
a semiconductor, while the latter makes the main contribution
in the high-frequency part and corresponds to the interband
current, which represents recombination/creation of electron-
hole pairs. This picture is analogous to HHG in solid state
systems. To separate these contributions in the dipole acceler-
ation spectrum we made a change of the basis via formula

ρi j =
∑
μ′

∑
μ

ψ∗
μ′ ( j)ρμμ′ψμ(i),

where ρμμ′ is the density matrix in the energetic repre-
sentation. Hence, we define the interband part of dipole

acceleration as

dinter (t ) = 2
N−1∑

μ′=N/2

N/2−1∑
μ=0

Re(ρμμ′ (t )dμ′μ), (5)

and the intraband part will be

dintra (t ) =
N−1∑

μ,μ′=N/2

ρμμ′ (t )dμ′μ +
N/2−1∑
μ,μ=0

ρμμ′ (t )dμ′μ, (6)

where the dipole transition matrix elements are
dμ′μ = e

∑
i ψ

∗
μ′ (i)riψμ(i). In Fig. 7(a), we show the

interband/intraband contribution in HHG spectra for C60.
We have a similar picture for C70. As is seen, intraband
dipole acceleration is significant for the low-frequency part
of the spectrum, while in the high-frequency part the main
contribution is caused by the electron-hole creation and
subsequent recombination. This information can also be
extracted from the evolution of the high harmonic spectrum
as a function of time. For this purpose a Blackman window of
width 1.2π/ω is scanned across 20 optical cycles. The results
along with the population of the conduction band (unoccupied
molecular orbitals) W (t ) = ∑N/2−1

μ=0 ρμμ(t ) are displayed in
Figs. 7(b) and 7(c). As seen from these figures, the emission
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FIG. 7. The interband and itraband contribution in HHG spectra (a) and the spectrogram (b),(c) of the HHG process via the windowed
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3
{1, 1, 1}.

The frequency is ω = 0.1 eV/h̄ and the field strength is taken to be E0 = 0.5 V/Å. The spectra are shown for U = 2 eV and h̄γ = 50 meV.
(b) Low-frequency part and (c) high-frequency part. Then, the white curve on the density plots is scaled by the factor 10 population of the
initially unoccupied molecular orbitals versus time.
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FIG. 8. The eigenenergies of fullerene molecules. The left and
the right panels correspond to C60 and C70, respectively.

of high harmonics takes place two times per wave cycle,
corresponding to two maxima or minima of the population.
The low-frequency harmonic bursts take place in-between
maxima and minima of the population Fig. 7(b), while higher
harmonics are the result of the recombination and the bursts
that take place at minima of the population [Fig. 7(c)]. There
are also a domain of harmonics where we have an interplay
between intra- and interband emission.

IV. CONCLUSION

We revealed the general features of the HHG in fullerene
molecules under strong-field driving. The HHG spectra show
multiple plateaus, which is explained by the recombination of
electrons and holes from molecular orbitals. Those are intrin-
sic molecular excitations between the unoccupied molecular
orbitals and the occupied molecular orbital. These intrinsic

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8  10  12  14  16  18  20

(a) C60

d x
(t

)/
D

eb
ye

t/T

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8  10  12  14  16  18  20

(b) C70

d x
(t

)/
D

eb
ye

t/T

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2

0 2 4 6 8  10

(c) C60

a(
�

)/
a 0

Harmonic order

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2

0 2 4 6 8  10

(d) C70

a(
�

)/
a 0

Harmonic order

FIG. 9. The x component of the dipole moment versus time for
C60 (a) and for C70 (b). The wave is assumed to be linearly polarized
along the x axis. The frequency is ω = 0.1 eV/h̄ and the field
strength is taken to be E0 = 0.1 V/Å. The calculations are made
for EEI energy U = 2 eV. Also shown are the corresponding HHG
spectra (c) and (d) in logarithmic scale via the normalized dipole
acceleration a(t ) = d2d/dt2 Fourier transformation a(�)/a0.
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FIG. 10. The envelopes of HHG spectra in the strong-field
regime for Hubbard (V = 0) and extended Hubbard (V �= 0) models
for C60 (a) and C70 (b). The frequency is ω = 0.1 eV/h̄ and the
field strength is taken to be E0 = 0.5 V/Å. The relaxation rate is
taken to be h̄γ = 50 meV. The wave polarization unit vector is
ê = 1/

√
3{1, 1, 1}.

molecular excitations, so-called excitonic lines, define the
borders of the plateaus. Within each plateau, the cutoff har-
monic linearly increases with increasing the field strength.
In contrast to atomic cases, for fullerene molecules with the
increase of the pump wave photon energy the cutoff harmonic
energy is increased. The HHG spectra strongly depends on the
molecule symmetry qualitatively as well as quantitatively. The
C70 molecule shows more pronounced nonlinear properties
due to the degradation of molecular symmetry compared with
C60. We also revealed the role of EEI. With the increase
of the EEI energy, overall the HHG rate is suppressed. The
fullerene molecules are known to have different isomers with
other point-group symmetries. Therefore, they are interesting
systems as a new source of HHG, and spectroscopy based on
HHG might be useful to reveal the symmetries and electron
dynamics involved. Developing a detailed understanding of
the HHG in different classes of fullerene molecules is an
interesting topic for future work.
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APPENDIX A: MEAN-FIELD THEORY

In this Appendix, we clarify some details of used approxi-
mations, initial density matrix, and numerical integration. The
free fullerene Hamiltonian of the main text can be written as

Ĥ0 = −
∑
〈i, j〉σ

ti jc
†
iσ c jσ + U

2

∑
iσ

c†
iσ ciσ c†

iσ ciσ

+ 1

2

∑
〈i, j〉σσ ′

Vi jc
†
iσ ciσ c†

jσ ′c jσ ′ . (A1)

This is the extended Hubbard Hamiltonian with U and V
terms included. Within the Hartree-Fock approximation, the
Hamiltonian (A1) is approximated by

ĤHF
0 = −

∑
〈i, j〉σ

ti jc
†
iσ c jσ + U

∑
i

(ni↑ − n0i↑)ni↓

+U
∑

iσ

(ni↓ − n0i↓)ni↑ +
∑
〈i, j〉

Vi j (n j − n0 j )ni

−
∑
〈i, j〉σ

Vi jc
†
iσ c jσ (〈c†

iσ c jσ 〉 − 〈c†
iσ c jσ 〉0), (A2)

where niσ = 〈c†
iσ ciσ 〉 = ρ

(σ )
ii . It is interesting to note the

presence of an off-diagonal last term that renormalizes the
transferred energy ti j . In this representation the initial den-
sity matrix ρ

(σ )
ji = 〈c†

iσ c jσ 〉0 is calculated with respect to

tight-binding Hamiltonian Ĥt
0 = −∑

〈i, j〉σ ti jc
†
iσ c jσ . That is,

in the static limit the EEI Hamiltonian vanishes, ĤHF
ee 
 0.

It should be mentioned that EEI in the Hartree-Fock limit is
included nonexplicitly in an empirical hopping integral be-
tween nearest-neighbor atoms ti j which is chosen to be close
to experimental values. Thus, EEI in the Hartree-Fock approx-
imation is only relevant for the quantum dynamics initiated by
the pump laser field. From the Heisenberg equation

ih̄∂L̂/∂t = [L̂, ĤHF
0 + Ĥint] (A3)

one can obtain evolutionary equations for the single-particle
density matrix, i.e., Eq. (4) of the main text. Thus, we have
a set of nonlinear equations. The number of equations are
3600 and 4900 for C60 and C70, respectively. For the numer-
ical solution we need initial (equilibrium) ρ

(σ )
0i j distribution.

For this purpose we numerically diagonalize the tight-binding

10-10

10-8

10-6

10-4

10-2

 10  20  30  40  50  60

A
bs

(a
x(
�

)/
a 0

)

Harmonic order

W=1
W=W3

FIG. 13. The HHG spectrum calculated with and without win-
dow functions corresponding to Fig. 3(a) of the main text.

Hamiltonian Ĥt
0. Input coordinates for C60 and C70 were

generated with the program FULLERENE via a face-spiral al-
gorithm [60]. This initial structure was further optimized
by a force field specifically designed for fullerenes [61].
Then, the hopping integral between nearest-neighbor atoms
at positions ri and r j is approximated as ti j = t0 + α(d0 −
|ri − r j |). Taking d0 = 1.54 Å and by fitting the energy gap
for C60 and C70, we have determined the average hopping con-
stant t0 = 2.17 eV and the electron-lattice coupling constant
α = 3.52 eV/Å. With the numerical diagonalization, we find
eigenstates ψμ(i) and eigenenergies εμ (μ = 0, 1, . . . , N −
1). The results of numerical diagonalization are shown in
Fig. 8. As seen from this figure, compared with the C70

molecule, C60 has more degenerated states, which is a result
of high symmetry. For the C60 molecule the highest occupied
molecular orbital (HOMO) is at EHOMO = −1.61 eV, and the
lowest unoccupied molecular orbital (LUMO) is at ELUMO =
0.52 eV. The next orbital where a dipole-allowed transition
from HOMO is possible is at E LUMO+1 = 1.13 eV. That is,
the first dipole-allowed transition gap is 
g = 2.74 eV with
the averaged (over the degenerate states) transition dipole mo-
ment dm 
 4.3 D. For the C70 molecule these parameters are
EHOMO = −1.32 eV, ELUMO = 0.13 eV, ELUMO+1 = 0.37 eV,

g = 1.69 eV, and dm 
 6.2 D. Note that the obtained gaps
are reasonably close to widely accepted values [48,56,57,62].
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FIG. 14. The HHG spectrum calculated for two window func-
tions near the end of the spectrum.
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With the obtained eigenstates ψμ(i) we construct the initial
density matrix and solve the equation of motion for the density
matrix. The time integration of Eq. (4) of the main text is
performed with the standard fourth-order Runge-Kutta algo-
rithm. The time step is taken as 
t = 2.5 × 10−2 fs. At this
time step, the results are converged since reducing the time
step to 
t = 1.25 × 10−2 fs produces a negligible change
in the solution. As an example, in Figs. 9(a) and 9(b) we
plot the dipole moment d(t ) = 〈e ∑

i rini(t )〉 versus time at
a moderately strong laser field for C60 and C70. As usual
the fundamental harmonic is dominant and the time domain
picture is not as informative as the Fourier picture. Hence,
in Fig. 9 we also show the HHG spectra. As expected for
C60 because of the inversion symmetry, only odd harmonics
appear in the HHG spectrum. For the C70 molecule we have
both even and odd harmonics.

In addition, in Fig. 10, we also compared the relative
contributions of the U and V terms of the EEI to the
HHG spectra for the same parameters as in Fig. 4 of the
main text. As can be seen from this figure in this range
of interaction parameters, namely, at h̄ω 	 ti j,U , the re-
sults qualitatively coincide, although there is a quantitative
difference.

APPENDIX B: FILTERED FOURIER TRANSFORMATION

Next, we would like to explain how Fourier transformation
is carried out. The filtered Fourier transformation is necessary
since there are very small oscillations at the beginning and at
the end of the time evolution. They increase the overall back-
ground (noise level) of the harmonic signal, which smears
harmonic signals near the cutoff. The intense HHG takes place
for the peak values of the laser field. Thus, a window function
is required to suppress small fluctuations [63]. The harmonic

signal is computed by Fourier transformation

a(�) =
∫ T

0
a(t )ei�tW (t )dt,

where W (t ) is the window function.
Note that using the window function does not change the

rate of harmonics [63], which is verified in our calculation.
We take Fig. 3(a) of the main text as an example. For Fourier
transformation, we use the FFTW [64] subroutine library. In
Fig. 11 we plot a(t )/a0 corresponding to Fig. 3(a) and window
functions [rescaled to a maximum of a(t )]. We use three
window functions: hyper-Gaussian

W1,2(t ) = exp

{
−

(
t − T /2

τ1,2

)8}
with different parameters τ1,2, and squared sine window

W3 = sin2
( t

τ3

)
.

In Fig. 12 we plot the HHG spectrum for these window
functions along with direct Fourier transform. We see that
if we do not use the window function, the spectrum has
harmonics only up to the 65th order, with a big background.
With the window functions, the original strong background
is removed, and higher harmonics’ peaks show up. Note that
harmonic rates are independent of window functions. For a
more detailed view, in Fig. 13 we plot the direct Fourier
transform spectrum and the spectrum with W3 up to the 60th
harmonic. We see that the window function has a negligible
effect on the HHG spectrum. For a closer look, in Fig. 14 we
plot the spectrum for two window functions near the end of the
spectrum. We see that for both window functions the spectra
are almost the same. One can equally use one of the mentioned
functions. We used W3 for the main text.
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