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Quantum theory of plasmon polaritons in chains of metallic nanoparticles:
From near- to far-field coupling regime
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We develop a quantum theory of plasmon polaritons in chains of metallic nanoparticles, describing both near-
and far-field interparticle distances, by including plasmon–photon umklapp processes. Taking into account the
retardation effects of the long-range dipole–dipole interaction between the nanoparticles, which are induced by
the coupling of the plasmonic degrees of freedom to the photonic continuum, we reveal the polaritonic nature of
the normal modes of the system. We compute the dispersion relation and radiative linewidth, as well as the group
velocities of the eigenmodes, and compare our numerical results to classical electrodynamic calculations within
the point-dipole approximation. Interestingly, the group velocities of the polaritonic excitations present an almost
periodic sign change and are found to be highly tunable by modifying the spacing between the nanoparticles.
We show that, away from the intersection of the plasmonic eigenfrequencies with the free photon dispersion, an
analytical perturbative treatment of the light-matter interaction is in excellent agreement with our fully retarded
numerical calculations. We further study quantitatively the hybridization of light and matter excitations through
an analysis of Hopfield’s coefficients. Finally, we consider the limit of infinitely spaced nanoparticles and discuss
some recent results on single nanoparticles that can be found in the literature.
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I. INTRODUCTION

Following the rise of miniaturization of physical sys-
tems, the issue of energy and information transport through
light within structures with nanoscale dimensions has be-
come increasingly important. Notably, a way to go beyond
the diffraction limit encountered in usual dielectric waveg-
uides, such as optical fibers, is highly sought after, since it
is expected to have applications in various ranges of modern
physics, from integrated optical circuits or microscopy to bio-
photonics or data storage [1,2].

An interesting proposal made more than 20 years ago is
to use electrodynamic interparticle interactions in a linear
chain of equidistant metallic nanoparticles to be utilized as an
effective optical waveguide [3]. It is indeed well-known that
metallic nanoparticles present a strong absorption peak at the
Mie frequency, due to the presence of a collective excitation,
the localized surface plasmon (LSP), which corresponds to
a dipolar collective oscillation of the conduction electrons
of the nanoparticle [4]. Systems based upon such collective
excitations have been shown to achieve the confinement and
control of light at the nanoscale [5,6].

On the one hand, linear chains of nanoparticles have been
extensively studied in the past through numerous experimental
[7–13] and theoretical [14–31] works, especially in the near-
field regime where propagation is most promising, that is,
when the interparticle distance d is such that d � λ0, λ0 being
the wavelength associated with the dipolar LSP excitation. On
the other hand, the far-field regime, with d � λ0, has been
much less studied [32], even if it also has interesting prop-
erties. Notably, a topological phase transition was recently

theoretically unveiled in the far-field regime of a dimerized
plasmonic chain [33], which represents a direct topological
analog [34] of the regularly spaced chain studied here.

Both the near- and far-field regimes still remain challeng-
ing to realize experimentally since it requires cutting-edge
technologies. Recently, however, impressive progress has
been made in producing highly regular samples of near-field
coupled gold nanoparticles with long-range order [35,36].

After early theoretical studies focused on the quasistatic
limit [3,14,15], the authors of Refs. [16,17] noticed that re-
tardation effects of the dipolar interaction along the chain
are crucial and imply strong modifications of the en-
ergy spectrum. These works, followed by numerous others
[19–24,27,30,31], are based on the numerical resolution of the
coupled-dipole equations in the point dipole approximation,
which arise in the framework of Mie scattering theory. These
are therefore fundamentally classical studies, which originate
from Maxwell’s equations.

In recent years, however, quantum nanoplasmonics has
attracted a lot of attention in the community [37]. The
description of nanoscale optical properties of plasmonic meta-
materials can exceed the limits of a classical description and
requires a more general, quantum-mechanical treatment. For
this purpose, approaches using quantum electrodynamics have
been developed to tackle the properties of LSPs [38] and
linear chains of metallic nanoparticles [26,28]. A quantum
approach turns out to be essential when the size of the particles
are sufficiently small to present quantum-size effects, such as
Landau damping [39] or electron spill-out [40,41], namely, for
radii smaller than approximately 10–20 nm.
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Here, we build upon a Hamiltonian quantum theory of a
chain of metallic nanoparticles [28,29] which has the benefits
to be an analytically tractable approach and to be able to
readily incorporate quantum effects, such as those previously
mentioned. It also permits the use of tools borrowed from
quantum optics as well as nonrelativistic quantum electrody-
namics, which are familiar to a growing part of the condensed
matter community.

Several plasmonic systems have been studied with this
quantum theory both in [42–44] and out [29,45–47] of a finite
photonic cavity. While for systems inside a cavity the plas-
monic degrees of freedom couple mostly to a finite number
of photonic modes, in vacuum the interaction with the whole
continuum must be considered. This makes the complete di-
agonalization of the Hamiltonian more difficult, especially for
low-dimensional systems for which crystal momentum is not
conserved for directions transverse to the plasmonic lattice,
where translational symmetry is absent. For this reason, until
now, a perturbative treatment of the light-matter interaction
has been used for these low-dimensional systems, which does
not take into account the polaritonic nature of the excitations
but presents the advantage of remaining analytically tractable
[29]. However, the approach of Ref. [29] remains limited since
it only considers the near-field regime. To extend the model of
Ref. [29] to nanoparticles with interparticle distances in the
far field, the effects of plasmon–photon umklapp processes
must be included. To fully take into account the light-matter
coupling, we rely on a diagonalization method elaborated by
Hopfield [48] in the context of exciton-polaritons. Such a
method has already been employed for describing the plas-
monic properties of three-dimensional lattices [47], and has
been recently successfully compared with experimental re-
sults [36].

The system which we study in the following consists of
a one-dimensional chain of equidistant resonant dipolar meta-
atoms interacting through a long-range retarded dipole–dipole
interaction. A typical platform corresponding to our theory
is spherical metallic nanoparticles hosting LSPs in the point-
dipole approximation, but any other system where dipolar
interactions are dominant could also be used, such as, e.g.,
plasmonic nanorods or microwave helical resonators [42]. In
this paper, we focus on the consequences of the light-matter
coupling on such a chain and hence on retardation effects of
the Coulomb interaction.

Here, we provide a full quantum description of the
plasmon–polariton excitations propagating along the chain.
Within our approach, we work in the Coulomb gauge such that
the scalar and vector potentials describe, respectively, the lon-
gitudinal and transverse components of the electromagnetic
field. Within this choice of gauge, the scalar potential accounts
for purely instantaneous, long-range Coulomb interactions be-
tween the LSPs, leading to a collective plasmonic excitation
extended over the whole array. The retardation effects arise
from the light-matter coupling of the plasmonic modes with
the transverse vector potential, which contains the photonic
degrees of freedom, present in the vacuum electromagnetic
field surrounding the chain. This leads to a hybridization of
plasmons and transverse photons into plasmon–polaritons.
Notably, the light-matter coupling results in a complex band
structure which takes into account radiative losses.

FIG. 1. Sketch of a linear chain of identical spherical metallic
nanoparticles of radius a, separated by a center-to-center distance d ,
arranged along the z direction.

The paper is organized as follows: Section II presents the
microscopic quantum model of the plasmonic chain coupled
to vacuum electromagnetic modes. In Sec. III, we describe
how retardation effects are taken into account, either exactly
with the numerical solution of a transcendental dispersion
relation or perturbatively, using second-order perturbation
theory to find approximate analytical expressions. This al-
lows us to provide both the band structure and the radiative
decay rates, as well as the group velocities associated with
the normal modes in Sec. IV. In the latter section, we also
take advantage of our quantum formalism to examine the
hybridization of light and matter degrees of freedom, and we
study the limit of infinitely spaced nanoparticles. Finally, we
summarize our findings and draw conclusions in Sec. V. Four
Appendixes complement the discussion presented in the main
text.

II. MODEL

In this section, we present a microscopic Hamiltonian
model of a chain of interacting spherical metallic nanopar-
ticles which host LSPs in the point-dipole approximation.
This approach relies on the quantum theory developed in
Refs. [28,29] but with two substantial improvements: First, we
consider here plasmon–photon umklapp scattering processes,
which will allow us to study both the near- and far-field
regimes of interaction. Second, we treat the retardation ef-
fects exactly and therefore reveal the polaritonic behavior
of the collective excitations along the array. In Appendix A,
we present a brief overview of the analogous, widely used
macroscopic classical model based on the solution of the fully
retarded Maxwell equations to compare it to our quantum
approach.

The chain, orientated along the z direction, is embedded
in vacuum and comprises N � 1 nanoparticles1 with radius
a, separated by a center-to-center distance d (see Fig. 1). We
consider the particular regime of nanoparticles with radius a
much smaller than the inverse wave vector k−1

0 associated with
the single LSP mode (k0a � 1), such that each LSP can be
considered as an oscillating point-dipole. We also consider
center-to-center distances d � 3a. For such separations, one
can neglect multipolar interactions [15] and tunneling effects
between nanoparticles [49]. Hence, each LSP corresponds to a
harmonic dipole oscillation of the electronic center of mass at

1Such a limit has been shown to be a good approximation for chains
with N � 20 [16,28].
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an individual resonance frequency ω0 = k0c, with c the speed
of light in vacuum. For the case of alkaline nanoparticles
in vacuum, ω0 = ωp/

√
3, where ωp =

√
4πnee2/me is the

plasma frequency, −e(< 0) is the electron charge, me its mass,
and ne the electronic density.2

The LSPs in the chain couple through a long-range dipolar
interaction, leading to collective plasmons extended over the
whole array. The resulting band structure is then significantly
modified by retardation effects. Indeed, due to the large size
(N − 1)d + 2a � Nd of the chain, one must deal with a
retarded dipole–dipole Coulomb interaction. In our quantum
theory, the latter is encapsulated in the light-matter coupling
of the plasmonic modes to a three-dimensional photonic envi-
ronment [50].

Within our quantum formalism, quantum effects such
as Landau damping [51–53] and the associated shift it in-
duces in the plasmonic resonance frequency [40] can be
readily incorporated in the theory by considering the inter-
action of the plasmon with electronic degrees of freedom
(specifically, particle-hole excitations inside each nanoparti-
cle). Landau damping has already been computed for a chain
with nearest-neighbor interactions in Ref. [28], while the as-
sociated electronic-induced redshift can be found in Ref. [54].
Throughout this paper, however, we neglect the effects of an
internal electronic environment and hence of Landau damp-
ing, since we are primarily focused on radiative effects, which
are dominant as long as the nanoparticles are not too small
(i.e., their radius should be larger than 10–20 nm [39]).

Using the Coulomb gauge [50,55], the fully retarded
Hamiltonian of the chain coupled to vacuum electromagnetic
modes in a volume V = NdL2 of linear size L −→ ∞ reads
[29]

Hσ = Hσ
pl + Hph + Hσ

pl−ph, (1)

where σ is a fixed parameter accounting for either one of the
transverse (σ = x, y) or the longitudinal (σ = z) polarization
of the plasmonic modes, according to the chosen experimental
configuration. We emphasize here the fact that the volume V
of the photonic cavity is infinite, the photonic environment
representing a continuum of states, in contrast with situations
with a finite cavity which could induce strong coupling [44].
We also note that, recently, techniques have been developed
to quantize the electromagnetic field not through the Fourier
components of the vector potential as we shall be doing here,
but directly in position space [56,57].

The purely plasmonic Hamiltonian describing the LSPs
coupled through the long-ranged quasistatic dipole–dipole in-
teraction is

Hσ
pl = h̄ω0

N∑
n=1

bσ
n

†bσ
n + h̄�

2

×
N∑

n,m=1
(n �=m)

ησ

|n − m|3
(
bσ

n + bσ
n

†)(bσ
m + bσ

m
†)

. (2)

2Throughout this paper, we use cgs units

Here, the bosonic operator bσ
n (bσ

n
†) annihilates (creates) an

LSP with polarization σ on nanoparticle n ∈ [1,N ]. The
long-range dipolar coupling strength between LSPs scales as
the inverse interparticle distance cubed and is given by

� = ω0

2

( a

d

)3
, (3)

and the polarization-dependent factor ηx,y = 1 (ηz = −2) for
the transverse (longitudinal) mode accounts for the anisotropy
of the quasistatic dipole–dipole interaction.

The photonic environment in Eq. (1) is described by the
Hamiltonian

Hph =
∑

l

∑
k,λ̂l

k

h̄ν l
kc

l,λ̂l
k

k

†
c

l,λ̂l
k

k , (4)

where the upper index l on k-dependent variables is a short
form signifying that the quantity depends on k − Gl , with
Gl = 2π l ẑ/d (l ∈ Z) representing the set of reciprocal lattice

vectors. Hence the ladder operator c
l,λ̂l

k
k (cl,λ̂l

k
k

†
) annihilates

(creates) a photon with wave vector k − Gl in the first Bril-
louin zone, transverse polarization λ̂l

k = λ̂k−Gl , i.e., (k −
Gl ) · λ̂k−Gl = 0, and angular frequency

ν l
k = c|k − Gl |, (5)

where hats designate unit vectors. The two photon polariza-
tions are parameterized as λ̂

l,(1)
k = [ẑ × (k − Gl )]/|ẑ × (k −

Gl )| and λ̂
l,(2)
k = [(k − Gl ) × λ̂

l,(1)
k ]/|(k − Gl ) × λ̂

l,(1)
k | for

the case k − Gl �= ẑ, while we choose λ̂
l,(1)
k = x̂ and λ̂

l,(2)
k = ŷ

for the case k − Gl = ẑ. We note that in previous works
[28,29], only the photonic band l = 0 was considered. This
amounts to neglect umklapp processes and limits the theory
to k0d � 1, i.e., to short center-to-center distances d . Taking
into account umklapp processes is therefore essential to de-
scribe interacting nanoparticles in the far-field region.

The plasmon–photon coupling Hamiltonian in Eq. (1)
reads in the long-wavelength point-dipole approximation
(|k|a � 1) [50]

Hσ
pl-ph = e

mec

N∑
n=1

�σ
n · A(dn), (6)

where dn = d (n − 1)ẑ corresponds to the location of the cen-
ter of nanoparticle n. The momentum associated with the LSP
in nanoparticle n reads

�σ
n = i

√
Neme h̄ω0

2

(
bσ

n
† − bσ

n

)
σ̂ , (7)

where Ne is the number of electrons in a given nanoparticle,
while the quantized vector potential is given by

A(dn) =
∑

l

∑
k,λ̂l

k

λ̂l
k

√
2π h̄c2

Vν l
k

× (
c

l,λ̂l
k

k ei(k−Gl )·dn + H.c.
)
	
(
ωc − ν l

k

)
. (8)

In the equation above, we have introduced a Heaviside step
function 	(x) to take into account the finite size of the
nanoparticles and to switch off the light-matter interaction for
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photonic modes with a frequency ν l
k larger than the cutoff fre-

quency ωc = c/a, for which the point-dipole approximation
breaks down.3

A significant simplification we are making in writing the
coupling Hamiltonian of Eq. (6) is to disregard the quadratic
A2 term, known as the diamagnetic term, which accounts for
a photon self-interaction energy and does not contribute to
retardation effects. In the light-matter coupling regime con-
sidered in this paper, the diamagnetic term can be safely
neglected, as it would only lead to very slight changes to the
results presented here. Details about the A2 term are given in
Appendix B, as well as justifications of the above-mentioned
simplification.

III. EXACT AND PERTURBATIVE TREATMENTS OF THE
LIGHT–MATTER COUPLING

A. Full diagonalization of the polaritonic Hamiltonian

The light-matter coupling Hamiltonian of Eq. (6) includes
the retardation effects of the dipole–dipole interaction along
the chain, which modify the nature of the normal modes
which become plasmon–polaritons. Taking such a coupling
into account is therefore essential and will be the subject of
this section.

Considering the infinite chain limit with N � 1, it is
convenient to choose, without loss of generality, periodic
boundary conditions. We then move into wave-vector space
using the Fourier transform bσ

n = N−1/2 ∑
q einqd bσ

q , where
the plasmonic wave number is q = 2π p/Nd , with the integer
p ∈ [−N /2,+N /2]. It is important to note that the periodic-
ity of the chain in the z direction implies that the longitudinal
component of the photonic wave vector k is conserved with
the plasmonic one. We thus choose to write kz = q and, for
commodity, we denote the k-dependency as k = (κ, q) where
κ = (kx, ky).

The Hamiltonian Eq. (1) can hence be rewritten in Fourier
space as Hσ = ∑

q Hσ
q , where the q-dependent polaritonic

Hamiltonian is

Hσ
q = Hσ

pl,q + Hph,q + Hσ
pl−ph,q. (9)

The plasmonic part can be written as

Hσ
pl,q = h̄ω0bσ†

q bσ
q + h̄�

2

[
f σ
q bσ†

q (bσ
q + bσ†

−q ) + H.c.
]
, (10)

the photonic one as

Hph,q =
∑

l

∑
κ,λ̂l

κq

h̄ν l
κqc

l,λ̂l
κq†

κq c
l,λ̂l

κq
κq , (11)

3In our situation, the point-dipole approximation amounts to con-
sidering that exponentials of the type eik·r equal unity, where r is the
position of the electrons in the nanoparticle. Since at most r � a, we
require that k � 1/a. Therefore, we consider that the point-dipole
approximation is accurate up to the wave number kc = 
/a, where

 � 1 is a cutoff parameter which must be close to unity. In what
follows, we set 
 = 1.

and the coupling as

Hσ
pl−ph,q = ih̄ω0

∑
l

∑
κ,λ̂l

κq

ξ l
κq(σ̂ · λ̂l

κq)
[
e−iqd c

l,λ̂l
κq

κq (bσ†
q − bσ

−q )

− H.c.
]
. (12)

The lattice sum f σ
q in Eq. (10) can be expressed in closed form

in terms of the polylogarithm function Lis(z) = ∑∞
n=1 zn/ns as

f σ
q = ησ [Li3(eiqd ) + Li3(e−iqd )], (13)

and the light-matter coupling strength in Eq. (12) is encapsu-
lated in

ξ l
κq =

√
ω0πa3

ν l
κqdL2

	
(
ωc − ν l

κq

)
. (14)

We start by diagonalizing exactly the Hamiltonian Eq. (9).
Toward this goal, we define the bosonic plasmon–polariton
annihilation operator μσ

q as a linear combination of plasmon
and photon ladder operators:

μσ
q = W σ

q bσ
q + X σ

q bσ†
−q

+
∑

l

∑
κ,λ̂l

κq

(
Y

l,σ,λ̂l
κq

κq c
l,λ̂l

κq
κq + Z

l,σ,λ̂l
κq

κq c
l,λ̂l

κ,−q†
κ,−q

)
, (15)

where the Hopfield coefficients W σ
q , X σ

q , Y
l,σ,λ̂l

κq
κq , and Z

l,σ λ̂l
κq

κq

are a priori complex. Due to the bosonic nature of plasmon–
polaritons, the coefficients are normalized following the
condition∣∣W σ

q

∣∣2 − ∣∣X σ
q

∣∣2 +
∑

l

∑
κ,λ̂l

κq

(∣∣Y l,σ,λ̂l
κq

κq

∣∣2 − ∣∣Zl,σ,λ̂l
κq

κq

∣∣2) = 1.

(16)

We note that in the one-dimensional geometry which we
consider here, the polariton polarization is aligned with the
plasmonic one, σ . In higher-dimensional metamaterials, this
is generally not the case [39,47].

We now use the ansatz

μσ
q (t ) = μσ

q e−i�σ
q t , (17)

where, in the following, �σ
q are referred to as the polaritonic

eigenfrequencies of the system, to solve the Heisenberg equa-
tion of motion:

μ̇σ
q (t ) = i

h̄

[
Hσ , μσ

q (t )
]
, (18)

that we can rewrite as h̄�σ
q μσ

q = [μσ
q , Hσ ]. We then

compute the above commutator using Eq. (15) and the
bosonic commutation relations for the plasmonic and pho-
tonic ladder operators, respectively, [bσ

q , bσ ′†
q′ ] = δq,q′δσ,σ ′ and

[c
l,λ̂l,(i)

κq
κq , c

l ′,λ̂l′ ,( j)
κ′q′ †

κ′q′ ] = δq,q′δκκ′δl,l ′δi, j . Since the ladder operators
are independent from each other, we use them to factorize
the equation and separate it in a system of four coupled
equations with five unknown variables: the four Hopfield co-
efficients and the desired eigenfrequency �σ

q for a given wave
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number q,

W σ
q = − 1

�σ
q − ω0 − � f σ

q

⎧⎨
⎩� f σ

q X σ
q + iω0eiqd

∑
l

∑
κ,λ̂l

κq

[
ξ l
κq(σ̂ · λ̂l

κq)Y
l,σ,λ̂l

κq
κq − ξ l

κ,−q(σ̂ · λ̂l
κ,−q )Z

l,σ,λ̂l
κq

κq

]⎫⎬⎭, (19a)

X σ
q = 1

�σ
q + ω0 + � f σ

q

⎧⎨
⎩� f σ

q W σ
q + iω0eiqd

∑
l

∑
κ,λ̂l

κq

[
ξ l
κq(σ̂ · λ̂l

κq)Y
l,σ,λ̂l

κq
κq − ξ l

κ,−q(σ̂ · λ̂l
κ,−q )Z

l,σ,λ̂l
κq

κq

]⎫⎬⎭, (19b)

Y
l,σ,λ̂l

κq
κq = iω0

e−iqdξ l
κq(σ̂ · λ̂l

κq)

�σ
q − ν l

κq

(
W σ

q + X σ
q

)
, (19c)

Z
l,σ,λ̂l

κq
κq = iω0

e−iqdξ l
κ,−q(σ̂ · λ̂l

κ,−q )

�σ
q + ν l

κ,−q

(
W σ

q + X σ
q

)
. (19d)

Solving the system of Eqs. (19) for �σ
q leads to the following

transcendental equation:

�σ
q

2 − ωσ
q

2

4ω0ωσ
q

2 =
∑

l

∑
κ,λ̂l

κq

ν l
κq(σ̂ · λ̂l

κq)2(ξ l
κq)2

�σ
q

2 − ν l
κq

2 , (20)

where the summation over κ excludes singular terms. Note
that �σ

q is a priori complex, its imaginary part taking into ac-
count the radiative decay of the collective excitation inside the
three-dimensional photonic continuum, leading to a radiative
contribution to the linewidth [cf. Eq. (17)].

Setting the light-matter coupling of Eq. (14) to zero in
Eq. (20) naturally leads to �σ

q = ωσ
q , where

ωσ
q = ω0

√
1 + 2

�

ω0
f σ
q (21)

is the quasistatic spectrum of the collective plasmonic modes.
Such a quasistatic dispersion can also be obtained [29]
through a direct diagonalization of the Hamiltonian Eq. (2)
by means of a bosonic Bogoliubov transformation (see
Sec. III B).

In Eq. (20), we can carry out the summation over photon
polarizations using the relation

∑
λ̂l

κq

(
σ̂ · λ̂l

κq

)2 = 1 −
(

σ̂ · k − Gl

|k − Gl |
)2

. (22)

To then compute the summation over κ, we recall that we
consider a quantization volume V −→ ∞ such that we can take
the continuum limit

(2π )2

L2

∑
κ

−→ P
∫ ∞

0
κdκ

∫ 2π

0
dθ, (23)

where we used polar coordinates and P represents a principal
value. The angular integral is trivial, however, in the radial
one, the integrand suffers from an ultraviolet logarithmic di-
vergence. The latter is naturally regularized with the help of
the UV frequency cutoff ωc appearing in the light-matter cou-
pling Eq. (14) and which takes into account the finite size of
the nanoparticles. The cutoff also selects how many photonic
bands l interact with the plasmonic chain, leaving us with a
finite summation over the index l , from −lmax to +lmax. In the

first Brillouin zone, one can show that using a cutoff ωc = c/a
leads to

lmax =
⌊

d

2πa
+ 1

2

⌋
, (24)

where �x� denotes the floor function. After a long but straight-
forward calculation, Eq. (20) translates into

�σ
q

2 − ωσ
q

2 = ησω2
0ω

σ
q

2 a3

dc2

lmax∑
l=−lmax

(
cql

�σ
q

)2
{

ln

(
ωc

c|ql |
)

+ 1

2

[
1 + sgn{ησ }

(
�σ

q

cql

)2
]

× logφ

(
(cql )2 − �σ

q
2

ω2
c − �σ

q
2

)}
	
(
ωc − c|ql |),

(25)

where we used the short form ql = q − 2π l/d . The use of a
simple root-finding algorithm on Eq. (25) finally leads to the
complex eigenfrequencies �σ

q .
Importantly, the logarithms logφ (z) present in the third line

of the above equation are complex logarithms, and hence
a choice φ of branch cut must be made. We recall that
one can define any complex logarithm as logφ (z) = ln(|z|) +
iarg(ze−iφ ) + iφ, with φ = φ(|z|) being any real function of
the modulus of z, ln(x) the natural logarithm and arg(z) the
principal value of the argument. In our case, the use of the
usual principal value logarithm, corresponding to the choice
φ = 0, hides one of the roots behind the branch cut. To ensure
that our algorithm can readily find the complex roots, and that
they have a physical meaning, i.e., a positive (negative) real
(imaginary) part [cf. Eq. (17)], we have to modify the branch
cut and we choose φ = −π/2, leading to a logarithm which
is continuous on the open set C \ {iR+}. Within such a choice,
the root is no longer hidden and the algorithm can readily
converge.

B. Second-order perturbation theory

The approach developed in the previous subsection allows
us to take into account the retardation effects in an exact
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manner, diagonalizing the open quantum system Hamiltonian
Eq. (1) to find the complex eigenfrequencies of the system.
However, it requires the numerical solution of the transcen-
dental dispersion Eq. (25), in a similar way to the resolution
using the classical approach (see Appendix A). An advantage
of our quantum approach is that we can use a perturbative
treatment of the light-matter interaction, considering the inter-
action of the photonic continuum as a weak perturbation to the
plasmonic system, to find adequate analytical approximations
for the eigenfrequencies and the radiative decay rates of the
system.

In this subsection, we rely on the work presented in
Ref. [29], with the substantial improvement of taking into
account umklapp processes, which enables us to study both
near- and far-field regimes.

1. Radiative frequency shift

We treat the coupling Hamiltonian Eq. (6) up to second
order in perturbation theory. For this purpose, we begin by
diagonalizing the plasmonic Hamiltonian Eq. (2) by means
of a Bogoliubov transformation. As detailed in Ref. [29],
one can rewrite the latter as Hσ

pl = ∑
q h̄ωσ

q Bσ
q

†Bσ
q , where the

quasistatic dispersion ωσ
q is given in Eq. (21), and the bosonic

Bogoliubov ladder operator Bσ
q (Bσ

q
†) acts on an eigenstate

|nσ
q 〉 of the Hamiltonian Eq. (10) representing nσ

q quanta occu-
pying the collective plasmon mode with polarization σ , wave
vector q, and eigenfrequency ωσ

q , as Bσ
q |nσ

q 〉 = √
nσ

q |nσ
q − 1〉

(Bσ
q

† |nσ
q 〉 = √

nσ
q + 1 |nσ

q + 1〉). Explicitly, one has

Bσ
q = ωσ

q + ω0

2
√

ω0ωσ
q

bσ
q + ωσ

q − ω0

2
√

ω0ωσ
q

bσ
−q

†
. (26)

For a given polarization σ and mode q, the perturbed
plasmonic energy levels are Enσ

q
= E (0)

nσ
q

+ E (1)
nσ

q
+ E (2)

nσ
q

. The
renormalized plasmonic eigenfrequency within perturbation
theory (pt) �

σ,pt
q is defined as the difference between succes-

sive plasmonic energy levels, �
σ,pt
q = (Enσ

q +1 − Enσ
q
)/h̄, and

we write it as

�σ,pt
q = ωσ

q + δσ
q . (27)

Since the unperturbed energy is E (0)
nσ

q
= nσ

q h̄ωσ
q and the first-

order contribution E (1)
nσ

q
= 0, the radiative frequency correction

reads δσ
q = (E (2)

nσ
q +1 − E (2)

nσ
q

)/h̄ and can be written as

δσ
q = 2ω2

0ω
σ
q

πa3

dL2

∑
l

∑
κ,λ̂l

κq

(
σ̂ · λ̂l

κq

)2
	
(
ωc − ν l

κq

)
ωσ

q
2 − ν l

κq
2 , (28)

where the summation over κ excludes singular terms. We note
that the only correction to the plasmonic energy levels which
contributes is the second-order one, which corresponds to the
emission and reabsorption of virtual photons by the plasmonic
eigenstate |nσ

q 〉.
Similarly, as in the previous subsection, one can carry out

the summation over photon polarization using the relation
Eq. (22) and taking the continuum limit Eq. (23) to write the

summation over κ as a principal value integral using polar
coordinates. We then obtain

δσ
q = ησ

ω2
0ω

σ
q

2

a3

dc2

∑
l

	(ωc − c|ql |)
(

cql

ωσ
q

)2
{

ln

(
ωc

c|ql |
)

+ 1

2

[
1 + sgn{ησ }

(
ωσ

q

cql

)2
]

ln

(∣∣∣∣∣ (cql )2 − ωσ
q

2

ω2
c − ωσ

q
2

∣∣∣∣∣
)}

.

(29)

Note that the above radiative frequency shift, aside from a fac-
tor of 2ωσ

q , has the same expression as the right-hand side of
Eq. (25), except that the complex polaritonic eigenfrequency
�σ

q has been replaced by the quasistatic plasmonic frequency
ωσ

q , and hence the complex logarithms have became natural
logarithms. We further note that due to the plasmon–photon
umklapp processes, and unlike what has been done in previous
works [28,29], the 2π/d-periodicity of the eigenfrequencies
�

σ,pt
q is conserved.

2. Radiative decay rate

Treating the light-matter coupling Hamiltonian Eq. (6) as a
weak perturbation, one can use Fermi’s golden rule to obtain
the radiative decay rates γ

σ,pt
q of the collective plasmonic

excitation into the surrounding photonic environment. Using
the expression in Eq. (12) of the coupling Hamiltonian, we
find that these decay rates, which also represent the radiative
contribution to the inverse lifetime of a given mode q, read

γ σ,pt
q = 2π2ω2

0ω
σ
q

a3

dL2

∑
l

∑
κ,λ̂l

κq

(σ̂ · λ̂l
κq)2

ν l
κq

δ
(
ωσ

q − ν l
κq

)

× 	
(
ωc − ν l

κq

)
. (30)

After taking the continuum limit Eq. (23) and completing the
integration, the above equation can be written as

γ σ,pt
q = πησ

2

ω2
0

ωσ
q

a3

d

∑
l

(ql )2

[
1 + sgn{ησ }

(
ωσ

q

cql

)2
]

× 	
(
ωσ

q − c|ql |). (31)

IV. RESULTS

We now present the results obtained through our numerical
quantum approach presented in Sec. III A, which we compare
to the analytical perturbative results presented in Sec. III B and
to the classical model widely used in the literature and out-
lined in Appendix A. Specifically, the classical model which
we employ uses the nanoparticle polarizability of Eq. (A3)
that is obtained from the first (electric dipole) Mie coefficient
[58–60], see Eq. (A2).

We begin this section by displaying our results for the
polaritonic band structures and the radiative decay rates
(Sec. IV A) and then discuss the corresponding group ve-
locities (Sec. IV B). We then quantitatively demonstrate the
hybridization of the light and matter degrees of freedom
through a detailed discussion of the Hopfield coefficients
(Sec. IV C), and, finally, we discuss the limit of infinitely
spaced nanoparticles, i.e., of single nanoparticles (Sec. IV D).
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FIG. 2. (a), (b) Band structure and (c), (d) radiative decay rates in units of the bare frequency ω0 and as a function of the reduced wave
number qd in half of the Brillouin zone. The left (right) panels represent longitudinal (transverse) polarizations. The red curves correspond
to the results obtained within our fully retarded quantum formalism while the green ones are the results obtained within the classical model
presented in Appendix A. The blue dashed lines represent the second-order perturbation theory and Fermi’s golden rule analytical results. In
the upper panels, we also display the quasistatic band structure Eq. (21) by solid black lines and the first (l = 0) light line, c|q|, as a dotted
black line. The center-to-center distance is d = 3a and k0a = 0.3.

A. Polaritonic band structure and radiative decay rate

In this subsection, we present the results obtained from
the numerical resolution of Eq. (25) for the band structure
Re{�σ

q } and the radiative decay rate γ σ
q = −2Im{�σ

q } for the
longitudinal (σ = z) and transverse (σ = x, y) polarizations.
The factor −2 in the above expression of the decay rate is
such that γ σ

q corresponds to the radiative contribution to the
inverse lifetime of a given mode of the system [see Eq. (17)].4

In Figs. 2–4, we compare these results with the perturbative
ones, given by Eqs. (27) and (31), and to the results from the
classical model obtained through the numerical resolution of
Eq. (A5).

We choose a value of k0a = 0.3 which corresponds to,
e.g., nanoparticles with a Mie frequency ω0 = 3 eV/h̄ and
a radius a = 20 nm. We display the eigenfrequencies and
decay rates in units of the bare frequency ω0 and as a func-
tion of the reduced longitudinal wave number qd . In this
way, we consider ω0 and hence the plasma frequency ωp as

4Explicitly, with the decomposition of �σ
q into real and imaginary

parts mentioned above, the polaritonic annihilation operator Eq. (17)
takes the form μσ

q (t ) = μσ
q e−iRe{�σ

q }t e−γ σ
q t/2, such that the decay rate

of the collective excitation corresponds to γ σ
q

(essentially material-dependent) parameters of our theory.
Only the positive half of the first Brillouin zone is shown,
since all of the plotted quantities are symmetric around q = 0
and 2π/d-periodic.

1. Near-field coupled nanoparticles

We first discuss in Fig. 2 the case of a center-to-center
distance d = 3a. For such a separation, the LSPs supported
by the nanoparticles are near-field coupled.

Compared to the quasistatic dispersion from Eq. (21)
[black solid lines in Figs. 2(a) and 2(b)], the fully retarded one
(red solid lines) experiences a redshift, especially in the area
inside the first light cone, i.e., for frequencies larger than the
first (l = 0) light line c|q| (depicted by a black dotted line).
In this area of the Brillouin zone, the light-matter interaction
is significant and the plasmons are radiating. Thus, a finite
radiative linewidth appears [see Figs. 2(c) and 2(d)], which
vanishes at the wave number where the dispersion relation
intersects the light line. We note that at this precise point,
the dispersion curve for the longitudinal polarization [see
Fig. 2(a)] presents a discontinuity, i.e., no roots are found.
Taking into account Ohmic losses, however, leads to a definite
root at the intersection [30,61], where the slope of the curve
changes drastically to be equal to the slope of the light line,
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FIG. 3. Same quantities as shown in Fig. 2, except for the black dotted line in (a) and (b), which is now the light line corresponding to the
photonic band index l = 1, i.e., c|q − 2π/d|. In the figure, k0a = 0.3 and d = 13a.

namely, c. For larger values of qd , the plasmonic excitation
is interacting with photonic modes of higher energy and the
normal modes correspond to guided ones, which are immune
to radiation damping.

From the results displayed in Figs. 2(a) and 2(c), we see
that for the longitudinal polarization there are almost no dif-
ferences between our fully retarded eigenfrequencies obtained
from Eq. (25) and the analytical second-order perturbation
result Eq. (27) (dashed blue lines). Likewise, we only have
a slight increase of the decay rate γ z

q in comparison with
the Fermi golden rule result [Fig. 2(c)]. The longitudinally
polarized plasmonic chain is thus very well described by our
analytical theory. This is due to the fact that in the Coulomb
gauge, only transverse photons are present and hence they
interact weakly with the longitudinally polarized plasmons.

For the transverse polarizations [Figs. 2(b) and 2(d)], the
full treatment of the light-matter interaction implies the ap-
pearance of two distinct bands in the dispersion, anticrossing
at the light line. This is a typical avoided crossing dispersion,
which is a signature of the presence of polaritonic excitations
[48]. Here and in the following, we denote as the upper band
the one which is above the light line anticrossing the disper-
sion (here c|q|), and the lower band the one below. We see in
Figs. 2(b) and 2(d) that for d = 3a, the upper band represents
modes with radiating polaritons inside the light cone [i.e.,
with a finite decay rate, cf. the upper red line in Fig. 2(d)]
and stops at the anticrossing, while the lower band is free
of radiation damping in the entire Brillouin zone [red line

corresponding to γ
x,y
q = 0 in Fig. 2(d)] and is therefore a real

solution of Eq. (25). This polaritonic behavior is not described
by the result of perturbation theory, which is nevertheless very
close to the fully retarded result aside from the region around
the anticrossing with the light line, which appears at a wave
number q � k0.

By comparing the above quantum results to the classical
ones (green solid lines in Fig. 2), one notices that the redshift
in the dispersion [Figs. 2(a) and 2(b)] is stronger (1–3%) in
the case of the classical computation. A significant difference
between the two models is present for the radiative decay
rate only, where the classical model predicts a rate up to
25 % lower than the quantum model. However, if the relative
difference is noticeable, the absolute one is very small with a
maximum deviation of 0.03 ω0.

As experienced by other authors [20,22], we do not find
data points of the retarded band structure for the upper band
after the anticrossing with the light line, in contrast with the
usual picture of the avoided crossing where it extends upward.
It has been argued that the large losses in this region prevent
one from finding well-defined roots [20]. We also notice that
in the transverse case the real roots, corresponding to the
lower band, are difficult to find for values of qd � 1. The
problem is even more stringent using the classical model,
where no solutions can be found [20,30].

Finally, we remark that for values of qd � 3, the fully
retarded and quasistatic dispersion relations become indistin-
guishable. This is due to the ultraviolet cutoff ωc we chose,
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FIG. 4. Same quantities as shown in Figs. 2 and 3, except for the black dotted line in panels (a) and (b), which is now the light line
corresponding to the photonic band index l = −1, i.e., c|q + 2π/d|. In the figure, k0a = 0.3 and d = 23a.

which limits our theory to wave numbers |q − 2π l/d| � kc =
1/a and is consistent with the fact that at the edge of the
Brillouin zone, the plasmonic excitations are interacting with
photonic modes with energy three times larger, which implies
weak coupling. Within this choice of cutoff, only the first
light line l = 0 is of sufficiently low energy to interact with
the plasmonic excitations when the center-to-center distance
is set to a value of d such that d � πa. This explains why
the perturbative study of the case d = 3a can be carried out
without taking into account the umklapp processes [29].

2. Far-field coupled nanoparticles

Considering now a larger center-to-center distance d =
13a, far-field effects take place and umklapp processes be-
come of great importance. We show in Fig. 3 the same
quantities as previously, i.e., the dispersion relation for the
longitudinal [Fig. 3(a)] and transverse [Fig. 3(b)] polariza-
tions, and the corresponding radiative line widths in Figs. 3(c)
and 3(d), respectively. We see that the same conclusions as for
the case d = 3a of Fig. 2 can be drawn from the comparison
between the different models, namely, that the perturbation
theory reproduces, at least qualitatively in the transverse di-
rection, the exact quantum result for the polaritonic band
structure, which itself is close to the results obtained through
a purely classical model. As before, however, the perturbation
theory misses the avoided crossing feature of the transverse
polarization and hence is not reliable around the anticrossing.

We also note that since the dipolar coupling strength � scales
as (a/d )3 [cf. Eq. (3)], the bandwidth is significantly reduced
when we increase the spacing between the nanoparticles. This
leads the quasistatic dispersion Eq. (21) to being reduced to
almost ω0 in the entire Brillouin zone, so we no longer show
it in Figs. 3(a) and 3(b).

What is also immediately remarkable by comparing Figs. 2
and 3 is the flipping of the dispersion curves, the slope of
the longitudinal dispersion curve being now negative, as well
as the upper band in the transverse case. This is due to the
fact that here the longitudinal (transverse) dispersion inter-
sects (anticrosses) the light line corresponding to the photonic
band index l = 1, i.e., the curve c|q − 2π/d|, which is also
decreasing in the positive half of the first Brillouin zone, as
qd increases. The slope of the closest light line hence dictates
the one of the longitudinal dispersion, and as we increase the
center-to-center distance d , the curve continuously evolves
from an increasing [Fig. 2(a)] to a decreasing [Fig. 3(a)] func-
tion, and similarly for the transverse polarization [Figs. 2(b)
and 3(b)]. We note that we still observe a discontinuity in the
longitudinal dispersion at the intersection with the light line,
and that in the transverse case, no roots can be found along
a light line l �= 0, neither upward nor downward, for both the
quantum or classical approaches.

Since all the dispersion curve is included into the first light
cone, i.e., is above the first light line c|q|, all the modes are
now radiating, as can be seen in Figs. 3(c) and 3(d). This is
in stark contrast with the case d = 3a where guided modes
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immune to radiation damping are present [Figs. 2(c) and 2(d)].
The latter guided modes disappear completely, starting from a
center-to-center distance of around d � 11a, for longitudinal
(transverse) polarization and in both classical and quantum
models, when the dispersion curve intersects (anticrosses)
the first light line c|q| at the edge of the Brillouin zone.
Interestingly, this means that for a specific distance d � 11a,
the dispersion curve will intersect both the first (l = 0) and
second (l = 1) light lines. For this precise interparticle dis-
tance, one observes a double avoided-crossing scheme in the
transverse case, leading to three distinct eigenfrequencies for
a given mode q.

The second light line l = 1 also forms a light cone, con-
taining the modes q whose frequencies are larger than c|q −
2π/d|, that is to say, the modes on the right of the black
dotted line in Figs. 3(a) and 3(b). For the radiative linewidth
in the longitudinal case [Fig. 3(c)], one can observe a cusp
at the point where the dispersion intersects the second light
line, followed by a slight increase of the linewidth. More
interestingly, in the transverse case [Fig. 3(d)], we see that
the effect of the second light cone is to enhance the radiative
linewidth. The two bands hence radiate very differently, the
one inside the second light cone having a radiative linewidth
almost four times larger than the one outside. We note that
for the modes around the anticrossing, the perturbation theory
misses the decrease (increase) of the radiative linewidth of the
band outside (inside) the second light cone, and approximates
the behavior to an almost steplike function.

Finally, we consider the case of d = 23a in Fig. 4. Now
the intersecting light line is the one with band index l = −1,
i.e., the curve c|q + 2π/d| [see the black dotted lines in
Figs. 4(a) and 4(b)]. Therefore, the dispersion curves are once
again flipped and we again see a different radiating behavior
[Figs. 4(c) and 4(d)], depending on whether the polaritonic
band is inside or outside the light cone formed by the third
photonic band l = −1.

We also notice from Fig. 4 that both the dispersion relations
and radiative decay rates tend to become flatter. This is consis-
tent with the fact that when the center-to-center distance tends
to infinity, the nanoparticles become isolated from each other
and there is no more collective effects along the chain. There-
fore, all the eigenfrequencies must become degenerate to the
value corresponding to the excitation of a single nanopar-
ticle. We will come back in detail to this limiting case in
Sec. IV D.

B. Group velocity of the polaritonic modes

To insight into the propagation of the polaritonic modes,
we define their group velocity as the derivative of the disper-
sion, vσ

q = ∂Re{�σ
q }/∂q. Figure 5 shows the results obtained

using a center-to-center distance d = 3a, i.e., by taking the
derivatives of the curves displayed in Figs. 2(a) and 2(b).
We first note that as for the dispersion relations, the group
velocities are in very good agreement between the classical
and quantum models, for both polarizations.

Unlike what could be expected from its dispersion, the
longitudinal case admits quite large group velocities, with a
fair amount of modes propagating at almost 0.1c or faster,
providing a notable window for propagation just after the

FIG. 5. Group velocities vσ
q in units of the speed of light in

vacuum c, for the (a) longitudinal and (b) transverse polarizations
as a function of the reduced wave number qd in half of the first
Brillouin zone. The parameters used in the figure are the same as
in Fig. 2. The inset shows the longitudinal group velocity in units of
c corresponding to the reduced wave number qd = π/2 as a function
of the ratio d/a, computed using the analytical perturbative results.

intersection with the light line, where guided modes present
no radiative damping and a rather large group velocity.

At the precise intersection with the light line, as discussed
before, no definite value is found in our model free of Ohmic
losses, and we observe huge variations of the derivative
around the intersection [see Fig. 5(a)], implying difficulties
to obtain a good numerical accuracy for values of vz

q > 0.2c.
Taking into account Ohmic losses, however, removes the dis-
continuity and leads to a group velocity of exactly c at the
intersection, as demonstrated in Refs. [30,61] using two dif-
ferent approaches. The analytical second-order computation
only qualitatively accounts for this effect with the appearance
of a logarithmic singularity in the group velocity at ωσ

q =
c|q − 2π l/d|, as can be seen taking the derivative of Eq. (29).
This unphysical infinite group velocity at the crossing with the
light line shows the limits of the analytical computation in the
longitudinal case.

For the transversely polarized excitations [see Fig. 5(b)],
we see that the upper band in the dispersion, i.e., the radiat-
ing one, shows a rather large negative group velocity with a
maximum of about −0.15c. The lower band, i.e., the guided
modes, which follows the photonic dispersion c|q| inside the
light cone [see Fig. 2(b)], propagates at the speed of light c and
then rapidly decreases around the intersection with the light
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line, where a very slow but notably slightly negative group
velocity is found. The perturbative treatment, once again,
reaches its limitations and presents an unphysical singularity
at the crossing.

When we increase the center-to-center distance d , as
observed in the previous subsection, the dispersion curves
maintain a similar shape but get flatter, hence the group ve-
locity globally decreases. However, the longitudinal modes
will keep a large group velocity around the intersection with
the light line, which has been found to be of exactly c at the
precise intersection when Ohmic losses are taken into account
[30,61]. Interestingly, as discussed previously, increasing the
distance between the nanoparticles also leads to a continuous
reversing of the dispersion curves, implying an inversion of
the sign of the group velocities.

In the inset of Fig. 5, we show the longitudinal group
velocity computed from the perturbative results and associ-
ated to the mode with wave number q = π/2d , in units of
the speed of light c and as a function of the reduced center-
to-center distance d/a. Remarkably, we observe an almost
periodic sign change of the group velocity. One can show
that when we increase the ratio d/a, the pseudoperiod of the
sign change tends very quickly to π/k0a in units of d/a, i.e.,
to ∼10.5 within our choice of k0a = 0.3. In units of d , this
amounts to an approximate period of λ0/2, where λ0 = 2π/k0

is the resonance wavelength associated with the isolated single
nanoparticle. In the limit of d � a, the group velocity is hence
almost periodic with a period λ0. This occurs for all modes
q, except for q = 0 and q = ±π/d , respectively, the center
and edges of the Brillouin zone, for which the group velocity
remains zero regardless of the interparticle distance d . Inter-
estingly, even if the first sign change appears at a different
distance d depending on the mode q, when d � a the inter-
particle distance rn for which a sign change appears becomes
approximately rn = nλ0/2, where n is a positive integer. More
precisely, the roots of the longitudinal group velocity are given
by rq,n(d ) = nλ0/2 + sq(d ), where sq(d ) � λ0/2 is a rapidly
decreasing shift that tends to 0. We also note that for the
particular mode q = π/2d shown in the inset, the absolute
value of the group velocity is maximal (and could be equal
to ±c in a model where Ohmic losses would be taken into
account [30,61]) exactly for rn = (2n + 1)λ0/2 ∓ λ0/4.

Importantly, the above-discussed unusual behavior of the
group velocity allows for a high tunability, since all given
modes q except the ones at the center and edges of the Bril-
louin zone are associated with a wide range of different group
velocities, including negative and vanishing ones, depending
on the center-to-center distance chosen experimentally. This
phenomenon can be compared with the behavior of surface
lattice resonances, which admit a strong narrowing of the
plasmon resonance due to diffraction and interference effects
when the distance between nanoparticle equals the resonance
wavelength [62,63].

C. Hybridization of light and matter degrees of freedom

As previously discussed, the plasmonic excitations hy-
bridize with the photonic modes and form plasmon–
polaritons, which are directly apparent through the avoided-
crossing feature of the transverse dispersion relations. Our

quantum theory gives access to the share of plasmonic and
photonic excitations within a given collective mode with wave
number q. This distribution can be found through the Hopfield
coefficients introduced in Eq. (15), where each coefficient
represents the weighting of the plasmonic and photonic ex-
citations.

Using the normalization condition of Eq. (16), one can
solve the system of Eqs. (19), respectively, for the moduli
squared of the two plasmonic Hopfield coefficients and for the
sum over all band indexes l , wave vectors κ and polarizations
λ̂l

κq of the moduli squared of the two photonic coefficients.
Transforming the sums over κ into finite integrals, one ob-
tains functions of the complex eigenfrequencies �σ

q . We give
details on the computation and provide the analytical expres-
sions of the Hopfield coefficients in Appendix C.

Using the eigenfrequencies found via Eq. (25), we show
in Fig. 6 the results for the longitudinal (upper panels) and
transverse (lower panels) polarizations for center-to-center
distances, d = 3a, d = 13a, and d = 23a. We note that the

two Hopfield coefficients X σ
q and Z

l,σ,λ̂l
κq

κq , associated with
the counter-rotating terms in the polaritonic ladder operator
Eq. (15) are not plotted in the figure, since their largest con-
tributions are less than 0.006. This suggests that we could
have employed the rotating wave approximation (RWA) in
our derivations. However, since the RWA does not lead to
any computational simplification, we chose to use the full
Hamiltonian Eq. (9).

Remarkably, we notice that for the longitudinal polariza-
tion [Figs. 6(a), 6(c) and 6(e)], and hence without having
any avoided-crossing dispersion, the normal modes inside a
light cone are an equitable mix of light and matter degrees of
freedom, proving that we do indeed have plasmon–polaritons,
even in this case. In the near-field case [Fig. 6(a), d = 3a]
at the end of the light cone, the excitation becomes almost
purely plasmonic, which is consistent with the suppression of
radiative losses. For center-to-center distances such that the
dispersion curve intersects a photonic band of index l �= 0
[Figs. 6(c) and 6(e)], the entire Brillouin zone is located within
the light cone l = 0 and all modes are radiating. Thus in
this case all modes are polaritonic. Approaching the mode
for which the dispersion curve crosses the light line, repre-
sented as a vertical dashed line in the figure, the excitation
becomes mostly photonic. At the exact crossing, the Hopfield
coefficients are not rigorously defined due to the discontinuity
and avoided crossing in the dispersions, but one can argue
that at this precise point, the excitation tends to be purely
photonic, consistent with the fact that the associated group
velocity tends to ±c.

For the transverse polarization, let us first discuss the
near-field case, Fig. 6(b). The upper plasmon–polariton band,
associated with a nonzero radiative damping, presents a strong
part of photon excitation which, quite surprisingly, decreases
when approaching the intersection with the light line. We note
that the polaritonic nature is marked for all modes inside the
light cone, and not only those close to the intersection. This
can be understood by the fact that plasmons interact with all
photonic modes k and not only with the light line, which
corresponds to k = (0, 0, q). We further notice that the lower
band of the transverse dispersion is almost exclusively com-
posed of photons inside the light cone, which is in adequacy
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FIG. 6. Modulus squared of the plasmonic Hopfield coefficients W σ
q (orange solid line) and sum of all the moduli squared of the photonic

ones Y
l,σ,λ̂l

κq
κq (purple solid line), as a function of the reduced wave number qd in half of the Brillouin zone. The vertical dashed line represents

the mode for which the polaritonic dispersion crosses a light line. The upper and lower panels show, respectively, the longitudinal and transverse
polarizations, while the three columns are associated, respectively, to center-to-center distances d = 3a, d = 13a, and d = 23a. In the figure,
k0a = 0.3.

with the fact that it is not subject to radiative losses and has
a dispersion relation almost equal to the light line. Outside
the light cone, the modes are nearly purely plasmonic, with a
well-balanced mix only around the intersection.

In the far field, when all modes are radiating [Figs. 6(d) and
6(f)], we observe an inversion in the predominance between
photonic and plasmonic excitations at the crossing with a light
line. The band which radiates the most, i.e., the one located
inside the light cone formed by light line l that intersects the
dispersion curve, is mainly plasmonic. The other band, which
in the near-field case corresponded to the nonradiating one,
shows an equitable share between photonic and plasmonic
excitations away from a light line. When it approaches the
intersection, it becomes predominantly photonic, as it can be
inferred from the dispersion curves where this band falls into
the light line.

Finally, we remark that for both polarizations, increasing
the center-to-center distance leads to an increasingly equitable
mix between photonic and plasmonic excitations, with both
contribution tending to 0.5. This is consistent with the fact
that, as will be discussed in detail in the following subsection,
when d � a, we end up with single noninteracting nanoparti-
cles but which interact with the photonic continuum, leading
to a polaritonic eigenstate with equal plasmonic and photonic
weightings.

D. Single nanoparticle limit

As mentioned above, we can use the limit of infinitely
spaced nanoparticles, d/a→∞, to study the case of isolated

single nanoparticles. These noninteracting nanoparticles are
still coupled to the surrounding photonic continuum, leading
to a radiative shift δ0 of the resonance frequency ω0, and to a
radiative decay rate γ0.

As discussed previously, when the nanoparticles are moved
apart in the chain, the dispersion curves flatten and all the
eigenfrequencies become degenerate at the eigenfrequency of
a single nanoparticle. All the quantities hence must become
polarization and mode-independent and the analysis of the
Hopfield coefficients, in the previous subsection, showed that
one tends, indeed, toward a single degenerate mode of polari-
tonic nature, consisting of an equal mix of light and matter
excitations.

The single nanoparticle case has already been studied per-
turbatively in Ref. [46], using a similar quantum formalism as
in the present paper. Using second-order perturbation theory
(as was done for the chain, cf. Sec. III B) the radiative shift
δ0 is given by δ0 = (E (2)

nσ +1 − E (2)
nσ )/h̄, where the second-order

energy correction reads

E (2)
nσ = π h̄ω3

0
a3

V
∑
k,λ̂k

(σ̂ · λ̂k )2

νk

(2nσ + 1)νk − ω0

ω2
0 − ν2

k

. (32)

In the above expression, nσ is the quantum number cor-
responding to the number of plasmonic excitations with
polarization σ , and νk = ν l=0

k is the photon dispersion, where,
since the single nanoparticle is not anymore a periodic system,
we do not have to take into account umklapp plasmon–photon
processes.
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The correction of Eq. (32) appears to be linearly divergent.
The authors of Ref. [46] hence regularized such a divergence
using a renormalization scheme analogous to that used by
Bethe in his analysis of the Lamb shift in atomic physics
[64]. Bethe’s mass renormalization amounts to substract from
Eq. (32) the energy shift corresponding to free electrons cou-
pled to the photonic continuum, which can be obtained taking
the limit of vanishing transition frequency ω0 → 0. Notably,
this leads to a divergence which is only logarithmic.

However, as detailed in Sec. III B in the case of the chain,
the second-order correction is logarithmically divergent. Try-
ing to use the same renormalization procedure for the chain
leads to unphysical results, with a singularity at the center of
the Brillouin zone. Furthermore, a perturbative treatment of
the light-matter interaction in a similar plasmonic model but
in two-dimensional lattices with arbitrary geometries leads to
finite, nondivergent corrections, which agree well with classi-
cal electrodynamic calculations [39]. This leads us to question
the validity of Bethe’s mass renormalization procedure in our
specific case of a plasmonic system, for which the energy
scales are quite different from the case of atomic physics stud-
ied originally by Bethe. In Appendix D, we also discuss the
results obtained through this mass renormalization procedure
for the case of nanoparticle dimers.

Keeping the linearly divergent second-order correction
Eq. (32), one can go to the continuum limit and transform
the sum over wave vectors k into principal value integrals
using spherical coordinates. After calculating the integrals, the
single nanoparticle radiative frequency shift reads

δ0 = ω0

3π
(k0a)3

[
ln

(
ωc/ω0 + 1

ωc/ω0 − 1

)
− 2

ωc

ω0

]
, (33)

where, as expected, the expression now depends linearly on
the cutoff ωc and hence also on the cutoff parameter 
 (see
footnote 3).

The upper panel of Fig. 7 shows the different results for
the radiative shift δ0, according to the hypothesis used. We see
that the results from Ref. [46] are significantly different both
from those obtained by the classical model (green solid line)
and by the quantum formalism where Bethe’s mass renormal-
ization procedure was not used (red solid line and blue dashed
line) for the chain via the limit d/a→∞, and from the quan-
tum model of a single nanoparticle via Eq. (33). Reference
[46] predicts a minute blueshift, while other methods predict
a redshift which is one order of magnitude larger (in absolute
value). We see that, as expected, the results from the chain
using our quantum formalism are in perfect agreement with
the one from the single nanoparticle computation Eq. (33),
and the three curves are almost perfectly overlapping. The
classical computation also leads to a redshift of the same
order of magnitude but larger. We note that in the classical
formalism, using the radiative correction to the classical polar-
izability (which is defined in Appendix A) leads to almost no
frequency shift, while using the modified long wavelength ap-
proximation (MLWA, see Appendix A) leads to results which
are almost the same as the one presented here for which we
used the exact Mie polarizability.

The radiative decay rate γ0 of the single nanoparticle can
also be obtained perturbatively through our quantum formal-
ism. Using Fermi’s golden rule similarly as for the chain in

FIG. 7. Single nanoparticle radiative shift δ0 (upper panel) and
radiative decay rate γ0 (lower panel) in units of the single nanopar-
ticle resonance frequency ω0 and as a function of the reduced
nanoparticle radius k0a. The green solid line represents the result
obtained from the classical model, as presented in Appendix A, while
the thick grey solid line (almost perfectly overlapped by both the
fully retarded quantum results in red and the perturbative results in
dashed blue) represents the single nanoparticle results of Eqs. (33)
and (34). In the upper panel, the orange line represents the result for
the radiative shift presented in Ref. [46], and the grey dotted line is a
guide for the eye.

Sec. III B, one obtains [28]

γ0 = 2ω4
0a3

3c3
. (34)

This familiar expression, representing the rate at which the
plasmons dissipate their energy by emitting photons, can be
obtained classically through the direct evaluation of the radi-
ated power of an oscillating electric dipole [65].

In the lower panel of Fig. 7, we show the comparison
between Eq. (34) and the results obtained by taking the limit
of infinitely spaced nanoparticles in the chain. We see that
both the fully retarded and perturbative quantum results are
in perfect agreement with Eq. (34), as the three curves are
almost indistinguishable. This indicates that taking the limit
of infinite center-to-center distance d is an accurate method to
study the case of single nanoparticles.

We also observe in the lower panel of Fig. 7 that the
classical chain gives slightly different results and predicts a
smaller damping rate for values of k0a � 0.2. Notably, this
difference depends on the approximation we adopt for the
classical polarizability of the nanoparticle. Indeed, using the
radiative correction gives results which agree with Eq. (34),
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while using the MLWA, which takes into account possible
depolarization effects [see the discussion in Appendix A after
Eq. (A3)] gives results similar to the one presented in Fig. 7
(see green solid line), where we used the Mie polarizability.5

The small difference in the obtained results for the single
nanoparticle radiative decay rate are thus due to depolarization
effects, which increase with the (reduced) nanoparticle radius
k0a. However, this cannot fully explain the small discrepancy
in the decay rates of the chain discussed in Sec. IV A, as
the classical approach slightly underestimates the rate com-
pared to the quantum one, regardless of the approximation
performed for the classical polarizability.

As can be seen from the lower panel of Fig. 7, for a reduced
radius k0a = 0.3, one obtains γ0 = 0.018 ω0. This means that
in the case of the chain, several modes are superradiant. In par-
ticular, in the near-field case presented in Fig. 2, all transverse
radiating modes are superradiant, with a damping from 3 to 9
times larger than that of the single nanoparticle. Interestingly,
when we increase the center-to-center distance d in Figs. 3
and 4, only the modes inside the light cone formed by the
light line l which intersects the dispersion curve (respectively,
l = +1 and l = −1) present superradiance, while the ones
outside this light cone are subradiant [see Figs. 3(c), 3(d), 4(c),
and 4(d)].

V. CONCLUSION

We have provided a quantum theory of a linear chain of
metallic nanoparticles hosting plasmon–polaritons. In partic-
ular, the retardation effects of the long-range dipole–dipole
interaction along the chain have been considered exactly.
These retardation effects, arising from the light-matter in-
teraction between the plasmonic degrees of freedom and a
three-dimensional photonic continuum, lead to a polaritonic
behavior of the eigenmodes of the system. By taking into
account plasmon–photon umklapp processes, we have been
able to describe nanoparticles at arbitrary center-to-center
distances d � 3a, that is, in both near- and far-field coupling
regimes.

We have shown, by computing the band structure, the
radiative linewidth, as well as the group velocities of the
eigenmodes, that our quantum description is in good agree-
ment with the usual classical approach used for plasmonic
chains. The latter approach has also been shown to be in
satisfying agreement with simulations using finite-difference
time-domain techniques [66]. We have provided approximate
analytical expressions for the above-mentioned quantities
which reproduce the exact results, at least at a qualitative
level, although they do not describe the polaritonic nature of
the excitations. These analytical expressions are valid in both
near- and far-field situations and allow for a much more trans-
parent formalism than in the classical case, where a numerical
resolution is needed.

In the far-field regime and thanks to our analytical devel-
opments, we have observed a particularly unusual behavior of

5Note that the MLWA can be obtained from the Mie polarizability
Eq. (A3) through an expansion in the small parameter ωa/c.

the group velocity, which changes signs and vanishes every
time the center-to-center distance d approximately equals a
positive multiple of half of the resonance wavelength associ-
ated with the single isolated nanoparticle. The group velocity
of any polaritonic mode can hence be tuned to a variety of
different values, including zero and large positive or negative
group velocities, depending on the distance d .

We have studied quantitatively the hybridization of plas-
monic and photonic degrees of freedom using Hopfiled’s
coefficients, showing a well-balanced hybridization inside the
light cone even in the longitudinal polarization case, which
leads us to associate the presence of plasmon–polariton ex-
citations to the presence of radiative losses rather than to the
presence of an avoided crossing dispersion.

Finally, we have studied the regime of infinitely spaced
nanoparticles and found eigenfrequencies and radiative decay
rates in perfect agreement with the single nanoparticle case.
Notably, we have found results that are qualitatively different
from the ones of Ref. [46]. We showed that these differences
arise from a mass renormalization scheme that may not be
adequate to the present situation and that we did not follow
here.

Our detailed analysis supports the development of a quan-
tum formalism, which is required to have a self-contained
theory of arrays of interacting nanoparticles, where quantum
effects, such as Landau damping or electronic spill-out, can
be readily incorporated. Our work also opens the perspective
of studying other systems where light-matter interaction is of
major importance, such as cavity-embedded systems, arrays
of larger dimensionality and/or with other geometries, and
plasmonic systems composed of nonspherical nanoparticles.
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APPENDIX A: CLASSICAL ELECTROMAGNETIC
MODELING OF THE NANOPARTICLE CHAIN

The standard theoretical approach for describing the plas-
monic chain introduced in the main text (see Fig. 1) is
based on macroscopic classical electrodynamics and bene-
fits from extensive literature [3,15–17,19–25], which is still
active nowadays [30,31]. In this Appendix, we describe the
dielectric properties of the metallic nanoparticles using the
Drude model. Neglecting Ohmic losses, the nanoparticle local
permittivity is given by ε(ω) = 1 − ω2

p/ω
2.

We first start by looking for the polarizability of a single
nanoparticle. Using Mie’s theory [58,59] and considering only
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the electric dipole term, one obtains

Es = 3ic3E0a1(ω)

2ω3

eiωr/c

r

{
ω2

c2
(r̂ × û) × r̂

+ [3r̂(r̂ · û) − û]

(
1

r2
− iω

cr

)}
(A1)

for the expression of the electric field scattered by the
sphere. Here, E0 is the amplitude of the incident field Ei =
E0eiωr cos θ/cû in a given direction û, and

a1(ω) = nψ1(nka)ψ ′
1(ka) − ψ1(ka)ψ ′

1(nka)

nψ1(nka)ξ ′
1(ka) − ξ1(ka)ψ ′

1(nka)
(A2)

is the first (electric dipole) Mie coefficient [60], where n =√
ε(ω) is the refractive index, k = ω/c the wave number in

the metal, and a the nanoparticle radius. ψ1(x) = sin(x)/x −
cos(x) and ξ1(x) = (−i/x − 1)eix are, respectively, the first
Ricatti–Bessel functions of the first and second kinds. The
scattered field Eq. (A1) corresponds to the radiation field
emitted by an oscillating electric dipole, therefore taking
fully into account retardation effects, with a dipolar moment
p = (3i/2)(c/ω)3E0a1(ω)û. Using that the dipolar moment is
also equal to p = α(ω)Ei|r = 0 leads to an expression of the

dynamic, frequency-dependent polarizability of the metallic
nanoparticle [22,25,67]:

α(ω) =
(

−i
2ω3

3c3

)−1

a1(ω). (A3)

Many authors [16,20,21,24,31] use an ad hoc correction to
the quasistatic polarizability of a spherical nanoparticle,

αqs(ω) = a3 ε(ω) − 1

ε(ω) + 2
, (A4)

instead of the exact Mie expression in Eq. (A3). To take into
account the radiative decay of the plasmons and preserve
energy conservation, the choice α−1

adhoc = α−1
qs − i2ω3/3c3 is

usually made. Such a radiative correction can be found by
adding a radiation reaction field to the quasistatic system
[65,68,69]. Other authors [30] also include a contribution
proportional to ω2 to the inverse polarizability, stemming from
the introduction of a depolarization field in the system. This
is known as the modified long wavelength approximation
(MLWA), and it leads to a redshift of the polaritonic dis-
persion curves which has been interpreted as arising from a
dephasing between radiation emitted by different parts of the
sphere [70].

As already discussed in Refs. [60,71,72], an expansion of
the exact polarizability Eq. (A3) for small particles to third
order in ωa/c leads, up to a numerical factor, to the same ad
hoc corrections mentioned above.

Since the radiative correction and the MLWA are approx-
imations of Eq. (A3), and since using the latter equation
does not increase substantially the computation time, in this
paper we have chosen to describe the nanoparticles within the
classical model using the exact Mie polarizability Eq. (A3).
Following Ref. [20], one can then obtain an implicit disper-
sion relation by writing the induced dipole moment pn of
the nanoparticle n as pn = α(ω)Eloc, where Eloc is the total
electric field generated by all the others nanoparticles m �= n.

One finds

1 + α(ω)

d3
�σ (ω, q) = 0, (A5)

where q is the wave number of the normal mode along the
chain, belonging to the first Brillouin zone. Equation (A5) can
be seen as the classical analog of Eq. (25). As it has been
shown in Ref. [19], the function �σ (ω, q) can be rewritten,
using analytical continuation, in terms of a sum of polyloga-
rithms,

�z(ω, q) = 2i
ωd

c
[Li2(ϕ+) + Li2(ϕ−)]

− 2[Li3(ϕ+) + Li3(ϕ−)], (A6a)

�x,y(ω, q) = −
(

ωd

c

)2

[Li1(ϕ+) + Li1(ϕ−)]

− i
ωd

c
[Li2(ϕ+) + Li2(ϕ−)]

+ [Li3(ϕ+) + Li3(ϕ−)], (A6b)

where ϕ± = ei(ω/c±q)d . Here, σ = x, y or z characterizes the
polarization of the collective excitation, depending on whether
the induced dipole moment points along the array (σ = z) or
orthogonal to it (σ = x, y). Since collective and individual
LSP polarizations are aligned, it is equivalent to consider a
given polarization σ on each individual LSP.

Numerically solving Eq. (A5) for complex ω leads to the
dispersion and to the radiative linewidth of the polaritonic
normal modes discussed in the main text (see green solid lines
in Figs. 2–4).

APPENDIX B: THE DIAMAGNETIC A2 TERM

In our treatment of the photonic environment, we discarded
the A2 term, also known as the diamagnetic term. In this
Appendix, we discuss the origin of such a term and give
justifications for this approximation.

Physically, the diamagnetic term represents a photon self-
interaction energy which is not involved in the retardation
effects of the light-matter coupling. It comes from the
minimal-coupling substitution of the momentum P −→ P +
(e/c)A(r) in the kinetic Hamiltonian Hkin = P2/2m, with m
the considered mass. We recall that this coupling originates
fundamentally in a relativistic theory by the replacement in
the free Lagrangian of the usual derivatives with the co-
variant derivatives, ∂μ −→ Dμ = ∂μ − (ie/c)Aμ, where Aμ is
the four-vector gauge potential. This replacement is required
to preserve the U (1) gauge symmetry of electromagnetism,
therefore, the light-matter coupling is fully determined by the
gauge invariance of the theory itself [73].

Neglecting the diamagnetic term can thus lead to concep-
tual problems such as the loss of gauge invariance but also
unphysical ground states [74,75]. It is, however, frequently
discarded due to its quadratic nature in the light-matter cou-
pling and several well-known quantum optics models such
as the Jaynes-Cummings or Dicke model do not consider it.
Perceptible differences due to the diamagnetic term such as
gauge ambiguities were found in the context of the ultra-
strong coupling (USC) or deep strong coupling (DSC) regime
only [76].
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Including the A2-term in our model amounts to replacing
Eq. (6) by the quadratic plasmon–photon coupling Hamilto-
nian:

Hσ,A2

pl-ph = e

mec

N∑
n=1

�σ
n · A(dn) + Nee2

2mec2

N∑
n=1

A2(dn). (B1)

Since the quadratic A2 term does not involve plasmonic
degrees of freedom, it has no effect when one applies pertur-
bation theory on the plasmonic Hamiltonian Eq. (2), except
for a global energy shift [29]. Therefore, the results found
through the perturbative treatment in Sec. III B are the same,
whether we include such a term or not. However, it can renor-
malize the photonic dispersion by inducing what is usually
referred to as a diamagnetic shift, hence slightly modifying
the polaritonic dispersion.

To gain insight into the effects of such a term in our sys-
tem, one can diagonalize the Hopfield model, corresponding
to a model close to the one studied here but with a three-
dimensional dipolar system instead of a one-dimensional one,
with and without the quadratic term, and show that different
behaviors occur only for the USC and DSC regimes [77]. We
recall that one enters in the USC regime when the counter-
rotating terms of the Hamiltonian become sizable [78]. From
the analysis of the Hopfield coefficients in Sec. IV C, one can
then deduce that in the model studied here, we are far from
the USC regime and therefore that the diamagnetic term can
be safely neglected.

APPENDIX C: ANALYTICAL EXPRESSIONS FOR THE
HOPFIELD COEFFICIENTS

In Sec. IV C, we discussed the behavior of the Hopfield
coefficients, namely, the plasmonic and photonic weightings
of the polaritonic excitation. Here, we provide the analytical
expressions for the latter weightings, which are displayed in
Fig. 6. Using the system of Eqs. (19), one can write the
photonic part of the weightings of the excitation as

∑
l

∑
κ,λ̂l

κq

∣∣Y l,σ,λ̂l
κq

κq

∣∣2 = 4ω2
0ω

σ
q

4
∣∣X σ

q

∣∣2∣∣ωσ
q

2 − ω0�σ
q

∣∣2
∑

l

I l,σ
q,− (C1)

and

∑
l

∑
κ,λ̂l

κq

∣∣Zl,σ,λ̂l
κq

κq

∣∣2 = 4ω2
0ω

σ
q

4
∣∣X σ

q

∣∣2∣∣ωσ
q

2 − ω0�σ
q

∣∣2
∑

l

I l,σ
q,+, (C2)

and the plasmonic weights as

∣∣W σ
q

∣∣2 = ∣∣X σ
q

∣∣2∣∣∣∣∣ω
σ
q

2 + ω0�
σ
q

ωσ
q

2 − ω0�σ
q

∣∣∣∣∣
2

(C3)

and

∣∣X σ
q

∣∣2 =
(

4ω2
0ω

σ
q

4∣∣ωσ
q

2 − ω0�σ
q

∣∣2
∑

l

[
I l,σ

q,− − I l,σ
q,+

]

+
∣∣∣∣∣ω

σ
q

2 + ω0�
σ
q

ωσ
q

2 − ω0�σ
q

∣∣∣∣∣
2

− 1

)−1

. (C4)

In the above expressions, I l,σ
q,± are functions of the complex

eigenfrequencies �σ
q , and read

I l,σ
q,± =

∑
κ,λ̂l

κq

(
ξ l
κq

)2
(σ̂ · λ̂l

κq)2∣∣�σ
q ± ν l

κq

∣∣2 . (C5)

Summing over the photon polarizations using Eq. (22), and
transforming the sum over κ to integrals via Eq. (23), leads to
the following result:

I l,σ
q,± = ±ησω0a3

4dc2

∣∣∣∣cql

�σ
q

∣∣∣∣
2

	(ωc − c|ql |)
{

∓
(

1

ωc
− 1

c|ql |
)

− �r,σ
q

|�σ
q |2 ln

(
(�i,σ

q )2 + (�r,σ
q ± c|ql |)2

(�i,σ
q )2 + (�r,σ

q ± ωc)2

ω2
c

(c|ql |)2

)

+
tan−1

(
�r,σ

q ±ωc

�
i,σ
q

)
− tan−1

(
�r,σ

q ±c|ql |
�

i,σ
q

)
�i,σ

q

×
[

sgn{ησ }
∣∣∣∣�

σ
q

cql

∣∣∣∣
2

+ (�r,σ
q )2 − (�i,σ

q )2

|�σ
q |2

]}
, (C6)

where ql = q − 2π l/d , and where, for clarity, we have
written the real and imaginary parts of the polaritonic eigen-
frequencies �σ

q as �r,σ
q and �i,σ

q , respectively. We note that
the term in the third line of the above equation is well-defined
due to the fact that the imaginary part �i,σ

q → 0 only when the
real part �r,σ

q < c|ql |, i.e., guided modes which are immune
to radiation damping exist only outside the first light cone, as
discussed in Sec. IV.

APPENDIX D: DISCUSSION OF BETHE’S MASS
RENORMALIZATION PROCEDURE FOR NANOPARTICLE

DIMERS

As shown in Sec. IV D, we obtain drastically different
results when we do not apply Bethe’s mass renormalization
procedure to our quantum model of a single metallic nanopar-
ticle, and this led us to question the use of Bethe’s approach
in the specific case of a plasmonic system. The radiative shift
induced by the vacuum electromagnetic modes on a dimer of
interacting metallic nanoparticles was computed in Ref. [46]
using Bethe’s scheme. In this Appendix, we will reproduce
the same quantities as presented in Ref. [46], but without
using the mass renormalization procedure, and comment on
the differences obtained.

The dimer of interacting metallic nanoparticles is modeled
by the plasmonic Hamiltonian of the chain Eq. (2) for which
we set the number of nanoparticles N = 2. The dimer inter-
acts with a photonic environment, and since the system is
not periodic, we do not have to take into account umklapp
plasmon–photon processes. The Hamiltonian describing the
photonic environment is thus given by Eq. (4), for which we
only keep the term with l = 0. The coupling Hamiltonian is
therefore given by Eq. (6) with N = 2 and l = 0.

As detailed in Ref. [46], such a system hosts bright and
dark hybridized collective plasmonic modes, and one can
easily diagonalize the plasmonic Hamiltonian to find the bare
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(quasistatic) eigenfrequencies:

ωσ
τ = ω0

√
1 + 2τ |ησ | �

ω0
. (D1)

The label τ = ± distinguishes the high- and low-energy
coupled plasmonic modes. Importantly, the high-energy trans-
verse (↑↑) and low-energy longitudinal (→→) excitations
correspond to symmetric bright modes coupled to the pho-
tonic continuum, while the low-energy transverse (↑↓) and
high-energy longitudinal (→←) excitations are antisymmet-
ric dark modes, hence weakly coupled to the electromagnetic
continuum. Just as in the single-nanoparticle case or for the
chain, these plasmonic modes will hybridize with the elec-
tromagnetic continuum, leading to dressed eigenfrequencies
ω̃σ

τ = ωσ
τ + δσ

τ , where δσ
τ are the radiative frequency shifts.

To compute the dressed eigenfrequencies, we rely on
Ref. [46], which uses a similar methodology as the one
we detailed in Sec. III B. Without making use of the mass
renormalization procedure, we obtain δσ

τ = (E (2)
nσ

τ +1 − E (2)
nσ

τ
)/h̄,

where the second-order correction reads

E (2)
nσ

τ
= π h̄ω2

0ω
σ
τ

a3

V
∑
k,λ̂k

(σ̂ · λ̂k )2

νk

(2nσ
τ + 1)νk − ωσ

τ

ωσ
τ

2 − νk
2

× [1 + τ sgn{ησ } cos (kzd )]. (D2)

Computing the summation over photon polarizations through
the relation of Eq. (22) and transforming the sum over wave
vectors k into a principal value integral in spherical coordi-
nates, we get

δσ
τ = 2πω2

0ω
σ
τ

a3

8π3
P
∫ kc

0

k2dk

ωσ
τ

2 − c2k2

×
∫ π

0
dθ sin θ [1 + τ sgn{ησ } cos (kd cos θ )]

×
∫ 2π

0
dϕ[1 − (σ̂ · k̂)2]. (D3)

After a long but straightforward calculation, we obtain the
radiative shifts

δσ
τ = ωσ

τ
2

3πω0
(k0a)3

[
ln

(
ωc/ω

σ
τ + 1

ωc/ωσ
τ − 1

)
− 2

ωc

ωσ
τ

]

+ τ |ησ |ω
σ
τ �

πω0
(k0d )2

[(
1 + sgn{ησ }

2

)
gσ

τ

+ hσ
τ

kσ
τ d

− 2Si(kcd ) + gσ
τ(

kσ
τ d

)2

]
, (D4)

where kσ
τ = ωσ

τ /c,

gσ
τ =

∑
ζ=±

[
ζ sin(kσ

τ d )Ci(kcd + ζkσ
τ d )

− cos(kσ
τ d )Si(kcd + ζkσ

τ d )
]
, (D5)

hσ
τ =

∑
ζ=±

[
ζ cos(kσ

τ d )Ci(kcd + ζkσ
τ d )

+ sin(kσ
τ d )Si(kcd + ζkσ

τ d )
]
, (D6)

FIG. 8. Radiative frequency shifts in units of the bare frequency
ω0 as a function of the reduced nanoparticle radius k0a. The same
approach as for the chain and two-dimensional systems has been
used, i.e., without making use of Bethe’s mass renormalization. The
grey dotted line is a guide for the eye. The interparticle distance is
d = 3a.

and with Si(x) and Ci(x) denoting the sine and cosine
integrals, respectively. As expected and as for the single
nanoparticle case [see Eq. (33)], the expression of Eq. (D4)
depends linearly on the cutoff ωc.

In Fig. 8, we show the resulting radiative shifts for the
dimer, together with the shift Eq. (33) obtained for the single
nanoparticle. In Ref. [46], a blueshift has been obtained for the
bright modes, whereas only the dark modes were redshifted.
This resulted in an increase (decrease) of the splitting between
hybridized plasmonic modes for the transverse (longitudi-
nal) polarization. Here, we see that both the bright and dark
modes are redshifted, coherently with the radiative redshifts
observed for the chain and also for two-dimensional lattices
[39]. The bright modes are significantly more altered than
the dark ones, which is consistent with the fact that they
interact more strongly with light. Therefore, the splittings we
predict are reversed from those presented in Ref. [46], since
here we show an increase (decrease) of the splitting between
hybridized plasmonic modes for the longitudinal (transverse)
polarization. Importantly, the frequency shifts we predict are
also more than one order of magnitude larger than the ones
presented in Ref. [46]. Hence, the experimental protocol pro-
posed in Ref. [46] to detect the frequency splitting between
bright and dark modes could be more accessible than origi-
nally thought.

Another quantity that has been proposed to be observed
experimentally is the ratio �ω̃z/�ω̃x,y of the longitudinal
and transverse frequency splittings �ω̃σ = ω̃σ

+ − ω̃σ
− between

bright and dark modes. In the absence of light–matter in-
teraction, the bare ratio �ωz/�ωx,y = 2 is independent of
the center-to-center distance d up to quadratic corrections
in �/ω0 � 1. In Ref. [46], it was found that the ratio
�ω̃z/�ω̃x,y presents a universal scaling with the distance d ,
being independent of the nanoparticle radius a, unlike the
radiative frequency shifts for individual dimer levels.

In Fig. 9, we show the result obtained for the dimension-
less ratio �ω̃z/�ω̃x,y using our approach that does not use
Bethe’s mass renormalization. We immediately see that the
universal scaling put forward in Ref. [46] is no longer present,
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FIG. 9. Ratio �ω̃z/�ω̃x,y of longitudinal and transverse fre-
quency splittings in a nanoparticle dimer as a function of
the (reduced) interparticle distance k0d , for increasing (reduced)
nanoparticle radius k0a, from 0.1 (green line), 0.15 (yellow line), to
0.2 (red line). The grey dotted line shows the bare ratio �ωz/�ωx,y

in the absence of the coupling with the photonic environment. The
UV frequency cutoff is chosen as ωc = c/a.

implying that the dimensionless ratio �ω̃z/�ω̃x,y depends on
the nanoparticle radius. Actually, this makes the experimental

realization of the protocol proposed in Ref. [46] to detect the
level splitting and this dimensionless ratio even more interest-
ing, since it could allow one to gauge the relevance of Bethe’s
renormalization procedure for dipolar systems such as the one
studied in this Appendix.

To conclude, this Appendix demonstrated that not using
Bethe’s mass renormalization procedure leads to drastically
different conclusions about the frequency shifts induced by
the light–matter interaction in metallic nanoparticle dimers.
Here, we predict radiative frequency shifts of more than one
order of magnitude larger than the one predicted in Ref. [46],
an increase of the splitting between longitudinal bright and
dark modes, and a dependence of the dimensionless ratio
�ω̃z/�ω̃x,y on nanoparticle radius. Importantly, within this
approach, both the single nanoparticle and dimer radiative
frequency shifts depend linearly on the choice of cutoff ωc, as
opposed to the chain radiative frequency shift which depends
on it only logarithmically, and to two-dimensional lattices
radiative shifts which are cutoff independent [39]. In the
three-dimensional case, an exact diagonalization which does
not require any cutoff is even possible [47]. This suggests
that our quantum formalism of light-matter-induced radiative
frequency shift may be more adapted to the study of periodic
systems such as lattices rather than to single nanoparticles or
dimers.
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