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The interfacial effect in nanosystems is crucial for diverse fields of physics. Here we explore in detail the
interface associated Dresselhaus spin-orbit (SO) coupling, which comprises the usual linear βν,u (�u) and cubic
βν,3 (�3) contributions as well as the interface-induced term βν,int (�int) of intrasubband (intersubband) kinds.
Focusing on ordinary Al0.48In0.52As/Ga0.47In0.53As heterostructures with either one or two occupied subbands,
we perform a self-consistent Poisson-Schrödinger calculation to determine all the relevant SO contributions.
We observe that the interface SO term becomes intensifying for heterostructures with either a weaker bulk
Dresselhaus strength of the barrier layer or a lower interface smoothness. Remarkably, it is found that the renor-
malized linear Dresselhaus coefficient, which accounts for the interfacial contribution, may change sign as the
interface smoothness varies, opening up the feasibility of the interface-engineered topological matter of persistent
skyrmion lattice [J. Y. Fu, P. H. Penteado, M. O. Hachiya, D. Loss, and J. C. Egues, Phys. Rev. Lett. 117, 226401
(2016)]. Moreover, we also determine the intersubband Dresselhaus contributions including an emergent
quadratic term (�2) depending on the interfacial effect and the parity of wave functions. As opposed to
intersubband terms of the usual linear (�u) and cubic (�3) kinds, the quadratic contribution leads to unusual
avoided crossings of the band dispersion and thus may hybridize spin textures of distinct spin branches. Our
results should stimulate experiments probing interface-mediated intra- and intersubband Dresselhaus SO effects
and provide an extra leverage for extracting reliable bulk Dresselhaus SO parameters.

DOI: 10.1103/PhysRevB.104.125426

I. INTRODUCTION

The spin-orbit (SO) interaction coupling an electron spin
and its orbital motion acts on moving electrons as an effec-
tive magnetic field, enabling the manipulation of spin states
through electrical means [1,2]. This essential idea has inspired
various proposals on spintronic devices, e.g., spin-field [3–5]
and spin Hall effect [6,7] transistors. Recently, SO effects
are attracting new twists of interest thanks to emerging new
fields of condensed matter, including novel spin textures [8,9],
topological insulators [10], Majorana fermions [11,12], and
Weyl semimetals [13]. Our recent proposals of the persistent
skyrmion lattice [14], stretchable spin helix [15], spin-helix
symmetry breaking [16], and opposite SO control [17] also
indicate the important role of SO effects in semiconductor
nanostructures.

Semiconductors such as GaAs, InAs, and InSb offer vari-
ous strengths of SO couplings [15,18–21] and are thus suitable
for a broad range of spintronic applications, making this sub-
ject extraordinarily profound. Very recently, we explored in
detail SO properties of wide-gap (e.g., GaN) semiconduc-
tors in the wurtzite phase and arrived at a general effective
Hamiltonian for electrons, valid for quantum wells, wires,
and dots with variously defined geometries and external mag-
netic fields; Kammermeier et al. demonstrated persistent spin
textures and currents in SO-coupled wurtzite nanowire-based
quantum structures [22], further extending this field [23].

*yongjf@qfnu.edu.cn

In semiconductor nanostructures, the SO effects usu-
ally have two dominant contributions, the Rashba [24] and
Dresselhaus [25] terms, arising from the breaking of the
structural and crystal inversion symmetries, respectively. For
such quantum systems, the interfacial effect, though in gen-
eral challenging, is crucial for various subjects of physics,
e.g., interface-based SO control [26], interface-generated SO
torque [27], and spin current [28], as well as interface-induced
topological insulator transition [29], magnetic anisotropy
[30,31], and Dzyaloshinskii-Moriya interaction [31,32]. Re-
garding the Rashba SO coupling, the interfacial (structural)
contribution alongside contributions from external gates, ion-
ized dopants, and confined electrons has been explored
extensively in heterostructures with either one [15,33,34] or
two [21,23,35] occupied electron subbands. Also, in single-
crystal Fe/GaAs (001) heterostructures, the electric field in
a Schottky barrier was found capable of modifying inter-
facial SO fields [36]. As for the Dresselhaus SO coupling,
Dyakonov and Kachorovskii in their seminal work [37] de-
termined the Dresselhaus field for two-dimensional (2D)
electrons and the induced spin relaxation. With the help of
an sp3d5s∗ model containing ten atomic orbitals, Alekseev
and Nestoklon explored the Dresselhaus SO properties in
GaAs quantum wells with only one occupied subband for
the s conduction band [38]. However, despite substantial ef-
forts, most studies were mainly restricted to heterostructures
of single occupancy (i.e., no interband terms) and of abrupt
interfaces [15,34,38–40], and a detailed exploration of the
interface-involved Dresselhaus SO terms of both the intra- and
intersubband contributions is still not available.
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Here, starting from the bulk crystal, we adopt the sym-
metrization procedure for noncommuting operators to take
into account the interfacial effect in heterostructures [39,41]
and establish a systematic formulation for the interface-
mediated Dresselhaus SO coupling. In addition to the usual
linear βν,u (�u) and cubic βν,3 (�3) contributions, we also
obtain the interfacial contribution βν,int (�int), of intrasubband
(intersubband) kinds. Remarkably, we reveal an emergent
quadratic intersubband term (�2), depending on the interfacial
effect and the parity of wave functions. We then consider
ordinary Al0.48In0.52As/Ga0.47In0.53As both single and double
heterostructures, involving the electron occupancy of either
one or two subbands, to determine intra- and intersubband
SO properties. The AlInAs/GaInAs heterostructures have the
stronger SO strength and a larger conduction-band offset than
GaAs-based ones [15,21], acting as an ideal candidate of
harnessing interfacial SO effects for spintronic applications.
We further perform a self-consistent Poisson-Schrödinger cal-
culation to quantify all the relevant intraband (intersubband)
Dresselhaus SO contributions. Our results should stimulate
experiments probing the interface-mediated intra- and in-
tersubband Dresselhaus SO effects, and provide an extra
leverage for extracting a reliable bulk Dresselhaus SO param-
eter, the value of which is usually controversial in both theory
and experiment [39,42].

The rest of this paper is organized as follows. In Sec. II,
by accounting for the interfacial effect, we transform the
bulk Dresselhaus SO Hamiltonian to a three-dimensional
(3D) form for heterostructures grown along the z||[100] di-
rection. Then, we derive the effective 2D form from the
corresponding 3D Hamiltonian, and show expressions of the
interface-mediated Dresselhaus SO terms of both intra- and
intersubband kinds. In Sec. III, we first introduce our system
and relevant physical parameters adopted, and further present
our self-consistent results and discussion. We summarize our
main findings in Sec. IV.

II. MODEL HAMILTONIANS: FROM THREE
TO TWO DIMENSIONS

In this section, we first present the Dresselhaus SO term
in the bulk case. Then, following the symmetrization pro-
cedure for noncommuting operators [39,41], we account for
the interfacial effect and generalize the bulk form to that for
2D heterostructures. For generality, we consider two occupied
electron subbands, for which both the intra- and intersubband
Dresselhaus SO terms including relevant interfacial contribu-
tions are derived.

A. Bulk Dresselhaus SO coupling

The Dresselhaus SO coupling, which arises from broken
bulk inversion symmetry, in semiconductors with zinc blende
structure reads [25]

Hbulk
D = γ

[
σxkx

(
k2

y − k2
z

) + σyky
(
k2

z − k2
x

) + σzkz
(
k2

x − k2
y

)]
,

(1)

with kx,y,z the wave-vector components along the x||[100],
y||[010], and z||[001] directions, respectively, and σx,y,z the
Pauli matrices. The bulk Dresselhaus SO constant (γ ), from

a 14-band k · p calculation, is written as γ = γ (0) + γ (1)

[42,43], with

γ (0) = 4

3
PQP′ (Eg + �)(E ′

g + �′) − EgE ′
g

Eg(Eg + �)E ′
g(E ′

g + �′)
(2)

and

γ (1) = −4

9
�−Q

P2(3E ′
g + 2�′) − P′2(3Eg + 2E ′

g + �)

Eg(Eg + �)E ′
g(E ′

g + �′)
,

(3)
where P is the interband Kane matrix element, Eg is the
fundamental band gap, and � is the split-off gap. The corre-
sponding counterparts for the p conduction band are denoted
by P′, E ′

g, and �′. The parameters Q and �− are associated
with interband matrix elements between the p-conduction and
p-valence bands.

B. Dresselhaus Hamiltonian in heterostructures

Here we show the 3D form of the Dresselhaus SO Hamilto-
nian for electrons in heterostructures incorporating the impact
of interfacial effect. Then, we present the effective 2D expres-
sion in the case of two subbands, involving the Dresselhaus
SO terms of both intra- and intersubband types. This is beyond
available reports in the literature [15,34,38–40], including the
seminal work by Dyakonov and Kachorovskii [37], in which
2D electrons with only one occupied subband (i.e., no inter-
subband terms) were considered and the interfacial effect was
ignored.

1. 3D form

We consider quantum heterostructures grown along the
z||[001] direction. The corresponding 3D Hamiltonian for
electrons including the Dresselhaus SO coupling reads

H3D = h̄2k2

2m∗ − h̄2

2m∗
∂2

∂z2
+ V (z) +H3D

D , (4)

where m∗ is the electron effective mass and k =
√

k2
x + k2

y is

the in-plane electron momentum. The third term, V = Vw +
Vg + Vd + Ve, is the electron confining potential, which is
determined self-consistently within the Poisson-Schrödinger
Hartree approximation, with Vw the structural potential (band
offset), Vg the external gate potential, Vd the doping potential,
and Ve the electron Hartree potential. The last term, H3D

D ,
describes the Dresselhaus SO interaction in heterostructures.
In the literature, this term is often treated in a way of set-
ting the bulk Dresselhaus parameter γ as a common constant
shared by distinct layers of heterostructures. Here, to take into
account the interfacial effect, γ is considered layer (i.e., z)
dependent [39]. Based on the bulk expression [Eq. (1)], one
obtains in heterostructures the Dresselhaus term (H3D

D ), which
comprises the linear [H3D

D (1)], quadratic [H3D
D (2)], as well as a

cubic contribution [H3D
D (3)], i.e., H3D

D = H3D
D (1) +H3D

D (2) +
H3D
D (3), with

H3D
D (1) = kzγ (z)kz(σyky − σxkx ), (5)

H3D
D (2) = 1

2 [γ (z)kz + kzγ (z)]σz
(
k2

x − k2
y

)
, (6)
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and

H3D
D (3) = γ (z)kxky(σxky − σykx ), (7)

where kz = −i∂z. In Eqs. (5) and (6), the symmetrization
procedure is performed [39,41] since the operator kz does not
commute with γ (z). Clearly, when γ is constant throughout
the whole heterostructure, H3D

D (1) and H3D
D (3) become the

ordinary linear and cubic terms, respectively, i.e., H3D
D (1) →

γ k2
z (σyky − σxkx ) and H3D

D (3) → γ kxky(σxky − σykx ), and the
quadratic contributionH3D

D (2) turns to γ kzσz(k2
x − k2

y ).

2. Effective 2D form

Now we are ready to define an effective 2D model from
the 3D Hamiltonian [Eq. (4)]. We first self-consistently

determine the spin-degenerate eigenvalues εkν = Eν +
h̄2k2/2m∗ and the corresponding eigenspinors |kνσ 〉 =
|kν〉 ⊗ |σ 〉, 〈r|kν〉 = exp(ik · r)ψν (z), of heterostructures in
the absence of SO interaction. To more accurately describe the
interfacial effect, we solve in our self-consistent procedure the
Ben Daniel–Duke model [17,41], which takes into account
layer-dependent effective mass, for the spin-degenerate
eigensolutions. Here we have defined Eν (ψν), ν = 1, 2, as
the νth quantized energy level (wave function) and σ =↑,↓
as the electron spin component along the z direction.

By projecting the 3D Hamiltonian onto the basis set
{|kνσ 〉}, we obtain an effective 2D model for the Dresselhaus
SO coupling in heterostructures with two occupied electron
subbands having both intra- and intersubband terms. Then, in
the coordinate system [x||(100), y||(010)] under the basis set
{|k1 ↑〉, |k1 ↓〉, |k2 ↑〉, |k2 ↓〉}, our effective 2D model reads

H2D =
(

εk11+β1,eff k(σy sin θ−σx cos θ )
−β1,3k(σy sin 3θ+σx cos 3θ )

�eff k(σy sin θ−σx cos θ )
−�3k(σy sin 3θ+σx cos 3θ )+�2k2σz cos 2θ

�eff k(σy sin θ−σx cos θ )
−�3k(σy sin 3θ+σx cos 3θ )+�∗

2 k2σz cos 2θ

εk21+β1,eff k(σy sin θ−σx cos θ )
−β1,3k(σy sin 3θ+σx cos 3θ )

)
, (8)

with θ the angle between k and the x axis and 1 the 2 × 2 iden-
tity matrix. Below we define the Dresselhaus SO coefficients
of both intra- and intersubband terms appearing in Eq. (8).
Note that the quadratic intersubband term �2 itself is complex
as a result of the Hamiltonian remaining invariant under the
symmetry operation of the time-reversal operator.

C. Dresselhaus coefficients

For heterostructures with two occupied electron subbands,
the projection procedure leading to Eq. (8) amounts to calcu-
lating the matrix elements of H3D [Eq. (4)] in the truncated
basis set {|kνσ 〉}. In this process, we obtain the Dresselhaus
SO coefficients of both intrasubband (β) and intersubband
(�) terms. For the intrasubband SO coupling, since the usual
linear term and the interface term have the same functional
form, we can group them together with the first-harmonic con-
tribution βν,3 [44] into a single renormalized term by defining
βν,eff = βν,u + βν,int − βν,3, with βν,u the usual linear term,
βν,int the interface term, and βν,3 the cubic term,

βν,u = −〈ν|γ (z)∂2
z |ν〉, (9)

βν,int = −〈ν|γint (z)∂z|ν〉, (10)

and

βν,3 = 〈ν|γ (z)|ν〉k2
F/4. (11)

with kF the Fermi wave vector.
Similarly, for the intersubband terms, we also have the

renormalized Dresselhaus SO coefficient �eff = �u + �int −
�3, where �u, �int, and �3 denote the usual linear contribution,
interface contribution, and cubic contribution, respectively:

�u = −〈1|γ (z)∂2
z |2〉, (12)

�int = −〈1|γint (z)∂z|2〉, (13)

and

�3 = 〈1|γ (z)|2〉k2
F/4. (14)

Clearly, in the absence of the interfacial effect with γ

being z independent, �int and �3 identically vanish [14] due
to the orthogonality relation of wave functions of distinct
subbands. Furthermore, the interfacial effect also gives rise
to a quadratic contribution (�2) to intersubband terms, with

�2 = − 1
2 i〈1|γ (z)∂z + ∂zγ (z)|2〉. (15)

Note that the intrasubband quadratic Dresselhaus contri-
bution arising from the interfacial effect is negligibly small
primarily because of wave-function parities. In addition, it is
also worth noting that the expectation values of k2

z and other
related operators implicitly depend on the gate potential Vg,
and also on the doping potential Vd, electron Hartree potential
Ve, and structural potential Vw. In our calculation, for each
value of Vg, we self-consistently determine the total confining
potential V = Vg + Vd + Ve + Vw [Eq. (4)] and the eigenstates
of the system and further the expectation value of the relevant
operators [see Eqs. (9)–(15)].

III. RESULTS AND DISCUSSION

We first introduce our system and relevant parameters
adopted. Then, we show our self-consistent calculations of
the interface-mediated Dresselhaus SO couplings including
both intra- and intersubband terms in a single heterostructure
(SH) with either one or two occupied electron subbands. We
also compare with the case of a double-heterostructure (DH)
configuration, i.e., an ordinary quantum well, which involves
the interplay of two heterojunctions and allows for consid-
ering a gate-controlled geometry of the well having local
structural inversion symmetry even under asymmetric doping
conditions. Furthermore, emergent unusual avoided crossings
of the energy dispersion within the pure Dresselhaus model
induced by the quadratic intersubband term, which depends
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FIG. 1. (a) Growth profile (left) of an n-doped
Al0.48In0.52As/Ga0.47In0.53As heterostructure and the band structure
(right) with only one occupied subband, where Vg denotes the
external gate potential; vertical lines indicate the subband energy
(solid) and Fermi level (dashed). (b) Self-consistent potential Vsc

(=Vw + Vg+d + Ve) and wave function profile ψ1 of the first subband
for the heterostructure at Vg = −0.2 eV with interface smoothness of
ξ = 0.1 nm (dotted curves) and 3 nm (solid curves). (c) Functional
profile of γ (z), ψ1(z), and ψ ′′

1 (z) near the two-dimensional electron
gas (2DEG) region at ξ = 1 nm. (d) Dresselhaus SO coefficients
including β1,u, β1,int , β1,3, and β1,eff (=β1,u + β1,int − β1,3) as
functions of γb. (e) Dependence of relevant SO strengths on ξ . In
(d), ξ = 0.1 nm; in (e), γb = 11 eV Å3. The black circle in (e)
indicates vanishing β1,eff at ξ ∼ 3.8 nm. The Fermi energy is held
fixed at EF = −0.45 eV so that only the first subband is occupied.

on the interfacial effect and the parity of wave functions, are
also discussed.

A. System and parameters

We consider Al0.48In0.52As/Ga0.47In0.53As single and dou-
ble heterostructures grown along the (001) direction [left
panel of Fig. 1(a)], similar to experimental samples of
Ref. [45].

For the SH configuration, the ionized dopants of width
6 nm in the Al0.48In0.52 layer [Fig. 1(a)] sit 18 nm away
from where the heterojunction (interface) lies, with the doping
density ρd = 8.0 × 1018 cm−3. To facilitate our discussions in
a comparative manner with the SH case, which obviously has
structural inversion asymmetry, we consider in the DH config-
uration an asymmetric doping condition with doping densities
ρd1 = 5.2 × 1018 cm−3 and ρd2 = 4.0 × 1018 cm−3 on the
two sides of the doping layers, respectively. The temperature

is 0.3 K. We should emphasize that the effect of temperature
in our calculation mainly enters the Fermi-Dirac distribution
[15,46], which favors the occupation of higher-energy sub-
bands at a high temperature. Strictly speaking, although the
band parameters and the Kane parameters involved in the
Kane model also depend on temperature [39,47], we have
recently verified that these effects only provide negligible
corrections to the SO couplings [48]. Therefore, our results
are essentially also valid for temperatures above 0.3 K within
a regime that the higher third subband remains unoccupied.
When the third subband starts to be occupied by electrons,
there will be more emerging SO contributions of intra- and
intersubband kinds [49].

By adjusting the Fermi level (EF) or the external gate
potential (Vg), one can control the subband occupations of het-
erostructures. Note that (i) for a given quantum system, EF is
pinned at a constant to determine our self-consistent outcome
[15,21], e.g., the electron density and so the corresponding
Hartree potential, and (ii) Vg is adopted for a simultane-
ous tuning of the electron occupancy and the symmetry of
heterostructures [17,50]. The right-hand panel of Fig. 1(a)
shows the schematic of the potential profile of the layered
system.

The offset at the heterojunction is chosen as δc = 0.52 eV
[21,51]. The effective electron masses of different lay-
ers forming the heterostructure are m∗(Al0.48In0.52As) =
0.073m0 and m∗(Ga0.47In0.53As) = 0.043m0 [21,51], respec-
tively, with m0 the bare electron mass. The distinction of
effective masses is involved in the Ben Daniel–Duke equation
[17,41], from which we determine spin-degenerate eigen-
solutions used for obtaining the effective 2D model with
Dresselhaus SO terms of both intra- and intersubband types
(Sec. II).

The exact value of the bulk Dresselhaus parameter γ is
controversial in both theory and experiment; e.g., its value in
GaAs ranges from 8.5 to 30 eV Å3 [39,42]. To proceed in
exploring the interfacial effect, we take γw = 23 eV Å3 [21]
in the Ga0.47In0.53As layer, and vary γb in the Al0.48In0.52As
barrier layer [52] to determine how the interface-associated
Dresselhaus SO terms depend on γb. Furthermore, we in-
troduce the hyperbolic tangent function to describe the
structural potential, Vw(z) = δc[1 − tanh(z/ξ )]/2, of a single
heterostructure with the interface located at z = 0. Here the
parameter ξ characterizes the interface smoothness, allowing
us to treat it as an adjustable parameter for exploring more
thoroughly the interfacial effect on the Dresselhaus SO cou-
pling. Clearly, the interface tends to become steeper as ξ

decreases and Vw(z) approaches the profile of the Heaviside
step function when ξ ∼ 0.1 nm [Fig. 1(b)].

B. Self-consistent outcome

In Fig. 1(b), we show the self-consistent potential Vsc in-
cluding several distinct constituents, i.e., Vw, Vg+d (=Vg + Vd)
and Ve, as well as the wave-function profiles ψν (ν = 1, 2) for
the single Al0.48In0.52As/Ga0.47In0.53As heterostructure with
two cases of smoothness, ξ = 0.1 nm (solid curves) and 3 nm
(dashed curves). The structural potential Vw exhibits the usual
step-function profile for the interface at ξ = 0.1 nm, and, as ξ

increases, the potential jump from one layer to the other due to
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z (nm)

FIG. 2. (a) Self-consistent potential Vsc and wave function pro-
files ψν (ν = 1, 2) for a Al0.48In0.52As/Ga0.47In0.53As heterostructure
with ξ = 0.1 (solid curves) and 3 (dashed curves) at Vg = −0.3 eV.
(b–d) Dresselhaus SO coefficients of the two subbands including
βν,u, βν,int , βν,3, and βν,eff (=βν,u + βν,int − βν,3) as functions of (b) γb

and (c, d) ξ . In (b), ξ = 0.1 nm; the cubic contribution βν,3 is not
shown as it is essentially independent of γb [see Fig. 1(c)]; in (c) and
(d), γb = 11 eV Å3; the black circle indicates that β2,eff is vanishing
at ξ ∼ 3.4 nm. The Fermi level is set at EF = −0.35 eV, ensuring
that there are two occupied electron subbands.

the band offset becomes more smooth. Thus, it is reasonable
to set ξ as a parameter characterizing the interface smoothness
(cf. Vw at ξ = 0.1 and 3 nm). The gate plus doping potential
Vg+d entirely depends on the doping condition and the external
gate, and hence maintains invariance with respect to ξ . In con-
trast, the interface smoothness may affect the electron Hartree
potential Ve as it modifies our self-consistent outcome and so
the electron charge density (cf. Vg+d and Ve).

Figure 1(c) shows the distributional profiles of γ (z), ψ1(z)
and its second derivative with respect to z [i.e., ψ ′′

1 (z)], which
are the essential quantities determining the Dresselhaus SO
terms [Eqs. (9)–(15)]. Here we present a case of the het-
erostructure having a relatively smooth interface with ξ = 1
nm for better illustrating the distributional profile of relevant
quantities, without lack of generality. It is found that the
averaged value of ψ1(z)ψ ′′

1 (z), i.e., 〈ψ1(z)ψ ′′
1 (z)〉, which asso-

ciates with the expectation value of k2
z , is greater and less than

zero when z < 0 and z > 0, respectively. These self-consistent
outcomes, including more of others that we analyze below
[see Figs. 2(a), 3(a), and 3(b)], are helpful in elucidating our
calculated SO couplings.

C. Interface-mediated Dresselhaus SO couplings

1. Single occupancy

In Fig. 1(d), we show the interface-associated Dresselhaus
couplings as functions of γb for the heterostructure having
only one occupied subband. We first look into the usual linear

FIG. 3. Self-consistent potential Vsc and wave-function profiles
ψν for the Al0.48In0.52As/Ga0.47In0.53As heterostructure with ξ = 0.1
nm at (a) Vg = −0.1 eV and (b) Vg = −0.3 eV. The horizontal lines
inside the heterostructural confinement indicate the subband energy
levels E1 and E2. (a) E1 = −420.6 meV, E2 = −363.5 meV; in
(b), E1 = −419.1 meV, E2 = −354.1 meV. (c, d) Dresselhaus SO
coefficients as functions of Vg, with the inset in (c) showing the gate
dependence of subband occupations nν with ne = n1 + n2. In (a) and
(b), the vertical dotted line indicates where the second-subband wave
function vanishes, with �z a shift between two biases of Vg = −0.3
and −0.1 eV; in (c) and (d), the vertical dotted line at Vg ∼ −0.01 eV
marks a transition from single to double electron occupancy. The
Fermi energy is held fixed at EF = −0.35 eV so that there are two
occupied electron subbands.

and cubic terms. We observe that the usual linear Dressel-
haus SO coefficient β1,u = 〈ψ1|γ (z)k2

z |ψ1〉 decreases (though
slightly) with the increasing of γb, in contrast to the usual
scenario in which the increasing of bulk Dresselhaus constant
is expected to enhance the SO strength. This unusual fea-
ture follows directly from our self-consistent outcome of the
sign reversal of the quantity 〈ψ1(z)ψ ′′

1 (z)〉 across the interface
[Fig. 1(c)], making γw and γb have compensated contribu-
tions to β1,u. Regarding the cubic term, since the electrons
are mostly confined in the Ga0.47In0.53As layer [Fig. 1(b)],
which has a lower potential energy for electrons, which leads
to 〈γ (z)〉 ∼ γw, it straightforwardly follows that β1,3 remains
essentially constant when γb varies. We should note that the
slight reduction of β1,u with γb is usually ignored in the
literature, where γ (z) is assumed layer independent by setting
it equal to γw throughout the entire system.

Now we turn to the interface term β1,int . For a step-function
profiled interface, it is straightforward to obtain from Eq. (13)
a more expanded form, with β1,int = ψ1(z = 0)[γbψ

′
1(z =

0−) − γwψ ′
1(z = 0+)], in which z = 0 is where the interface

lies. Depending on the interplay of the quantities γw, γb,
and ψ ′

1(z), with ψ ′
1(z) obeying the matching condition of

(1/mb)ψ ′
1(0−) = (1/mw)ψ ′

1(0+) at the interface [53], β1,int

may have opposite signs to the usual linear and cubic terms
[Fig. 1(d)] [54]. For the renormalized term β1,eff , it essentially
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increases linearly with γb, following from the combined de-
pendence of β1,u, β1,int and β1,3 on γb (Sec. II C).

Figure 1(e) shows the dependence of Dresselhaus SO
coefficients on the interface smoothness. To perform our
numerical simulation on heterostructures with interfaces of
different smoothness, we consider the structural potential hav-
ing the functional form of Vw(z) = δc[1 − tanh(z/ξ )]/2 [55]
(Sec. III A), and similarly for other essential layer-dependent
physical quantities including the bulk Dresselhaus pa-
rameter γ (z) = (γb + γw)/2 + [(γw − γb)/2] tanh(z/ξ ) and
the effective electron mass m(z) = (mb + mw)/2 + [(mw −
mb)/2] tanh(z/ξ ) [55], where the parameter ξ characterizes
the interface smoothness and the indices “b” and “w” sepa-
rately denote the barrier and well layers. Furthermore, when
we determine βν,int [Eq. (10)], in order to avoid an unex-
pected numerical deficit in dealing with the term γint (z), which
involves the derivative of γ (z) with respect to z and tends
to be a δ function for small values of ξ , we resort to the
original Ben Daniel–Duke equation [17,41] and compute βν,int

through a trick, as shown in the Appendix. We find that β1,int

decreases greatly with the increasing of ξ , indicating that
the interfacial effect gets to be quenched for heterostructures
having a smoother interface, as expected. Similarly, the usual
linear term β1,u also becomes weakened with growing ξ as a
larger smoothness of heterostructures implies a weaker quan-
tum confinement for electrons. As for the cubic term β1,3, it
is weakly dependent of the interface smoothness. Remark-
ably, we observe that the renormalized linear Dresselhaus
SO coefficient β1,eff may vanish at around ξ = 3.4 nm and
further change the sign (see the black circle). This opens up
more possibilities of manipulating the intriguing state of the
persistent spin helix [56–59].

As a remark, to describe the interface smoothness, in ad-
dition to the form of hyperbolic tangent function that was
widely adopted in the literature [55,60–63], one can also resort
to the Gaussian profile [64]. Our main conclusion about the
interface effect does not depend on the choice of Vw(z) [and
γ (z)] in describing the smoothness. For either choice, the
interface becomes the step-function-like profile in the abrupt
case and the offset near the heterojunction tends to vanish
when the interface is smooth enough. Most importantly, the
interface effect gets quenched with increasing smoothness, as
discussed above, which is physically reasonable. Furthermore,
experimentally, the interface smoothness can be realized by
alloy composition and architecture [60–63] for exploring the
interface-mediated SO couplings in future.

2. Double occupancy

Now we focus on the heterostructure having two occupied
electron subbands, which can be directly achieved by increas-
ing the Fermi level or lifting the external gate potential energy.
In Fig. 2(a), we show the corresponding self-consistent po-
tential Vsc and the wave-function profiles of ψν of the two
subbands for heterostructures with interface smoothness ξ =
0.1 and 3 nm. As mentioned in Sec. III C 1, a larger inter-
face smoothness represents a weaker quantum confinement
for electrons. This can also be seen from the distributional
profile of ψν in Fig. 2(a), where the wave function spreads
more for a larger value of ξ away from the interface [cf.
ψν at ξ = 0.1 nm (solid curves) and 3 nm (dotted curves)].

Moreover, ψ1 has a more sensitive dependence on ξ than ψ2,
as electrons occupying the first (lowest) subband feel more
straightforward for the interface-engineering-induced modifi-
cations of the confinement potential.

Similar to the case of single electron occupancy, we first
look into how the bulk Dresselhaus parameter γb of the barrier
layer affects relevant SO terms including βν,u, βν,int , and βν,eff ,
as shown in Fig. 2(b). Note that the cubic contribution βν,3 is
not shown as it is essentially independent of γb [Fig. 1(c)].
On the one hand, the basic behavior of relevant SO terms as
functions of γb is found similar to that when there is only one
occupied subband; on the other hand, all the relevant SO terms
of the second subband have much weaker dependence on γb

than those of the first subband. This straightforwardly follows
from the fact that ψ1 has more penetration than ψ2 into the
barrier layer, enhancing (quenching) the dependence of SO
terms on γb of the first (second) subband.

In Figs. 2(c) and 2(d), we show the Dresselhaus SO co-
efficients as functions of ξ for heterostructures having two
occupied subbands. We find that β1,u decreases more abruptly
than β2,u. This is a direct consequence of the self-consistent
outcome that ψ1 more sensitively depends on ξ than ψ2

[Fig. 3(a)]; i.e., ψ1 spreads more than ψ2 as ξ increases. As for
the other SO terms including the interface contribution (βν,int),
the SO coefficients of the second subband also have a more
sensitive dependence on ξ than the ones of the first subband.
Interestingly, for the renormalized Dresselhaus SO terms, we
find that β1,eff may have opposite signs to β2,eff when ξ is
greater than 3.4 nm [see the black circle in Fig. 2(d)]. This
gives rise to the feasibility of creating in conventional semi-
conductors the interface-engineered topological matter of
persistent skyrmion lattices [14], which requires compensated
SO strengths of the Rashba and renormalized Dresselhaus
terms, with the two terms having opposite signs for one of
the two subbands and the same sign for the other subband,
i.e., α1 = ±β1,eff and α2 = ∓β2,eff . Note that here it is possi-
ble to attain the persistent skyrmion lattice (PSL) regime by
engineering the interface effect at a fixed gate potential. This
together with the electrical manner that we adopted before
[14] makes the manipulation of the PSL state more flexible.
For more details about the matching of Rashba and Dres-
selhaus SO strengths, see Sec. III E, in which the effect of
random Rashba coupling is also discussed.

It is worth noting that the bulk Dresselhaus parameter γ is
usually extracted from experiment. For instance, Walser et al.
obtained γ ∼ 11 eV Å3 for GaAs-based quantum wells of
different widths [65]. This is also consistent with our recent
work, in which we extracted essentially the same value of γ ∼
11 eV Å3 for GaAs wells of distinct configurations by com-
bining theoretical simulation and experimental measurements
[15]. Since the usual Dresselhaus term and the interface term
have the same SO form, the interface term may get absorbed in
a changed value of γ extracted from the experiment, providing
an extra leverage for extracting reliable bulk Dresselhaus SO
parameters.

3. Electrical Dresselhaus SO control

Below we turn to the electrical control of the
interface-mediated Dresselhaus SO terms. To facilitate
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our discussions, we first look into how our self-consistent
outcome varies when the external gate potential changes.
In Figs. 3(a) and 3(b), we show the self-consistent potential
Vsc and the wave-function profiles ψν at Vg = −0.1 and
−0.3 eV, respectively. In contrast to the interface smoothness
dependence of electron distributions [Fig. 2(a)], for the gate
dependence it is found that ψ1 is more weakly dependent
on Vg than ψ2, following from the energy level of the first
subband being deeper than that of the second subband.
Specifically, when Vg varies from −0.1 to −0.3 eV, we
find that ψ1 remains essentially invariant with Vg while ψ2

becomes more localized, with the effective-confinement width
quenched roughly by �z ∼ 11 nm [cf. Figs. 3(a) and 3(b)].
This feature is helpful for elucidating the gate dependence of
our computed SO terms, as we analyze next.

Figures 3(c) and 3(d) show the electric control of relevant
Dresselhaus SO terms, with the inset in Fig. 3(c) illustrating
how the subband occupation varies as a function of Vg, from
which a simultaneous tuning of the SO strength and electron
occupancy can be achieved. The vertical (dotted) line at Vg ∼
−0.025 eV marks a transition of the electron occupancy from
two subbands to one subband as Vg increases. Remarkably,
when Vg < −0.025 eV (double occupancy), we observe that
β2,u increases more abruptly than β1,u, giving rise to three
distinct scenarios of β1,u < β2,u, β1,u = β2,u, and β1,u > β2,u,
which are fully controlled in the electrical manner, greatly
facilitating selective SO control of distinct subbands. This
directly follows from the feature of our self-consistent out-
come that ψ1 has much weaker dependence on Vg than ψ2.
As a consequence, β2,eff containing β2,u as a constituent also
has a strong dependence on Vg, in contrast to β1,eff , which is
weakly dependent of Vg. Note that one can in general realize
the electrical control of βν,eff by adjusting βν,3 (∝ nν), which
depends on the subband occupation, through an external gate
[15]. Here we achieve a flexible control of β2,eff mainly by
electrically varying β2,u, which in general is immune to Vg

[14,15]. On the other hand, we observe that the interface SO
term βν,int of either subband, which mainly depends on the
interfacial details (e.g., interface smoothness), exhibits weak
gate dependence.

For completeness, we also examine the gate dependence of
interface-mediated Dresselhaus SO couplings for heterostruc-
tures in the DH configuration, i.e., an ordinary quantum well,
as shown in Figs. 4(a) and 4(b). For the usual linear term
βν,u, we observe contrasting features of the SO control to
the case of the SH configuration. First, as usual, βν,u, which
mainly depends on quantum confinement, remains essentially
constant with Vg. Also, the inequality β2,u > β1,u maintains
in the entire gate-voltage ranges considered. These are in
distinct contrast to the SO features in the SH configuration
[cf. Figs. 3(c) and 4(a)]. On the other hand, for the other
interface-involved Dresselhaus SO contributions including the
interface term βν,int and the cubic term βν,3, the corresponding
gate dependence is similar to that for heterostructures in the
SH configuration.

Now, we turn to the intersubband Dresselhaus SO control.
In Figs. 5(a) and 5(b), we show relevant intersubband SO
terms as functions of Vg for heterostructures in the SH and
DH configurations, respectively. Due to the triangular-type
confinement in the SH configuration [e.g., Figs. 1(b) and 2(a)],

FIG. 4. Dresselhaus SO coefficients of the two subbands includ-
ing (a) βν,u and βν,int and (b) βν,3 and βν,eff (=βν,u + βν,int − βν,3) for
Al0.48In0.52As/Ga0.47In0.53As double heterostructures (i.e., quantum
well) with ξ = 0.1 nm as functions of Vg. The inset in (b) shows how
the subband occupation nν with ne = n1 + n2 varies as a function of
Vg. In (a) and (b), the vertical dotted line at about Vg = −0.01 eV
marks a transition of the electron occupancy from one to two sub-
bands. The width of the well is 14 nm and the Fermi energy is
held fixed at EF = −0.31 eV so that there are two occupied electron
subbands.

which greatly breaks the intrinsic even or odd parities of the
wave functions of the two subbands, the intersubband SO
terms are much stronger than the corresponding analogs in
the DH configuration with the structural potential Vw having
the symmetric profile of a square well. Note that since the SH
configuration is entirely spatially asymmetric, we consider the
quantum well of the DH configuration being asymmetrically
doped (Sec. III A), to facilitate comparisons of SO terms in
the two configurations. Interestingly, in spite of the asym-
metric doping condition for the DH case, we observe when

(b)

DHSH 

FIG. 5. Intersubband Dresselhaus SO coefficients including �u,
�int , �3, and �eff (=�u + �int − �3) as functions of Vg for the
Al0.48In0.52As/Ga0.47In0.53As (a) single and (b) double heterostruc-
tures with ξ = 0.1 nm. In (b), the inset shows the self-consistent
potential energy Vsc and wave-function profiles ψν (ν = 1, 2) for the
double heterostructures with Vg = −0.023 eV, at which an effective
local symmetric configuration near the well (2DEG) region occurs
even though the overall system is clearly asymmetric. This local
symmetric configuration comes from the compensated contributions
to symmetry breaking from the external gate and asymmetric doping
condition. The Fermi energy is held fixed at EF = −0.31 eV so that
there are two occupied electron subbands. The well width in the DH
configuration is 14 nm.
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FIG. 6. (a) The quadratic intersubband Dresselhaus SO term as
a function of Vg for Al0.48In0.52As/Ga0.47In0.53As both single (solid
curves) and double (dotted curves) heterostructures with ξ = 0.1 nm.
(b) Avoided crossings of energy dispersion (scaled by a factor of two
orders for visibility) of the four spin branches (two for each subband)
Eλ2

k,λ1
along the ky||[010] direction when �2 
= 0 and � 
= 0. The

black dashed lines are for the case in the absence of quadratic terms,
indicating the crossing remains when �2 = 0 even when � 
= 0. The
SO constants are chosen at Vg = −0.3 eV for the single heterostruc-
ture (see Figs. 3 and 5).

Vg ∼ −0.025 eV a local symmetric geometry near the well
region, arising from compensated contributions of the asym-
metric doping condition and external gate to the symmetry
breaking. Furthermore, in this configuration embracing local
space inversion symmetry, the intersubband SO terms includ-
ing �u, �3, �int, and �eff (=�u + �int − �3) identically vanish
because of distinct parities of wave functions of different
subbands. Strictly speaking, note that the quantum well in this
local symmetric configuration is actually asymmetric from
the perspective of the overall system, due to the unbalanced
doping conditions considered (Sec. III A).

D. Unusual avoided crossings induced by the quadratic
interface Dresselhaus SO term

Finally, we move to the unusual intersubband quadratic
term �2 as well as the associated novel features that it induced
in the energy dispersion. We first have a look at its gate
dependence, as shown in Fig. 6(a) for both the single (solid
curves) and double (dotted curves) heterostructures. We find
that the quadratic term is weaker in the SH configuration than
that in the DH one, following from the fact that it is nonzero
even in the symmetric geometry due to distinct parities of the
two-subband wave functions [Eq. (15)]. In other words, the
two interfaces of the system in the DH configuration exhibit
a constructive interplay in enhancing the quadratic SO contri-
bution. This is in stark contrast to the other intersubband terms
(i.e., �u and �3) aforementioned, which identically vanish
even in a configuration which is locally symmetric. On the
other hand, we observe that the quadratic term has a relatively
stronger gate dependence in the former (SH) configuration.

In Fig. 6(b), we show the energy dispersion Eλ2
k,λ1

, which
can be obtained by solving Eq. (8), of the four spin branches
(two for each subband) associated with two occupied sub-
bands. Here λ1 = ±1 and λ2 = ±1 represent the pseudospin
(subband) and real spin, respectively. Regarding the usual
Dresselhaus model in the absence of the interfacial effect,
even under the impact of intersubband term (�u), the spin

branches of the two subbands remain crossed [see the dotted
(black) lines]. The underlying physics is that the usual linear
intersubband term only couples the same spin branches of the
two subbands, which is also true for the pure Rashba model
[17]. Interestingly, in the presence of �2, which depends on
the interfacial effect and the parity of wave functions, we
reveal that it may induce unusual anticrossings of the band
dispersion [see the solid (blue and red) lines for E−

k,−, E+
k,−,

E−
k,+, and E+

k,+ for the four spin (and subband) branches]. We
should emphasize that the avoided crossings induced by the
quadratic SO contribution may hybridize the energy branches
of distinct spins and further induce novel spin textures, in
contrast to the effect of the usual linear intersubband term.
These features are worth exploring in a future work.

E. Rashba SO coupling

1. Matching Rashba and Dresselhaus SO strengths

The interplay of Rashba and Dresselhaus SO couplings
may lead to intriguing features [14,56,57]. In particular, when
the strengths of the Rashba (αν) and Dresselhaus (βν,eff )
constants match, the competing effects of two distinct SO
interactions (Rashba and Dresselhaus) can (partially) cancel
each other out, thus reducing spin decay. In this case, a
robust spin-density wave excitation of persistent spin helix
may emerge in 2D electron gases [56–59]. Also, we re-
cently revealed that quantum wells with two subbands can
sustain an intriguing spin texture of a persistent skyrmion
lattice with topological properties when α1 = ±β1,eff and
α2 = ∓β2,eff [14].

For quantum wells with only one occupied subband, the
persistent spin helix has been observed experimentally by
means of spin-grating spectroscopy [58], and via time- and
spatially resolved magneto-optical Kerr rotation [59,66]. And
recently, we even realized the continuous locking of the SO
fields at α1 = β1,eff , which makes possible the concept of
stretchable spin helices. Thus, here we mainly focus on the
challenging case of double electron occupancy. In Fig. 7(a)
[Fig. 7(b)], we show the Rashba and the renormalized Dres-
selhaus SO strengths for our 14-nm quantum well with two
occupied subbands as functions of Vg (ξ ) [67]. Since the well
is relatively narrow, in the parameter range considered we
only achieve the matching Rashba and Dresselhaus strengths
for the first subband, i.e., α1 = β1,eff (see black circle), while
for the second subband β2,eff is much greater than α2. It is in-
teresting to note that at Vg ∼ −0.22 eV the relation α1 = β1,eff

(though the strength is quite weak) essentially remains for all
values of smoothness considered [see Fig. 7(b)]. To simul-
taneously have α1 = ±β1,eff and α2 = ∓β2,eff in the regime
of persistent skyrmion lattice, one can in principle resort to a
wider quantum well which has smaller β2,eff or a double-well
configuration. In the latter double-well case, we show the de-
pendence of αν and βν,eff on Vg (ξ ) in Fig. 7(c) [Fig. 7(d)], and
the matching of Rashba and Dresselhaus strengths is indicated
by black circles. For more details about our self-consistent
procedure in evaluating the the Rashba coupling comprising
contributions from the gate potential (Vg), doping potential
(Vd), electron Hartree potential (Ve), and structural potential
(Vw), see Refs. [14,15,46].
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FIG. 7. Rashba αν and Dresselhaus βν,eff (=βν,u +
βν,int − βν,3) (ν = 1, 2) SO coupling constants for the
Al0.48In0.52As/Ga0.47In0.53As single well of width equal to 14 nm
as functions of (a) Vg at ξ = 0.1 nm and of (b) ξ at Vg = −0.22 eV.
(c, d) Dependence of Rashba and Dresselhaus coefficients on (c) Vg

at ξ = 0.1 nm and (d) ξ at Vg = −0.016 eV for a “7/4/7” double
well, with the numbers 7 and 4 denoting the width of the two local
(left and right) wells (7 nm) and of the central barrier (4 nm),
respectively. The black circles indicate where the matching of αν

and βν,eff occurs. Note that in (b) αν (though it is small) essentially
matches βν,eff for all values of smoothness (ξ ) considered. In (a) and
(b), the Fermi level is held fixed at EF = −0.35 eV; in (c) and (d),
we set EF = 0.

2. Random Rashba coupling

Fluctuations of the concentration of dopant ions could lead
to a random electric field along the growth direction of het-
erostructures [68,69], and hence a random Rashba coupling
[68–72]. We follow Ref. [68] and evaluate the averaged ran-

dom Rashba SO strength
√

〈α2
R〉 = e2ξ

√
πnd/4πεRd , with

the subscript R indicating the random contribution. Here
e is the electron charge, ε denotes the dielectric con-
stant, Rd refers to the distance from the doping region
to the well center, and ξ is a Rashba parameter depend-
ing on bulk quantities of materials [15,46]. As electrons of
the two subbands see the same doping conditions, fluctu-
ations of the Rashba couplings are assumed the same in
both subbands. For our quantum heterostructures, we obtain√

〈α2
ν,R〉 ∼ 0.1αν . The random Rashba coupling may mod-

ify the matching condition of the persistent spin helix and
skyrmion lattice. Depending on specific applications, one can
enhance (quench) the random Rashba effect by increasing
(decreasing) the doping concentration and/or by setting the

doping region near (distant from) the region of 2D electron
gases.

IV. CONCLUDING REMARKS

Starting from the bulk crystal to heterostructures, we
have explored systematically the interface-mediated Dres-
selhaus spin-orbit (SO) couplings including the usual
linear and cubic contributions as well as the interface
terms of both intra- and intersubband kinds. We consider
Al0.48In0.52As/Ga0.47In0.53As heterostructures both single and
double heterostructures with either one or two occupied sub-
bands (ν = 1, 2). By varying the bulk Dresselhaus parameter
γb in the barrier layer and introducing the interface smooth-
ness coefficient ξ , we have determined how the relevant
SO terms depend on γb and ξ . We observe that the inter-
face SO term may be comparable with the usual ones and
becomes more important at either a lower interface smooth-
ness near the heterojunction or a weaker bulk Dresselhaus
strength of the barrier layer. Remarkably, it is found that
the renormalized Dresselhaus coefficient may change sign as
the interface smoothness varies, opening a feasibility of gen-
erating interface-engineered topological matter of persistent
skyrmion lattice [14]. Moreover, by adjusting the gate poten-
tial, we reveal that for a single heterostructure the Dresselhaus
coefficient of the second subband changes more abruptly than
that of the first subband, giving rise to three distinct scenarios
of β1,u < β2,u, β1,u = β2,u, and β1,u > β2,u, greatly fascinat-
ing for selective SO control of distinct subbands. The relevant
SO features have also been compared with the case of dou-
ble heterostructures, which involve the interplay of the two
interfaces in the SO contributions. Moreover, we also obtain
an emergent quadratic Dresselhaus SO term depending on the
interfacial effect and the parity of wave functions. As opposed
to intersubband terms of the usual linear and cubic kinds, the
quadratic contribution gives rise to avoided crossings of band
dispersion, which is expected to elucidate novel SO-related
phenomena beyond the usual Rashba and Dresselhaus model
in the absence of interfacial effect. Furthermore, the quadratic
SO term may hybridize energy branches of distinct spins and
further induce unusual hybridized spin textures. We point
out that the interface terms are expected to be important in
heterostructures with large band offset and distinct effective
electron mass and bulk Dresselhaus constants between differ-
ent layers. Our results should stimulate experiments probing
interface-mediated SO effects and provide an extra leverage
for extracting a reliable bulk Dresselhaus SO parameter, the
value of which is usually controversial in both theory and
experiment. Finally, hole SO coupling has also become one
of the main topics of interest in quantum heterostructures
owing to its rich physical phenomena [73–76] including Fermi
contour anisotropy [77], exciton gases [78], and topological
structures [79]. Additional work is needed to explore features
of the SO coupling for holes.
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APPENDIX: EVALUATION OF THE INTERFACE
DRESSELHAUS SO TERM

The interface Dresselhaus SO coefficient of the intrasub-
band term reads

βν,int = −〈ν|γint (z)∂z|ν〉 = −
∫

ψ∗
ν (z)γ ′(z)ψ ′(z) dz, (A1)

where the layer-dependent parameter γ (z) is treated in a
widely adopted way of introducing the hyperbolic tangent
function [55],

γ (z) = γw + γb

2
+ γw − γb

2
tanh

(
z

ξ

)
. (A2)

Note that γ (z) tends to become a Heaviside step function
as ξ decreases (see Sec. III A of the main text).

By inserting Eq. (A2) into Eq. (A1), it is straightforward to
obtain

βν,int = −γw − γb

2

∫
ψ∗

ν (z) tanh′
(

z

ξ

)
ψ ′

ν (z) dz. (A3)

To avoid the numerical deficit when dealing with the
function tanh′(z/ξ ) in particular for steep interfaces at small
values of ξ , we resort to the Ben Daniel–Duke equation
[17,41], resolving the issue in a tricky manner. Specifically,
the Ben Daniel–Duke model involving distinct effective elec-
tron masses of different layers is written as [17,41]

− h̄2

2

∂

∂z

1

m(z)

∂

∂z
ψν (z) + Vsc(z)ψν (z) = ενψν (z), (A4)

with

m(z) = mw + mb

2
+ mw − mb

2
tanh

(
z

ξ

)
. (A5)

By multiplying ψ∗
ν (z) on the left-hand side of Eq. (A4)

and making integration over the space of the z direction, one
obtains

I ≡
∫

ψ∗
ν (z)(εν − V (z))ψν (z) dz = II + III + IV, (A6)

where we have defined

II = − h̄2

4

(
1

mw
+ 1

mb

) ∫
ψ∗

ν (z)ψ ′′
ν (z) dz, (A7)

III = − h̄2

4

(
1

mw
− 1

mb

) ∫
ψ∗

ν (z) tanh

(
z

ξ

)
ψ ′′

ν (z) dz, (A8)

and

IV = − h̄2

4

(
1

mw
− 1

mb

) ∫
ψ∗

ν (z) tanh′
(

z

ξ

)
ψ ′

ν (z) dz. (A9)

From Eqs. (A6)–(A9), we rewrite the interface term
[Eq. (A1)] as

βν,int = 2(γw − γb)

h̄2

mwmb

mb − mw

∫
ψ∗

ν (z)[εν − V (z)]ψν (z) dz

+ γw − γb

2

∫
ψ∗

ν (z)

[
mw + mb

mb − mw
+ tanh

(
z

ξ

)]
×ψ ′′

ν (z) dz. (A10)

The same procedure can be applied to evaluate the inter-
subband term �int by replacing ψ∗

ν with ψ∗
ν ′ (ν 
= ν ′), i.e., the

corresponding expectation values involve the wave functions
of distinct subbands.
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