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Control of plasmons in topological insulators via local perturbations
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We use a fully quantum mechanical approach to demonstrate control of plasmonic excitations in prototype
models of topological insulators by molecule-scale perturbations. Strongly localized surface plasmons are
present in the host systems, arising from the topologically nontrivial single-particle edge states. A numerical
evaluation of the random phase approximation equations for the perturbed systems reveals how the positions and
the internal electronic structure of the added molecules affect the degeneracy of the locally confined collective
excitations, i.e., shifting the plasmonic energies of the host system and changing their spatial charge density
profile. In particular, we identify conditions under which significant charge transfer from the host system to the
added molecules occurs. Furthermore, the induced field energy density in the perturbed topological systems due
to external electric fields is determined.
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I. INTRODUCTION

Topological insulators (TIs) are characterized by a gapped
bulk energy spectrum and symmetry-protected conducting
surface states. Prominent examples of TIs include the integer
quantum Hall effect [1–7], the two-dimensional (2D) quantum
Hall insulator [8–10], which can host chiral edge currents, as
well as three-dimensional (3D) TIs whose topological surface
states are formed by massless Dirac fermions [11–13]. TIs
can also be realized in one spatial dimension, for example in
the paradigmatic example of the Su-Schrieffer-Heeger (SSH)
model [14]. In the topologically nontrivial phase, the SSH
chain has two localized single-electron edge states on its
boundaries. Implementations of topological waveguides based
on the SSH model include quantum emitters or superconduct-
ing qubits that are locally coupled to photonic TIs [15–18].
Furthermore, collective excitations, such as plasmons, in the
SSH chain and other TIs have been studied [19–25]. Here,
strongly localized plasmon modes were observed on the
boundaries of the SSH chain, which can be traced back to the
localized single-particle edge states.

One essential property of edge states in TIs is their ro-
bustness against disorder. For example, quantum Hall currents
are immune to backscattering from any surface impurity [26].
A topological classification for such defects was identified,
and the bulk-boundary correspondence was generalized, re-
lating these topological classes to protected gapless modes
at the defect [27]. Single-electron topological states are well
protected if their symmetry is preserved. However, whether
the collective excitations in TIs are protected, completely or
partially, is still an interesting and not fully resolved ques-
tion. Unlike single-electron states, collective excitations are
correlated phenomena routed in interactions [28–30]. It has
recently been shown that the plasmon edge modes in the
SSH model are less robust against global hopping disorder
than their constituent single-electron edge states [24], which
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is mainly due to the screening effect from the bulk electronic
bands [14,31]. Impurities will occur in TIs [32–34]. In this
work, we focus on the effects of local impurities on plasmonic
excitations in the SSH model and a mirrored variant model
(mSSH) connecting two SSH chains with distinct indices
of a topological invariant. Specifically, the local impurities
here are modeled by diatomic molecules that can be placed
at any position close to the unperturbed 1D host material.
While these local impurities are not expected to change the
single-electron spectrum of the host material drastically due to
topological protection, they can bring about other phenomena,
such as electron tunneling and Coulomb coupling between the
impurity molecule and the host material. As discussed below,
we clearly observe such effects of local impurities on the
localized plasmons excited at the boundaries (domain walls)
of the 1D SSH (mSSH) model, which are strongly dependent
on the positions of impurity molecules. As a reference point,
we also study local impurities in proximity to a simple 1D
metallic chain which hosts only extended plasmon modes
propagating in the bulk. In both cases, topological and trivial,
we discuss how control of impurity positions can be used as a
tuning knob for manipulating the plasmonic excitations.

The remainder of this paper is organized in the following
way. In Sec. II, we introduce the real-space random phase
approximation (RPA) method, which we use for all calcu-
lations of plasmons in this work. In Sec. III, we focus on
the three models under consideration: the 1D homogeneous
metallic chain, the 1D SSH model, and the 1D mSSH model.
We discuss in detail the effects of diatomic-molecule impu-
rities on plasmonic excitations in these host models, with
varying impurity positions and the internal coupling within
the perturbing molecule. This is followed by a conclusion and
outlook in Sec. IV.

II. METHOD

To study the plasmonic excitations in TIs, we use the real-
space random phase approximation (RPA), which has been
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introduced in previous studies [35–37]. One major advantage
of this approach is that we can directly obtain the real-space
charge oscillation pattern for each single plasmon mode, as
will be explained below.

We first evaluate the noninteracting charge susceptibility
function in the atomic basis via [38]

[χ0(ω)]ab = 2
∑
i, j

f (Ei ) − f (Ej )

Ei − Ej − ω − iγ
ψ∗

iaψibψ
∗
jbψ ja, (1)

where the independent variable ω is the excitation frequency
in units of eV (setting h̄ = 1). We consider finite lattices
with open boundaries. Therefore, a and b run over all atomic
lattice sites. Ei and ψi are the electronic eigenenergy and
eigenstate of the ith level, which is obtained here by diago-
nalizing the model Hamiltonian. f (·) is the Fermi function,
which in the following is approximated by a step function,
namely by its zero-temperature limit. The factor 2 accounts
for the spin degeneracy. γ = 0.01 eV is a finite broadening.

Electron-electron Coulomb interactions are then intro-
duced into the calculation on the RPA level. To do this, we
evaluate the bare Coulomb interaction matrix Vab in the same
atomic basis. To avoid a divergence, we use the Ohno potential
[39] with a proper cutoff parameter �. The Coulomb interac-
tion between two sites �ra and �rb is therefore given by

Vab = e2

4πεenv

√
|�ra − �rb|2 + �2

, (2)

with εenv being the dielectric constant of the background en-
vironment. In our calculation, we set � to be 1 Å, which is
smaller than the 1D lattice spacing d = 3 Å. The real-space
RPA dielectric response function (a matrix) is then calculated
from [40]

εRPA(ω) = I − V χ0(ω). (3)

We identify the plasmonic excitations from the electron en-
ergy loss spectrum (EELS), which is defined by [40,41]

EELS(ω) = max
n

{
−Im

[
1

εn(ω)

]}
, (4)

for each single frequency ω, where εn is the nth eigenvalue of
εRPA(ω). The EELS is peaked at plasmon frequencies. Letting
M be the selected index that maximizes −Im[1/εn(ωp)] at
a plasmon frequency ωp, we can then simultaneously obtain
the real-space charge distribution pattern of the corresponding
plasmon mode ωp by using the eigenstate ψM (ωp) of the di-
electric matrix, multiplied by the noninteracting susceptibility
matrix χ0(ωp) [40], namely

ρ0(ωp) = χ0(ωp)ψM (ωp). (5)

Here, ρ0(ωp) is the induced charge density vector in the
atomic basis, representing the plasmonic eigenmode at fre-
quency ωp. Similarly, we can define the second EELS (2nd
EELS) at any single frequency ω by selecting the second max-
imum of −Im [ 1

εn(ω) ] among all eigenvalues {εn(ω)}. A peak in
the 2nd EELS indicates a degenerate mode (at least twofold),
which is due to the symmetry of the underlying model. In
fact, for a twofold-degenerate plasmon mode, the 1st EELS
and the 2nd EELS coincide, indicating a degenerate subspace
furnished by degenerate eigenvectors of the dielectric matrix

εRPA(w). In general, one can define the third, fourth, etc.,
EELS in the same manner. In this paper, we focus on 1D
models, for which the 1st EELS and 2nd EELS are usually
sufficient for the analysis.

While the EELS yields the plasmonic eigenmodes of a
system, it does not give any information about the system’s
response to a specific external field that is applied in experi-
ment to excite the system. In this case, we need to calculate
the induced charge distribution due to a specific external field
φext(ω) via

ρind(ω) = χRPA(ω)φext(ω), (6)

using now the (interacting) RPA charge susceptibility function

χRPA(ω) = [I − χ0(ω)V ]−1χ0(ω). (7)

The induced potential, induced electric field, and induced
field energy density in real space can then be determined
from ρind(ω). By integrating the induced field energy density
over the full space of consideration, we obtain the frequency-
dependent induced energy spectrum, Uind(ω), which also
peaks at the plasmon frequencies [24].

III. RESULTS AND DISCUSSION

A. Plasmonic excitations in a decorated one-dimensional
metallic chain—Nontopological case

Before discussing plasmons in topological insulators, let
us first consider a homogeneous 1D metallic chain (MC) with
open boundaries as a benchmark, described by the real-space
tight-binding Hamiltonian

Ĥ = t
M−1∑
n=1

(|n + 1〉〈n| + H.c.) + μ

M∑
n=1

|n〉〈n|, (8)

where M is the number of atoms in the chain, t is the nearest-
neighbor hopping parameter, and μ is the chemical potential.
We explore the plasmonic excitations in this simple model by
calculating the EELS for a finite chain with M = 54 sites,
t = 1.0 eV, and μ = −1.0 eV, which is shown by the blue
line in Fig. 1(c). The EELS is made of a (quasi) continuum of
plasmonic excitations in the frequency range between ω = 0
and 7.28 eV. Furthermore, we observe a pseudogap at around
ω ≈ 6 eV, which arises from finite-size effects. For a peri-
odic boundary condition, this pseudogap is absent, and we
have verified numerically that with increasing chain length it
gradually disappears. Figure 1(b) shows the momentum space
dispersion of the pure metallic chain, which corresponds to the
pure EELS shown in Fig. 1(c). In the high-energy region, the
plasmon dispersion curve in momentum space becomes flat,
leading to the van Hove singularity observed at the maximum
excitation energy. The low-energy plasmonic excitations arise
from two-particle processes combining distant electrons that
are energetically close to the Fermi surface, whereas the high-
energy plasmons arise from scattering electrons that are in
close proximity to each other. All plasmons in this pure 1D
MC are bulk modes. Two representative examples of different
excitation energies are shown in Figs. 1(d) and 1(e) with their
real-space charge modulation patterns plotted. We can see that
the low-energy mode [Fig. 1(d)] displays a longer wavelength,
corresponding to slowly propagating waves. In contrast, the

125425-2



CONTROL OF PLASMONS IN TOPOLOGICAL INSULATORS … PHYSICAL REVIEW B 104, 125425 (2021)

FIG. 1. (a) Illustration of a 54-site decorated metallic chain with
hopping t = 1.0 eV, t̃ = 0.5 eV, and t ′ = 2.0 eV. (b) Energy disper-
sion of a homogeneous metallic chain in momentum space. (c) Blue:
EELS of a finite homogeneous metallic chain with open boundary
conditions. Red: EELS of the same open-ended metallic chain with
additional diatomic molecules like (a). (d)–(g) Real-space charge
density modulation for (d) a low-energy plasmon in the pure metallic
chain, (e) a high-energy plasmon in the pure metallic chain, (f)
a low-energy plasmon in the decorated chain, and (g) a confined
low-energy plasmon in the bulk at ω = 3.878 eV of the decorated
chain.

high-energy mode shows a much shorter wavelength, char-
acterized by a rapidly oscillating charge modulation pattern.
The enhanced phase space spectral density at high energies
leads to the van Hove singularity, arising from two-particle
scattering processes, connecting single-electron states from
the band minimum to those at the band maximum.

Next, we investigate a decorated metallic chain (DMC)
by adding four diatomic molecules with equal spacing to the
homogeneous host system, as illustrated in Fig. 1(a). Specif-
ically, these four molecules are located above sites 4, 19, 34,
and 49 of the open-ended M = 54-site host chain, respec-
tively. They are aligned vertically, with an internal hopping
t ′ = 2.0 eV between the two atoms of the molecule, and a
small tunneling hopping t̃ = 0.5 eV between the molecule and
the chain. The red line in Fig. 1(c) shows the corresponding
EELS of the DMC. Compared with the EELS of the pure
MC, we see that for frequencies below ≈2 eV and above
the pseudogap at ≈6 eV, the spectrum of DMC is almost
unaffected by the decorating molecules. In the intermediate
frequency regime between 4 and 6 eV, the spectrum structure
of the pure MC is approximately preserved, with slightly
shifted energies. In this regime, molecules are far off reso-
nance. There is little charge tunneling between the molecules
and the host MC. However, the spectrum within the energy
window ω ∈ {2.7 eV, 4 eV} is strongly affected due to the
added molecules. Moreover, the molecules are on resonance
and are excited as well, leading to significant charge transfer

due to the interactions between the decorating molecules and
the host 1D MC [see, e.g., Fig. 1(f)]. Furthermore, a pattern
of oscillating charges between nearby decorating molecules
is observed. In Fig. 1(g) we find another interesting mode,
where the charge density in the 1D MC is confined due to the
addition of the molecules. These two modes are not observed
in the unperturbed host MC, and they both occur in the most
affected energy regime for the chosen parameter set.

B. Plasmonic excitation in the SSH model

Let us now turn to a prototype symmetry-protected topo-
logical insulator, i.e., the SSH chain [14], described by a
one-dimensional lattice Hamiltonian of spinless fermions with
staggered hopping parameters, as illustrated in Fig. 2(a).
There are two atoms in each primitive cell, labeled by A and
B.

The real-space Hamiltonian of the SSH model is given by

Ĥ = t1

N∑
m=1

(|m, B〉〈m, A| + H.c.)

+ t2

N−1∑
m=1

(|m + 1, A〉〈m, B| + H.c.)

+μ

N∑
m=1

(|m, A〉〈m, A| + |m, B〉〈m, B|), (9)

where N is the number of unit cells. t1 and t2 are the intracell
and intercell hopping parameters, respectively. The open-
ended SSH chain has two distinct topological sectors whose
topological invariants can be represented by the number of
zero-energy single-particle edge states Nes in the energy gap.
In Fig. 3(a), we show the electronic energy spectra of the SSH
chain with 52 sites in both the topologically nontrivial sec-
tor (t1 = 0.75 eV < 1.25 eV = t2) and the trivial sector (t1 =
1.25 eV > 0.75 eV = t2). In the former case, we observe two
zero-energy edge states in the gap, whereas in the latter case
there are no edge states. Due to the bulk-boundary correspon-
dence, these topological properties can also be identified via
the bulk winding number W .

We focus now on the SSH model in the topologically
nontrivial sector (t1 = 0.75 eV and t2 = 1.25 eV) and analyze
its plasmonic excitations. The EELS is shown in Fig. 4, where
we observe two continua (mainly consisting of bulk modes)
separated by an energy gap, as well as two isolated modes
in the gap at ω = 4.471 and 7.344 eV, labeled by p1 and
p2. The real-space charge density modulations of these two
modes are shown in Figs. 4(b) and 4(c). We observe that they
are both localized at the ends of the chain. Furthermore, the
charge distribution of the higher-frequency mode [Fig. 4(c)]
is more strongly localized than the lower-frequency mode
[Fig. 4(d)]. We also point out that these two modes are both
twofold-degenerate in the pure SSH model, as indicated by the
peaks in both the 1st EELS and the 2nd EELS. Below, we will
further study the effects of molecular perturbations on mode
degeneracy.

In previous work, localized plasmons in open-ended TIs
have been shown to originate from the topological electronic
edge states [24]. This was demonstrated by decomposing the
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FIG. 2. (a) Illustration of the SSH model on a bipartite tight-binding chain. (b) Illustration of the mirror SSH model on the tight-binding
chain with a mirror inversion at its center. (c) Illustration of the SSH model with an additional diatomic molecule, connected with one site of
the chain. The position of the connected site is varied from the edge to the bulk. (d) Illustration of the mirror SSH model with an additional
diatomic molecule, connected with one site of the chain. The position of the connected site is varied from the center of the bulk to the edge.

full charge susceptibility χ full
0 into bulk and topological sur-

face contributions, namely∑
i, j

. . .

︸ ︷︷ ︸
χ full

0

=
∑
i∈TS

∑
j /∈TS

· · · +
∑
i/∈TS

∑
j∈TS︸ ︷︷ ︸

χ
topo
0

· · · +
∑

i, j /∈TS

. . .

︸ ︷︷ ︸
χbulk

0

, (10)

where TS is the set of the topological zero-energy edge
states in the bulk gap. The spectrum of χ

topo
0 preserves the

plasmonic edge modes observed before in the full EELS
spectrum, along with their degeneracies and their localized
character in real space (see Figs. 4 and 5). This allows us
to focus on χ

topo
0 instead of χ full

0 for an isolated examination
of these localized edge plasmon modes. Below we calcu-
late the EELS of the SSH model, using only χ

topo
0 , and

we denote the resulting spectrum by EELStopo(ω), which
is shown in Fig. 5(a). As expected, there is no bulk plas-
monic continuum in the spectrum because of removal of
the bulk contributions, χbulk

0 . EELStopo(ω) shows three peaks
at ω = 2.038 eV, 2.526 eV and 3.846 eV. Each mode has a
twofold degeneracy of different parities—odd parity and even
parity—and they all have localized charge distributions [see
Figs. 5(b)–5(g): up, even parity; down, odd parity]. Also,

FIG. 3. (a) Energy spectrum of the SSH model on a 52-site
open-ended chain. There are two zero-energy edge states in the
topologically nontrivial sector (t1 = 0.75 eV < 1.25 eV = t2), but
no edge state in the trivial sector (t1 = 1.25 eV > 0.75 eV = t2).
(b) Energy spectrum of the mirror SSH model on a 55-site open-
ended chain. There is one zero-energy localized edge state for a
strongly coupled inversion center, and three zero-energy localized
states for a weakly coupled inversion center.

similar to the EELSfull(ω) with full susceptibility, the edge
plasmons are more strongly localized at higher frequencies,
resembling the patterns shown in Fig. 4. Furthermore, note
that even though the bulk susceptibility does not contribute
to the localization of the edge plasmons, it still affects the
excitation energies of these modes.

We also calculate the induced energy spectrum Uind(ω) of
the SSH model in response to a specific external electromag-
netic field, which can be directly compared to experiments.
Here we consider a linear external electric potential applied
to a finite SSH chain in the topologically nontrivial sector.
The resulting spectrum shown in Fig. 6(a) contains three main
peaks at the exact same frequencies as those obtained from
EELStopo(ω) [Fig. 5(a)], which confirms the eigenmodes in-
dicated EELS. However, The induced charge distributions of
these modes in Figs. 6(b)–6(d) are odd functions in real space,
whereas their even-parity partners from the EELS [Figs. 5(b)–
5(d)] become inactive now. This is expected because, under
the linear potential, only modes with odd parity are excited.

C. Effects of added diatomic molecules on plasmons
in the SSH chain

The topological SSH model studied above hosts both bulk
plasmons and localized plasmonic edge modes [24]. While
the former show no essential difference from the propagat-
ing modes in the 1D MC in Sec. III A, the localized edge

FIG. 4. (a) EELS of the 52-site open-ended SSH model in
the topologically nontrivial sector (t1 = 0.75 eV < 1.25 eV = t2).
(b),(c) Charge density modulations of the two localized plasmons in
the first EELS at an intermediate and a high frequency, only observed
in the topological sector.
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FIG. 5. (a) EELS using only the topological charge susceptibility
χ

topo
0 in the topological sector (t1 = 0.75 eV < 1.25 eV = t2) of the

SSH model on an open-ended 52-site chain. (b)–(g) Charge density
modulations of the three degenerate localized plasmonic excitations
at different frequencies. The edge modes observed in χ full

0 are pre-
served when only χ

topo
0 is considered.

plasmons respond differently to molecular perturbations. Here
we introduce diatomic molecules in the vicinity of the SSH
chain, and we study their effects on the plasmonic excitations.
Specifically, we place a single diatomic molecule above the
SSH chain and gradually change its position from the edge
to the center of the chain, as illustrated in Fig. 2(c). The
tunneling hopping between the molecule and the SSH chain
is denoted by t̃ , with t̃ < t1, t2. The internal hopping in the
molecule is denoted as t ′, with t ′ > t1, t2. Such a situation
could be experimentally realized by atoms attached on a scan-
ning tunneling microscope tip or by tip atoms themselves
when scanning over a sample, such as described in [42]. Here,
we focus on studying the effects of the perturbing molecule at
various positions on the plasmonic edge modes.

We first consider the effect of a diatomic molecule in
proximity to one of the ends of the SSH chain [Fig. 2(c)],
which is expected to have maximum impact on the plasmonic
edge modes. Figure 7(a) shows the EELS of such a perturbed
SSH chain, together with the unperturbed case for compari-
son. We find that the molecular perturbation on the edge site

FIG. 6. (a) Induced energy spectrum in the 52-site open-ended
SSH chain in the topological sector (t1 = 0.75 eV < 1.25eV = t2),
subject to a linear external electrical field. (b), (c), and (d) Charge
density modulation of the mode corresponding to the three excita-
tions highlighted in (a).

FIG. 7. (a)–(d) Topological EELS in the SSH chain (t1 =
0.75 eV < 1.25 eV = t2) with one added diatomic molecule at dif-
ferent positions, Xm, which means the molecule is connected with
the xth site on the chain as in Fig. 2(c). The connection hopping
t̃ = 0.5 eV and t ′ = 2.0 eV. (e),(f) Charge density modulation of the
modes corresponding to the two high-frequency excitations in (a).

removes the degeneracy of all three modes observed in the
pure host system. Due to the additional molecule attached
to one edge site, the two ends of the chain are no longer
equivalent. Therefore, they now each host edge modes with
slightly different energies. For instance, in Figs. 7(e) and 7(f)
we show the real-space charge-distribution patterns for the
two highest energy modes [labeled as p1 and p2 in Fig. 7(a)].
They originate from a degenerate pair at ω = 3.486 eV of
the host model. In the presence of the molecular perturbation
applied to the left end of the open chain, the mode localized
on the right end of the chain remains at the same frequency
as before because of its far distance away from the perturbing
molecule, whereas the edge mode at the left end of the chain
now has a slightly shifted energy. Naturally, plasmons that are
localized close to the left end of the chain are mostly affected
by this local perturbation.

As we gradually move the perturbing molecule from the
left end to the center of the chain, the effects on the plasmonic
edge modes become less pronounced. Quantitatively, this de-
pends on the localization length of the plasmonic edge modes.
As mentioned above, the highest-energy mode is the most
localized. The two lower-energy modes are slightly more ex-
tended [Figs. 5(b)–5(g)]. When the molecule is being moved
towards the center of the chain, the highest-energy mode first
becomes unaffected to the perturbation, then followed by the
lower-energy ones. In Figs. 7(b)–7(d) we show the varia-
tion of the EELS, as the molecular perturbation is gradually
moved to the center. In detail, we can see that when the
perturbing molecule is moved onto the third site away from
the the chain edge, the highest-energy mode is already not
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FIG. 8. Dependence of the energy of the topological plasmons
and of the charge transferred from the host to the diatomic molecule
on the internal hopping t ′, when the molecule is connected with an
edge atom of the topological SSH chain (t1 = 0.75 eV < 1.25 eV =
t2). EL (red) is the highest energy excitation on the left end of the
chain [see Fig. 7(f)]. ER (blue) is the highest energy excitation on the
right end of the chain [see Fig. 7(e)]. Wm is the percentage weight of
the charge transferred from the chain to the molecule.

affected. However, the two lower-energy modes are still af-
fected by the perturbation, as we can see from the split peaks.
When the perturbing molecule is on the seventh site of the
chain, the second-highest-energy mode becomes unaffected as
well [Fig. 7(c)]. Finally, when the molecule is on the 15th site
of the chain, which is quite deep into the bulk, all three modes
are unaffected. In this case, the full EELS is almost the same
as for the unperturbed host system.

In the above calculations, the internal hopping t ′ was fixed
to 2.0 eV, which is larger than the hopping in the chain. Here,
we would like to examine how the the excitation energies
change when we modify t ′. When we consider only the topo-
logical susceptibility, the excitations are localized at the two
ends of the chain. In Fig. 8 we see that the excitation on the
right end remains constant at about ER = 3.84 eV when the
perturbing molecule is connected to the left end. However,
the excitation at the left end, EL, shifts to higher energies when
t ′ is increased because a higher energy is required to excite the
molecule with a larger internal energy gap t ′. Furthermore, we
find that the charge transferred from the chain to the molecule
also changes with t ′. Wm in Fig. 8 shows the percentage weight
of the charge on the molecule compared to the charge in the
entire system (host chain plus perturbation molecule). We
observe that the relative weight on the molecule drops from
about 16% to about 8% when t ′ is increased, i.e., there is
less charge transfer from the host to the molecule. Hence,
the internal electronic structure of the added molecule affects
its ability to hybridize with the host system. When the inter-
nal hopping (t1 and t2) inside the SSH chain is fixed, if the
molecule has a larger internal energy gap, i.e., larger t ′, then
it is more protected from hybridization with the host system.

We conclude that a local perturbation can affect the topo-
logically originated plasmonic edge modes in the SSH model
only significantly when it is sufficiently close to the edge
of the chain. In other words, the edge plasmon modes in
the topological SSH model are very robust against local

FIG. 9. (a) EELS of the open-ended mirror-SSH chain (M = 53)
with weak mirror interface hopping (t1 = 0.75 eV < 1.25 eV = t2)
and on an open-ended 55-site chain with strong mirror interface
hopping (t1 = 1.25 eV > 0.75 eV = t2). (b),(c) Charge density mod-
ulation of the modes corresponding to the excitations at the weak
mirror interface. (d),(e) Charge density modulation of the modes
corresponding to the excitations at the strong mirror interface.

perturbations, which is different from bulk plasmon modes. It
has been shown before that these modes are also quite stable
when subjected to global random noise in the bulk hopping
parameters [24].

D. Plasmonic excitations in the mirror-SSH model

In addition to the SSH model, let us also inspect plasmons
in the mirror-SSH model, which is a variant of the SSH model
by reflecting the chain about its center [Fig. 2(b)]. This mirror-
SSH (mSSH) model is inversion-symmetric with respect to
the mirror interface located at the middle point of the chain,
which also hosts localized zero-energy state(s) depending on
the hopping characteristics at the interface. In Fig. 3(b), the
energy spectra of the strong interface mSSH model (t at the
center is 1.25 eV) and the weak interface mSSH model (t at
the center is 0.75 eV) are displayed, where we observe one
zero-energy state and three zero-energy states, respectively.

We calculate the EELS of the mSSH model plasmons by
using only the “topological part” of the susceptibility χ

topo
0 ,

defined in the same manner as for the SSH model. Figure 9(a)
shows the EELS of the mSSH model for both the strong mirror
interface (hopping at the mirror is t1 = 1.25 eV) and the weak
mirror interface (hopping at the mirror is t2 = 0.75 eV). In
each case, we observe a set of (nondegenerate) excitations that
are all strongly localized around the mirror interface. We show
the real-space charge modulations of some typical excitations
in Figs. 9(b)–9(e). As we can see here, the modes around the
strong interface and the weak interface have different parities.
Similar to what we observed before in the SSH model, the
modes with higher energies are more strongly localized.

E. Effects of added diatomic molecules in the mirror-SSH chain

Here we introduce a single molecular perturbation into
the mSSH model, starting from the central site (the mirror
interface) of the chain and moving towards one end, as shown
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FIG. 10. (a) Comparison of the EELS of the weak interface
mirror-SSH model (t1 = 0.75 eV < 1.25 eV = t2) with M = 53 sites
in the presence of a perturbation diatomic molecule placed at differ-
ent positions (green line: connected with the 26th site; orange line:
connected with the 20th site) and the model without perturbation (red
line). (b)–(e) Charge density modulations of the modes correspond-
ing to the excitations highlighted in (a).

in Fig. 2(d). We focus on studying its effects on the local-
ized plasmons around the interface. Unlike the edge plasmons
observed in the SSH model, the interface plasmons here are
nondegenerate even in the unperturbed case. So, there is no
degeneracy splitting effect. We will, however, observe other
interesting effects due to the perturbation.

Figure 10(a) shows the perturbed EELS of the weak-
interface mSSH model, together with the unperturbed one
(red line) for comparison. The spectra are similar to the
SSH model discussed in Sec. III C, in the sense that the
effects from the perturbation are weakened when the per-
turbing molecule is gradually shifted away from the charge
concentration area of the localized plasmons. When the added
molecule is connected to the 26th site, which is the center
site of the 53-site chain, all of the excitations change their
positions (green line) because of significant charge transfer
between the chain and the molecule. Figures 10(b) and 10(c)
show the charge distributions of two typical excitations in
(a). Here, we observe that there is little charge transfer from
the chain to the molecule in the high-energy excitation, but
more significant charge transfer to the molecule connected
to the center site for the lower-energy mode. The reason for
this is that the internal hopping magnitude of the molecule is
t ′ = 2 eV, which is closer to the frequency of the low-energy
excitation. However, when we move the perturbation from the
center towards the edge, the EELS curve will coincide with the
original curve (red line) in the high- and intermediate-energy
regimes, since the charge is more concentrated at the center
in the higher-energy modes [Fig. 10(e)], so the interaction
between the chain and the molecule substantially vanishes. In
this case, there is still charge transfer in lower-energy modes,
and the charge distribution will not be symmetrical anymore
[Fig. 10(d)]. Next, we discuss the strong interface case,
whereby the hopping at the center mirror interface is stronger
in magnitude. Figure 11(a) shows a comparison of the strong
interface with (green and orange lines) or without (blue line)

FIG. 11. (a) Comparison of the EELS of the strong interface
mirror-SSH model (t1 = 1.25 eV > 0.75 eV = t2) in the presence
of a diatomic perturbation molecule placed at different positions
(green line: connected with the 26th site; orange line: connected
with the 20th site) and the model without perturbation (blue line).
(b)–(e) Charge density modulations of the modes corresponding to
the excitations indicated in (a).

the molecular perturbation. For the strong interface, since
the plasmon is also concentrated in the center, we observe
analogous spectra to those for the weak interface. Specifically,
the effect of the perturbation molecule on topological surface
plasmons in the mirror chain decreases when we move it
from the chain center towards the chain ends, especially in
the higher-energy regime. When ω is larger than 2.5 eV, the
blue curve and the orange curve coincide with each other,
which means there is a weaker effect when the molecular
perturbation is connected with the 20th site than when it
is connected with the 26th site. In the low-energy region,
however, we also observe an excitation shift caused by charge
transfer [Fig. 11(d)] because the plasmonic excitation expands
to the 20th site of the chain. However, when the molecular
perturbation is connected with the 26th of the chain (in the
center), all of the excitations of the host system shift from low
energy to high energy, and plasmonic charge is transferred to
the molecule [Figs. 11(b) and 11(c)].

IV. CONCLUSIONS

In this work, we have examined the effects of added di-
atomic molecules on the plasmonic modes of the 1D SSH
model and its mirrored invariant, comparing them to the
benchmark of a simple metallic chain. By analysis of the
electron energy loss excitation spectrum and the real-space
charge distributions of the plasmon modes, we conclude that
the position of the local perturbation is the key parameter to
control the plasmons in 1D TIs. When the perturbation is on
or near the edges of the topological insulator, the plasmonic
excitations in the topologically nontrivial regime, i.e., their
degeneracy and their charge distribution, will be significantly
affected. In contrast, the plasmonic excitations become less
affected when the local perturbation is far from the edges.
We also identified conditions under which charge transfers
from the host chain to the added molecules. Here, the internal
hopping t ′ within the diatomic molecule plays an important
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role. It will be interesting to further analyze analogous effects
of perturbing molecules in higher-dimensional topological
systems that harbor dispersive surface modes, such as the two-
dimensional SSH model and graphene, which may become
localized due to the impurities.
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APPENDIX: INDUCED FIELD ENERGY OF THE
PERTURBED SSH MODEL

In Sec. III B, we discussed the induced energy spectrum
of the SSH chain and analyzed the spectrum in Fig. 6.
We observe three excitations at exactly the same positions
as in Fig. 5. In Sec. III C, the effects of local perturba-
tion were considered. Here, we analyze the induced energy
spectrum of the topological SSH model in the presence of
a diatomic molecular perturbation, subject to an external
linear electrical field. As a reference, the blue dashed line
in Fig. 12(a) shows the spectrum without perturbation that
we have already discussed. Figures 12(a)–12(d) reveal that
the effects of the perturbation to the SSH model in the
presence of an external electrical field are similar to the
EELS spectrum, i.e., mostly affecting the degeneracy with
respect to the position. As the perturbing molecule is grad-
ually moved from the left end (0th side) towards the center
of the bulk (15th site), the effects on the plasmonic edge

FIG. 12. Energy spectrum, induced by a linear external electrical
field, of a 52-site nontrivial topological SSH chain (t1 = 0.75 eV <

1.25 eV = t2) with one diatomic perturbation molecule located at
different positions, calculated using only the topological susceptibil-
ity χ

topo
0 .

modes become less pronounced. The highest-energy excita-
tion first becomes unaffected to the perturbation, as seen in
Fig. 12(b), and then the lower energy modes recover. When
the perturbation moves sufficiently deep into the bulk, the en-
ergy spectrum recovers to the same shape of the nonperturbed
system.
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