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Strong coupling regime and hybrid quasinormal modes from a single plasmonic
resonator coupled to a transition metal dichalcogenide monolayer
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We present a rigorous quasinormal mode approach to describe the strong coupling behavior between a
monolayer of MoSe2 and a single gold nanoparticle. The onset of strong coupling, described through a classical
spectral mode splitting (analog of vacuum Rabi splitting) is quantified by computing the full three-dimensional
hybrid quasinormal modes of the combined structure, allowing one to accurately model light-matter interactions
without invoking the usual phenomenological theories of strong coupling. We explore the hybrid quasinormal
modes as a function of gap size and temperature, and find spectral splittings in the range of around 80–110 meV,
with no fitting parameters for the material models. We also show how the hybrid modes exhibit Fano-like
resonances and quantify the complex poles of the hybrid modes as well as the Purcell factor resonances from
embedded dipole emitters. The Rabi splitting is found to be larger at elevated temperatures for very small gap
separations between the metal nanoparticle and the monolayer, but smaller at elevated temperatures for larger
gaps. We also show how these spectral splittings can differ qualitatively from the actual complex poles of the
hybrid quasinormal modes.
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I. INTRODUCTION

One common goal of nano-optics is to create photonic
cavity modes that can significantly enhance light-matter inter-
actions, leading to new capabilities in sensing and quantum
optics. While much success has been achieved with semi-
conductor cavity structures [1], recently substantial attention
has been devoted to metallic nanoparticles (MNPs), inspired
by their ability to trap light in subwavelength spatial scales
and allow a broadband enhanced coupling. This can help
enable new regimes in quantum plasmonics [2,3], including
the demonstration of strongly coupled single molecules and
MNPs at room temperature [4].

Recently, there has been much interest in increasing
the interaction strengths even further by coupling to two-
dimensional (2D) semiconductors, such as transition metal
dichalcogenides (TMDCs). Monolayers of TMDCs are di-
rect gap semiconductors with strong light-matter interactions,
which makes them promising for optoelectronic applications
[5,6]. The reduced dimensionality of these atomically thin
materials leads to a boost of the Coulomb interaction, which
is responsible for the formation of tightly bound electron-hole
pairs (excitons) [7]. The large excitonic binding energies make
TMDCs a promising platform to study exciton physics [8,9].
The TMDC excitons form separate, spectrally well-isolated
resonances below the band gap and can couple radiatively
to MNPs if their dielectric surrounding is properly designed.
This allows one to also achieve signatures of strong coupling
from near resonant TMDC-MNP hybrid systems, which gives
rise to large Rabi splittings.

In this work, we will classify “strong coupling” in a similar
way to a typical spectrum experiment, namely when the cavity

mode of interest (in this case, a localized plasmon resonance)
spectrally splits through significant coupling to the TMDC
(with respect to the various decay rates), which in the time do-
main will exhibit characteristic Rabi oscillations. The spectral
mode splitting will increase as the mode coupling increases
and for larger detuning. We stress that strong coupling can be
interpreted classically or quantum mechanically [10], but for
the purpose of this paper is a purely classical definition.

To date, a variety of MNPs have been used to observe
signatures of strong coupling between MNPs and TMDCs,
including single MNP nanorods [11–13], bipyramids [14],
disks [15], spheroids [16], dimers [17], and arrays of MNPs
[18–20]. Measurements are often performed using reflection
and/or transmission from a low-powered laser or dark-field
scattering [11] and are typically performed at room temper-
ature. Impressive spectral Rabi splittings of 500 meV have
been achieved using a microcavity coupled to a TMDC sheet
with arrays of gold disks [20] (although the splitting arises
primarily from the classical mode splitting between the cavity
and MNP array), while the average Rabi splittings in recent
works range from approximately 50 to 150 meV. Most if
not all of these works are in the regime of so-called normal
mode splitting and thus the physics of the splitting can be
well described classically [21]. Despite numerous experimen-
tal observations, there are no rigorous three-dimensional (3D)
models in the literature to properly assess the strong coupling
regime in these material systems, which is significantly more
challenging than typical planar structures, e.g., with quantum
wells [22], since the MNPs break translational invariance. The
terminology of “normal mode splitting” is also not appropri-
ate, as the MNPs on their own do not support such modes,
requiring a more rigorous mode theory from the beginning.
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Besides normal mode splitting with planar-like cavity sys-
tems, strong coupling phenomena of single quantum dots
(which naturally break translational invariance) have been
reported in a number of semiconductor microcavity systems
[23–25], where the emitter-cavity coupling rate is defined
through g = (πe2 f /4πεrε0m0Vc)1/2, with f the oscillator
strength, m0 the free electron mass, and Vc the cavity mode
volume. In these systems, experimental Rabi splittings up to
140 μeV have been reported, and the description of g as a
cavity-emitter coupling rate is more appropriate since it is
describing a single quantum emitter and the light field within a
dipole approximation; the single-mode approximation is also
excellent here since the cavity system is usually very low loss,
yielding substantial quality factors (Q > 1000). The interpre-
tation of these emitter-cavity systems in the strong coupling
regime is clear since the emitter-cavity coupling rate is larger
than any dissipation rates. However, since the upper limit to g
in these systems is bound by the diffraction limit, most, if not
all, of the single quantum dot experiments in this field have to
work at very low temperatures.

Despite the similarities between point dipole emitters in
cavities and TMDC-plasmon systems, to our knowledge, no
one has reported a first-principles electromagnetic calculation
of the underlying hybrid modes for strongly dissipating metal
structures using material models with fully microscopically
determined parameters for the TMDC. The understanding of
strong coupling is also essential to develop mode quantization
theories, which can then allow true signatures of quantum
optical effects in these material systems.

In this work, we introduce a rigorous electromagnetic the-
ory and model to describe the regime of strong coupling in
TMDC-MNP systems, including a full analysis of the un-
derlying hybrid modes. A mode description can be done in
normal modes or quasinormal modes (QNMs). Whereas nor-
mal modes are the formal solutions to the source free (i.e.,
no external magnetization or polarization sources) Maxwell’s
equations with closed or periodic boundary conditions, QNMs
are the solutions to cavities subject to open boundary condi-
tions. For a cavity system with normal modes, one obtains real
eigenfrequencies with spatially converging modes, while for
QNMs, one obtains complex eigenfrequencies with spatially
diverging modes (outside the resonator). In this paper, we
develop a quasinormal mode theory of such hybrid systems,
enabling a full 3D description of the modes, light-matter in-
teractions, and the strong coupling behavior of these modes.
In this respect, QNMs are known to be highly accurate for
describing such hybrid material systems and have recently
shown much success in modeling a wide range of resonators
in nano-optics and plasmonics [26–30].

Specifically, we explore the hybridized QNMs of a MoSe2

monolayer TMDC encapsulated in Hexagonal Boron Nitride
(hBN) coupled to a gold nanorod MNP. Note that the original
uncoupled mode of the TMDC is in fact a normal mode since
it is bound in z and translationally invariant (or periodic)
in x and y (i.e., has well-behaved closed boundaries), but
becomes a QNM when it is coupled to the QNM of the MNP.
By tuning the dimensions of the MNP to get the desired
resonance frequency, we show strong coupling between the
second lowest mode of the MNP, which is the next mode in

frequency space from the fundamental mode, and the TMDC
for various gap sizes between the two structures.

We then compare the QNM analysis to the full-dipole
numerical calculations (with no approximations) and show ex-
cellent agreement to justify the validity of the QNM analysis
over a wide range of frequencies and spatial points near the
resonators. We also compare the optical response for selected
temperatures of 4, 77, and 300 K with microscopically calcu-
lated material parameters [31,32]; we also who the anticross-
ing behavior when detuning the resonances by varying the size
of the MNP, which is a clear signature of strong coupling.
We then compare the splitting observed from the spectral
Purcell response and the splitting between the complex poles
of the hybrid QNMs, with no fitting parameters. Lastly, we
also show how the dipole transmission spectrum from an
embedded dipole differs from the near-field Purcell factor,
which shows complementary but different signatures of the
strong coupling regime. The dipole transmission requires the
full two-space-point Green function and accounts for spatial
quenching between the dipole and the detection point, while
the Purcell factor is a measure of the projected local density
of states at the dipole location, which is also contained within
the Green function with equal space points. Conveniently, we
construct an analytical solution to the full two-space-point
Green function through an analytical expansion of the hybrid
QNMs, which critically contain the QNM phase, and can be
applied to a wide range of problems in nanophotonics.

During completion of this paper, we became aware of
related work on the coupling between TMDCs and MNPs
[33]. Similar to our work, they consider a MNP cavity that
is described by a single QNM which is then coupled to
a TMDC with in-plane Coulomb interaction coupled ex-
citon states. The coupling to the TMDC sheets is then
carried out using a quantum reaction-coordinate approach to
exciton-resonator interactions, and master equations, as well
as semiclassical calculations for the scattered field using a
Lippmann-Schwinger equation. Unlike our approach, which
is based on a microscopic material theory to calculate the
underlying hybrid QNMs for linear optics (and also for use for
quantized QNM master equations [34,35]), Ref. [33] develops
a coupled oscillator model with microscopically determined
parameters that can be used to also describe a nonlinear opti-
cal response.

The rest of our paper is organized as follows: We begin in
Sec. II, with a review of the models commonly used in the lit-
erature to describe strong coupling between two modes and in-
troduce QNMs as an alternative to the usual coupled harmonic
oscillator model. In Sec. III, we discuss the Drude model as
well as the anisotropic susceptibility model for the TMDC
layer for various temperatures. In Sec. IV, we describe our
design for the MNP-TMDC hybrid system. As a specific ex-
ample to illustrate the theory, we perform a simple optimiza-
tion of a rounded gold nanorod on an hBN substrate such that
its second order mode is spectrally resonant with the TMDC
resonance. We also define the generalized Purcell factor.

In Sec. V, we present the system QNMs and show how the
generalized Purcell factor obtained from the QNM expansion
of the photonic Green function. The complex mode volume is
also introduced, which is spatially dependent (since it merely
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quantifies the inverse QNM field squared). We also show
results of the Purcell factor as a function of gap size between
the MNP and TMDC, temperature, and spectral detuning for
the MNP-TMDC hybrid system, exhibiting clear signatures
of strong coupling. Section VI compares an analysis of the
complex QNM poles to the observed splitting in the Purcell
factor. We show that the poles of the hybridized modes result
in a smaller splitting than the Purcell factor spectra, which
can be explained by the Fano-like feature of the lower energy
QNMs. In Sec. VII, we provide an example of how the QNM
technique can also be used to obtain the dipole transmission
and compare the spectral splittings with the Purcell factor
results.

Finally, in Sec. VIII, we provide our conclusions and dis-
cuss the generality of the QNM technique for obtaining and
explaining strong coupling between a TMDC layer and a
MNP. We emphasize the QNM technique can be applied to
arbitrarily complex heterostructures and nanoparticles.

II. SUMMARY OF COMMON MODELS USED
IN THE LITERATURE

We first summarize some common models and results re-
ported in the literature and discuss the various formalisms
currently being used to explain the TMDC-MNP strong cou-
pling behavior. For this specific work, we will refer to “strong
coupling” in the semiclassical sense of QNM spectral splitting
when the two hybrid modes are suitably coupled together. As
is well known, strong coupling in the linear regime can also be
explained from the classical perspective of linear dispersion
theory [10], and this is essentially the regime we also explore
below, though with a rigorous QNM approach.

We begin by introducing the usual textbook model of
coupled harmonic oscillators, also commonly used to de-
scribe strong coupling, and so-called normal mode splitting
in TMDC-MNP systems [21,36]:[

Ṗ
Ė

]
=

[
(ωx − iγx ) g

g (ωc − iγc)

][
P
E

]
, (1)

where P is the polarizability of the TMDC exciton due to
the dominant exciton of interest, E is the electric field of
the interacting cavity mode, g is the exciton-cavity coupling
rate, γx,c is the phenomenological decay rate of the TMDC
exciton or cavity mode, and ωx,c is the resonant frequency of
the TMDC or cavity. The fields P and E are both 3D vectors in
general, but the excitons live primarily in plane to the TMDC,
so these vectors are effectively 2D, although out-of-plane
excitons with comparably weak radiative interaction can exist
using stacked monolayer designs [16].

The strong coupling regime here characterizes the coupled
mode splitting of some spectral signature such as the emission
spectra, which can be seen as representing classical oscilla-
tions of particles and fields in the time domain (if adopting
a two-level atom model for one of the oscillators). This also
allows one to construct a quantized field theory in order to
invoke the quantum mechanical picture of strong coupling
(i.e., vacuum Rabi oscillations) to connect to quantum optics
formalisms like the Jaynes-Cummings (JC) model. However,
in contrast to spatially extended systems such as MNP-TMDC
hybrids, the JC model (or quantum Rabi model, if a rotating

wave approximation is not made [37]) either assumes point
coupling (such as in atom cavity-QED), or constant coupling
as a function of space, such as with quantum wells in dis-
tributed Bragg reflector (DBR) mirrors.

Phenomenologically, as a first approximation, the eigen-
frequencies of this simplified hybrid system can be found
by assuming a harmonic time dependence for P, E ∝
exp (±iωt ). When the system is on resonance, such that ω0 ≡
ωc = ωx, and assuming that γx, γc � g, ωc, ωx, the complex
eigenfrequencies are readily obtained as

ω± = ω0 − i(γc + γx )

2
± �R

2
, (2)

where h̄�R ≡ h̄
√

4g2 − (γx − γc)2 is the spectral mode split-
ting. Thus, the coupling constant can be determined by the
observed splitting, using

g =
√

�2
R + (γx − γc)2

2
, (3)

which can be thought of as a JC-type cavity-emitter coupling
rate, though this is usually defined for a single two-level atom
or point dipole emitter [38].

The usual criterion for observing the strong coupling
regime, for vacuum dynamics or linear excitation, is often
given by the condition: �R = 2g > |γc − γx|. However, for
large damping rates of the cavity mode, a more accurate
measure is given by [12,13,21]

�R > γx + γc, (4)

but even this criterion is only a crude approximation for
spatially extended TMDC-MNP systems. Clearly, one needs
to understand the underlying properties of the modes before
defining what is meant here by strong coupling, especially for
the development of a quantum model. In particular, at best, g is
an effective coupling constant, but it does not tell us anything
about the spatially dependent coupling.

For the strong coupling regime, in addition to satisfy-
ing the approximate relation, �R > γx + γc, the other usual
assumption is that g/ω0 < 0.1; otherwise the rotating-wave
approximations used in the derivation of the JC models do not
work. Above this threshold, we enter the so-called ultrastrong
coupling (USC) regime [37,39]. However, at the semiclassical
level, such effects are in fact easy to account for; namely, we
do not have to invoke a rotating wave approximation in the
theory.

To date, almost all works to describe strong coupling be-
tween TMDCs and MNPs in the literature use this simple
coupled oscillator model for explaining experimental data,
with reasonably good success in fitting the locations of the
eigenfrequencies [12–14,40–44]. For example, the coupled
oscillator model was used to describe the strong coupling
behavior between WSe2 and a gold bipyramid MNP [14];
the work explored the coupling as a function of number of
TMDC layers, which resulted in a saturation of coupling as
the number of layers increased. Simulation fits with the simple
model and experimental data are good, but they fail to account
for the actual effective mode volume, Veff , of the MNP being
a function of space, and the meaning of Veff is also ambiguous
in general, since it is defined from an effective theoretical
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coupling constant,

geff = d

√
4π h̄Nc

εε0λVc
, (5)

where d is the exciton dipole moment, N is the number of
excitons, c is the speed of light in vacuum, ε0 is the vacuum
permittivity, and λ is the wavelength; here Vc is clearly a
spatially averaged effective mode volume, but in reality it
changes as a function of position as does g. This simple
theory likely relates back to older works that exploit a simple
coupled mode theory with translational invariance, and also
without any dissipation in general, since the theory exploits
the properties of “normal modes,” which are not the correct
modes of open resonators [45,46]. In addition, it is not clear
how to choose the ratio of number of excitons N per mode
volume VC . Reference [47] also uses a bipyramid nanoparticle
coupled to MoSe2, which employs the same assumption of
a fixed and heuristic effective mode volume from a two-
oscillator model. Moreover, most reports in this field [13]
do not properly calculate the mode volume of a lossy mode
system; e.g., in Ref. [13], it was assumed that Vc ∝ (Re[ε] +
2ωcIm[ε]/γc)|Ec|2, and N is also not well defined. This is
because the localized plasmons excited by the 3D nanoparticle
break translational invariance, even if the TMDC-MNP hybrid
system is excited with a plane wave.

A recent review paper [48] warns about using N and Vc in
many nanophotonic systems, highlighting the limitations of
Eq. (5) and the problems that can arise. For example, with
collective exciton systems, usually a total coupling constant
is determined as g = √∑

i g(ri )2, where i is the ith exciton,
and the exciton Bohr radius is assumed to be constant over the
entire TMDC sheet. The authors highlighted that for a TMDC
coupled to plasmonic system, this is obviously not applicable,
and a more appropriate calculation would include a more
detailed theory of excitons as spatially extended composite
particles.

To help address this problem in terms of the underlying
open cavity modes, plasmonic cavity systems can be rigor-
ously described in terms of QNMs, which are the complex
eigenmode solutions for resonators with open boundary con-
ditions. The use of QNMs allows one to obtain the correct
position-dependent mode volume (which simply characterizes
the normalized mode strength squared) and coupling constant
as functions of space which directly involves the excitonic
wave function. The same theory also gives the photonic Lamb
shifts and collective effects if required, e.g., coupling to mul-
tiple quantum dots at different spatial locations and important
propagation effects. These QNMs can also be fully quantized
[34], allowing for the exploration of new physics beyond the
simple JC models [35] and accounting for important QNM
phase effects. Thus, it is highly desirable to connect to the
underlying QNMs of the MNP before and after coupling to
the TMDC system. In the presence of TMDC coupling, the
“hybrid” QNMs fully characterize the classical electromag-
netic coupling. Notably, these hybrid QNMs are valid modes
regardless of whether we work in the weak or strong cou-
pling regime, so they offer a unified description. Just like two
coupled atoms, which can form super-radiant and subradiant
states, the coupling between photonic resonators can also form

analogs of these hybrid states and are the natural dressed states
of the system.

III. MODELING THE DIELECTRIC PROPERTIES
OF THE GOLD RESONATOR AND THE MoSe2 LAYER

To model the gold MNP, we employ the Drude model,

εDrude(ω) = 1 − ω2
p

ω(ω + iγp)
, (6)

where ωp and γp are the plasma and collision frequencies, re-
spectively. Although this is a local material model, it is known
to work quantitatively well even for sub-nm gap sizes. This
model matches well with experimental material data from
Ref. [49] in the frequency range of interest (≈1.4–1.8 eV).
More refinements can be introduced by using more complex
data and fits (e.g., from Ref. [50]) instead of the Drude model
used here. In addition, the smallest gap sizes used below
(0.5 nm) are experimentally feasible and stay within a regime
where electronic tunneling effects are negligible [3]. However,
note that the QNM theory we use below can also include
nonlocal effects, if needed, which has been demonstrated at
the level of a hydrodynamical model [51].

To model the TMDC sheet, we begin with the 2D suscepti-
bility for right-handed (+) or left-handed (−) polarized light,

χ2D
+/−(ω) = |d1s

+/−|2
h̄ε0

(
1

ω1s
0 − ω − iγ ′

1s

)
, (7)

where d1s
+/− = d ϕ1s(r = 0) e+/− is the excitonic dipole mo-

ment, exhibiting a circular dichroism. The probability of
finding electrons and holes at the same position ϕ1s(r = 0) is
calculated by exploiting the Wannier equation [52,53], where
we use the reduced excitonic mass [6] and the Coulomb poten-
tial of the slab [54] as an input. γ ′

1s is the dephasing rate from
exciton phonon coupling, which was calculated according to
Ref. [31] (note that this rate does not include radiative decay
as that will be self-consistently captured from a self-consistent
Maxwell model that we use below).

As only small excitonic momenta on the order of the
inverse nanorod radius contribute to the interaction, it is rea-
sonable to assume a flat excitonic dispersion in order to reduce
numerical complexity. For our parameter choice in MoSe2,
this approximation overestimates the Rabi splitting by a few
meV [31], which is small compared to the observed splitting.

Since the unit of χ2D is m (length), using Eq. (7), we obtain
the unitless 3D electric permittivity (or dielectric constant),

ε3D
+/−(ω) = 1 + χ2D

+/−(ω)

b
, (8)

where b is the thickness of the TMDC layer.
All of the parameters pertaining to the 1s exciton for

MoSe2 encapsulated in hBN are given in Table I; note that
there is also evidence that encapsulating TMDC layers in hBN
is helpful in reducing defects as well as reducing the linewidth
of the excitonic resonance [55]. The low-temperature decay
rate in Table I agrees with the results in Ref. [55]. The per-
mittivity of the TMDC, as a function of frequency, is shown
in Fig. 1 for T = 4, 77, and 300 K. In a 2D system (i.e., a
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TABLE I. Material parameters for MoSe2 encapsulated in hBN,
as well as gold.

Parameter Value Reference

d 4.325 × 10−29 Cm (≈13 D) [5]
ϕ1s(r = 0) 4.8 × 108 m−1 a

h̄ω1s
0 1.6 eV [56]

h̄γ ′
1s(4 K) 0.3 meV b

h̄γ ′
1s(77 K) 3.5 meV b

h̄γ ′
1s(300 K) 26.9 meV b

b 0.7 nm
(dϕ1s )2

ε0b
0.434 eV

εhBN 4.5 [57,58]
h̄ωp 8.2935 eV c

h̄γp 92.8 meV c

aCalculated by exploiting the Wannier equation.
bCalculated by exploiting the method from Ref. [31].
cParameters used to fit Palik data for gold [49].

sheet), the permittivity is naturally anisotropic. In the circular
basis, the 2D susceptibility tensor is written as

χ2D
+/− →

[
χ2D

+ 0
0 χ2D

−

]
, (9)

where the ω dependence is implicit. This can be transformed
into the Cartesian basis such that e+/− = 1√

2
(ex ± iey); thus,

we write

χ2D
xy → 1

2

[
χ2D

+ + χ2D
− −i(χ2D

+ − χ2D
− )

i(χ2D
+ − χ2D

− ) χ2D
+ + χ2D

−

]
, (10)

which for the case of equivalent valleys (χ2D
+ = χ2D

− ), reduces
to

χ2D
xy →

[
χ2D

x 0
0 χ2D

y

]
, (11)

where χ2D
x = χ2D

y = χ2D
+/−. The full 3D permittivity tensor in

Cartesian coordinates is then given by

ε3D
xyz →

⎡
⎣1 + χ2D

x /b 0 0
0 1 + χ2D

y /b 0
0 0 εhBN

⎤
⎦, (12)

FIG. 1. [(a)–(c)] The relative in-plane permittivity of monolayer
MoSe2 given by Eq. (12) as a function of detuning from the TMDC
resonance frequency, h̄� = h̄(ω − ω1s

0 ), for selected temperatures.
Parameters are given in Table I.

FIG. 2. Schematic of the numerical simulation geometry, con-
taining a gold nanorod on top of a hBN-MoSe2-hBN stack, where
zgap is the distance between the nanorod and the top of the TMDC,
the dipole location is given by rd, and the top (bottom) power
transmission monitors, T+(T−), are shown as dashed blue (red) lines.
The dipole transmission monitors are defined by a cylindrical surface
with height of 180 nm and radius of 120 nm, centered at the origin.
The entire simulation domain is surrounded by perfectly matched
layers (PMLs) to simulate outgoing boundary conditions.

for which the x and y components are plotted for three differ-
ent temperatures in Fig. 1.

IV. METALLIC RESONATOR DESIGNS AND
ELECTROMAGNETIC CALCULATIONS OF STRONG

COUPLING AND FIGURES OF MERIT

For the MNP, we use a simple cylindrical gold nanorod
with rounded ends (see Fig. 2), where the radius (R) and
length (L) can be tuned to achieve a spectral resonance that
overlaps with the TMDC resonance. The second lowest mode
(with respect to frequency) of the MNP is chosen to couple to
the TMDC as it is typically much larger in quality factor (thus,
smaller decay rate), compared to the first-order mode, which
can aid in obtaining strong coupling behavior with the TMDC;
note that Ref. [12] uses the third lowest mode of a silver
nanorod to achieve high-Q low-mode-volume conditions, re-
quiring a much larger MNP. All calculations discussed below
are fully 3D in nature without any approximations or fitting
parameters, other than the microscopic parameters already
stated in the models.

For our models, we will first compute the MNP QNM as
well as the hybrid QNMs formed from the coupled TMDC-
MNP system, at different gap separations and for different
temperatures. The QNMs are spatially dependent and contain
important phase effects and frequency information (e.g., from
the complex poles). Using the QNMs in a Green function
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expansion, we can easily compute a range of important light-
matter interactions at different spatial positions over a wide
range of frequencies. In typical experiments, the absorption,
transmission, or reflection from an optical source is usually
what can be used to detect this mode hybridization, e.g., in
combination with near-field optical techniques. One can also
add additional emitters such as single quantum dots and study
the modified spontaneous emission (Purcell effect), as well as
light propagation and photon exchange effects.

As an application of the theory, we will report on two
frequency-dependent functions that are relevant to probing
strong coupling. The first is the Purcell factor as a function
of frequency, which is related to the modified spontaneous
emission of a point dipole at some position rd. The Purcell fac-
tor depends on the projected local density of states (LDOS),
which is completely contained within the imaginary part of
the (photonic) Green function, Im[G(rd, rd, ω)]. Since we are
interested in the strong coupling between the TMDC and the
MNP, we consider an immutable dipole (weakly coupled and
in a linear response, though this is not a model restriction).
Second, we consider the emitted spectrum at some surface
away from a dipole source, which can be probed, e.g., by
near-field microscopy techniques and localized detectors. For
this latter case, we require the two-space-point Green func-
tion, G(r, rd, ω), projected on a surface point r at a different
position away from the dipole. This scenario differs in the
sense that it also accounts for quenching and propagation
between two spatial points, unlike the LDOS. These spectral
functions also relate to the QNM phase (at different positions)
and are complementary but subtly different. In a traditional
normal mode approach, these spectral functions would typi-
cally be identical, unless additional filtering is included in the
input-output theory.

To numerically implement and corroborate our QNM the-
ory and model assumptions, we carry out full numerical
electromagnetic simulations in COMSOL MULTIPHYSICS [59].
The numerical generalized Purcell factor (denoted as FP),
which includes the homogeneous background contribution of
εB = 1 as well the scattered contributions of all of the modes
present in the nanostructure, is calculated by performing full
dipole simulations and examining surface-integrated Poynting
vector around the dipole at rd (cf. Fig. 2), from

FP(rd, ω) =
∫

s n̂ · Sdipolei,total(r; ω)dA∫
s n̂ · Sdipolei,background(r; ω)dA

, (13)

where the surface s is of a small sphere centered around
the finite-size dipole oriented in the ith direction; the small
sphere is approximately 1 nm in radius, and n̂ is the normal
vector directed outward relative to the dipole. This allows us
to capture the power flow which we have also checked is quan-
titatively accurate against known solutions in free space. In
experiments, this would be measured as the ratio of the spon-
taneous emission rate of a dipole emitter in the full scattering
structure to the rate in a homogeneous background medium.
COMSOL can also be used to obtain the QNMs of the system,
which allows us to obtain the Purcell factor everywhere in the
system, not just at a single point as in Eq. (13).

The gold nanorod (on the hBN substrate) was designed
such that the peak Purcell factor of the second lowest mode

was located near 1.6 eV to spectrally overlap with the TMDC
response. The final dimensions of the nanorod were deter-
mined to be L = 148 nm and R = 10 nm. The small frequency
shift due to the presence of the TMDC, which alters the
effective background permittivity, was not considered in this
design, but will be discussed later when examining the anti-
crossing behavior with respect to detuning.

V. HYBRID QUASINORMAL MODES AND SPECTRAL
SPLITTING IN THE STRONG COUPLING REGIME

We next describe how the hybrid QNMs can be obtained
to assess and understand the strong coupling regime of the
coupled TMDC MNP system and the spectral interaction of
QNMs, e.g., through QNM splitting. Numerically, we again
use COMSOL, since it can work in complex frequency space.
We adopt an inverse Green function approach, where the nor-
malized QNMs are obtained from the solution to a scattering
problem in complex frequency space [60,61].

The optical QNMs are solutions to the vector Helmholtz
equation in the complex frequency domain, which are
the proper mode solutions of cavity structures with open-
boundary conditions. Assuming nonmagnetic (μr = 1) per-
meability, the electric field QNM eigenvalue equation is

∇ × ∇ × f̃μ(r) −
( ω̃μ

c

)2

ε(r, ω̃μ) f̃μ(r) = 0, (14)

where f̃μ are the QNMs, ω̃μ = ωμ − iγμ are the complex
eigenfrequencies, and μ is the mode number. The permittivity,
ε(r, ω), is completely general and is composed of the Drude
gold [Eq. (6)], the anisotropic TMDC model [Eq. (12)], the
background permittivity (εB), and hBN substrate permittivity
(εhBN). The QNM cavity factors are given by Qμ = ωμ/2γμ.

The electric-field Green function can then be defined in
terms of an expansion over the QNMs and a complex fre-
quency prefactor [30],

G(r, r′, ω) =
∑

μ=±1,±2,···

ω

2(ω̃μ − ω)
f̃μ(r)f̃μ(r′), (15)

where the QNMs only depend on spatial position. Note that
the form of the Green function uses an unconjugated product,
and this is a general feature of QNMs, including the MNP
on its own as well as the hybrid modes. The unconjugated
product is essential to capture complex interference effects
arising from the QNM phase of the hybridized modes, which
can also give rise to Fano-like resonances [62,63]. The above
expansion is known to be highly accurate for spatial loca-
tions within and near the resonator [26,29,46]. For positions
far from the resonator, then the above solution can be used
with the Dyson equation to obtain regularized (nondivergent)
QNMs [64], even for spatial positions far from the resonator;
or one can also use near-field to far-field transformations [65]
(see also Ref. [66]).

As mentioned earlier, the concept of effective mode vol-
ume here represents a measure of f̃2

μ, and is thus a spatially
dependent quantity, and it is also complex (for QNMs). The
complex mode volume, for mode μ, for an emitter at position
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FIG. 3. Generalized Purcell factor at the x-oriented dipole location (rd = [44, 0, 40] nm) using full dipole calculations [markers, Eq. (13)]
and QNM analysis [lines, Eq. (19)]. Generalized Purcell factor for [(a)–(c)] the hybridized TMDC-MNP modes for selected temperature and
(d) the MNP alone on the hBN substrate. L = 148 nm, R = 10 nm, zgap = 2 nm. Note that some of the full-dipole Purcell factor features near
the minimum are caused by finite-size effects and small reflections that can come from the TMDC interfering with the PML; thus, this region
shows a larger departure with the QNM results, but the overall trends are clearly in very good qualitative agreement, especially as we are not
using any fitting parameters. [(e)–(g)] Purcell factor using QNM analysis as a function of frequency and gap size at (e) 300, (f) 77, and (g) 4 K.

rd in εB, is given by

Ṽμ(rd ) = 1

εB(rd )f̃μ(rd )2
. (16)

The effective mode volume for use in Purcell’s formula can
be calculated as the real part of Eq. (16),

Veff,μ(rd ) = Re[Ṽμ(rd )]. (17)

Thus, for one QNM, μ = c (positive frequency pole), we
recover the usual one-mode solution from the Purcell factor
(PF),

PF(rd, ω = ωc) = 3

4π2

(
λc

nB

)3 Qc

Veff,c(rd )
, (18)

where we assume the dipole is aligned with the dominant
polarization of the QNM, and nB = √

εB. With several modes,
there are complex interference effects stemming from the
concept of a complex effective mode volume, which is a
consequence of the QNM phase. These effects can also be
obtained directly from the single QNM Green function, which
is in fact much more convenient with coupled QNMs.

For two QNMs, the generalized Purcell factor can be ob-
tained from the two-QNM Green function (μ = 1, 2) relative

to the homogeneous solution,

FP(rd, ω) = n̂i · Im[G(rd, rd, ω)] · n̂i

Im[Ghom]
+ 1, (19)

where Im[Ghom] = nB
6πε0

( ω
c )3. The Green function that is ob-

tained using the QNM method is the scattered part of the
total Green function. Thus, the plus one appears due to the
total Green function being the sum of the scattered and
the homogeneous parts [64]: Gtotal = Gscatt + Ghom.

Figure 3 shows the numerical full-dipole Purcell factor
(markers) as well as the individual hybrid QNMs (dashed and
dotted lines) and the sum of the two QNMs (solid line) for the
hybrid TMDC-MNP system at various temperatures of inter-
est (4, 77, 300 K) as well as the single MNP on hBN (assumed
to be independent of temperature). The dipole position in
Fig. 3 is rd = [44, 0, 40] nm, which was mainly chosen such
that the x position overlapped with one of the antinodes of the
mode of interest. Of course, the z position could be moved
closer to achieve higher Purcell factors (at least until positions
far enough away from the surfaces to avoid additional static
effects). One of the unfortunate consequences of using the
anisotropic permittivity for the TMDC is that the PML has
trouble fully absorbing radiation near the TMDC layer, which
resulted in small Fabry-Pérot resonances in the TMDC. This
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FIG. 4. The magnitude of the [(a)–(c)] x component and [(d)–(f)] z component of the QNM field profile for the original MNP QNM,
first QNM of the hybrid MNP-TMDC system, and second QNM of the hybrid MNP-TMDC system at a temperature of 4 K. L = 148 nm,
R = 10 nm, zgap = 1 nm. White lines outline the MNP, substrate, and TMDC. The dipole location is given by the double arrow and marker,
which is located 20 nm above the gold surface.

is why we chose a z position that was as far from the TMDC
layer while still having a strong Purcell factor. We would
like to emphasize that these extra modes are fictitious, stem-
ming from PML reflections. Considering that no other modes
are used in the sum (i.e., higher and lower order plasmonic
modes that are not spectrally isolated from the frequency
range of interest, but far enough away to be safely ignored),
the agreement between the full numerical simulations and the
two-QNM simulations (with no fitting parameters) is overall
in very good agreement. For these calculations, the full dipole
simulations are computationally quite demanding (≈200 GB
of RAM and 20 min per data point), whereas the QNM can
be obtained for all frequencies in approximately 1 h (same
RAM).

Having now confirmed that the dipole Purcell factor is well
described by the two-QNM Green function expansion, we
stress that Eq. (15) can be used to obtain the Purcell factor
at all locations near the resonator, highlighting the remark-
able power of the QNM technique. This can be recognized
from Fig. 4 showing the absolute value of the x component
of the individual QNMs, |x̂ · f̃μ(r)|, in the xz plane (y = 0)
and xy plane (z = −0.5 nm, in the middle of the gap), for a
gap of 1 nm. The MNP, substrate, and TMDC are outlined
as white lines. The two hybridized modes look qualitatively
similar to the bare MNP QNM, but are indeed new modes,
not just perturbations of the original. Figure 5 shows the
anticrossing behavior in the total Purcell factor, calculated
using Eq. (19), for the MNP-TMDC system with a gap of
2 nm, which is expected in the presence of strong coupling,
showing minimum Rabi splittings of 84.6 and 86.1 meV for
temperatures of 4 and 300 K, respectively. Figure 5(c) shows
the value of the Rabi splitting as a function of detuning, which
is achieved by modifying the length of the MNP. In addition
to the anticrossing behavior, h̄�R > h̄(γp + γx ) is sometimes
used as a benchmark for the onset of strong coupling; in this
case, these values are 45.1 and 71.7 meV, respectively, which
are much less than the observed splitting.

The minimum Rabi splitting is observed at a detuning of
approximately 10–15 meV, rather than 0 meV. This is due
to finite QNM losses as well as the MNP design; the radius
and length of the MNP (on a substrate of hBN) were varied
until the peak of the Purcell factor matched the resonance
frequency of the TMDC. However, due to the presence of
the TMDC in the system, it slightly shifts the background
effective permittivity, which blue shifts the MNP resonance.
The peak permittivity is larger for lower temperature, explain-
ing why the shift is slightly larger at 4 K relative to 300 K.
A 10-meV shift can be achieved by changing the effective
substrate permittivity from 4.5 to 4.6, which is a reasonable
magnitude to expect from the presence of a TMDC layer.

The effect of the gap size between the TMDC and MNP,
zgap, is shown in Fig. 6 at 4 and 300 K. The individual QNM
Purcell factors are shown as dashed or dotted lines and the
total Purcell factors are shown as solid lines. As expected, the
observed Rabi spitting increases as the TMDC gets closer to
the MNP since the strength of the electric field due to the
plasmonic resonance increases dramatically near the metal
surface. Interestingly, the Fano-like behavior of the individual
QNMs is most pronounced at large gap sizes or low tem-
peratures. This can be partly explained by the QNM phase
interference between the bare modes, which is more drastic
with the inequality of the linewidths of the two modes, and is
more pronounced at elevated temperatures.

VI. COMPLEX POLES AS A FUNCTION
OF TEMPERATURE AND GAP SIZE

Next, Fig. 7(a) displays a summary of the complex poles
of the hybrid QNMs as a function of temperature and gap
size. Also shown is the resonance frequency of the TMDC
alone (dashed) and the QNM pole of the MNP alone (marker,
+). Since the TMDC alone does not support a QNM, the
TMDC resonance is represented by a vertical line. As the gap
between the TMDC and MNP increases, the modes become
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FIG. 5. Generalized Purcell factor at the location of the x-oriented dipole (rd = [44, 0, 40] nm) using QNM analysis [Eq. (19)] as a function
of detuning (� ≡ ω1s

0 − ωMNP
0 ) at (a) 4 and (b) 300 K. The dashed lines show the resonant frequency of the TMDC and the MNP. Detuning is

achieved by changing the length of the MNP (L = 140–156 nm). The markers indicate the peak Purcell factor of the upper and lower peaks at
the values of detuning used to create the image. (c) The splitting of the upper and lower peaks at each temperature where the line is a parabolic
fit to the data. Minimum anticrossing is observed at ≈10 meV detuning (see text).

less coupled, resulting in the modes moving toward either the
MNP (upper mode) or TMDC (lower mode), until they are
completely uncoupled. The upper mode is more MNP-like,
while the lower mode is a more pronounced hybridization of
the two original modes. The difference in the imaginary part
of the modes contributes to greater changes in phase which in
turn result in greater Fano-like lineshapes as seen in Fig. 6.

In Fig. 7(b), the Rabi splittings as a function of gap size
for 4 and 300 K are shown using two different calculations:
(i) the splitting due to the poles (dashed line) is calculated
as the difference between the real part of the poles and (ii)
the splitting due to the Purcell factor (solid line) is calculated
as the difference between the frequency locations of the two
maximums of the total Purcell factor. Since the calculations
are obtained for discrete values of zgap, the data are fit to an
exponential curve to make the readability of the information
more clear. The standard deviations of the fits are shown by
the shaded region, which is negligible for the pole-calculated
fit. Interestingly, the frequency separation of the real part of
the QNM poles is uniformly larger for 300 versus 4 K, which
is a consequence of the 3D spatial averaging of the coupling
between the system modes. However, for increasing gap sizes,
the Rabi splitting in the Purcell factor shows a larger splitting
for the 4 K (vs 300 K) for larger gap sizes beyond about 2 nm.
This is caused by the Fano-like behavior at lower tempera-
tures, which is more pronounced for the lower energy QNM
at larger gap sizes (e.g., see Fig. 6). Thus, the spectral splitting
is not a true indication for the location of the hybrid-mode
resonances and/or poles, and this effect is magnified at lower
temperatures.

VII. DIPOLE TRANSMITTED POWER AND THE
POYNTING VECTOR USING THE QNMS, AND

SPECTRAL SPLITTING FROM THE PURCELL FACTOR
VERSUS THE TRANSMITTED POWER

As discussed earlier, another experimental observable
could be the emitted spectrum to some detector position that
is spatially separated from a local excitation (such as from

a dipole source). The theory to describe the detected field at
these points requires the full two-space-point Green function
(or propagator), rather than just the projected LDOS. In nor-
mal mode theory, such a spectrum would be identical to the
one at the dipole location (apart from a scaling constant), but
in QNM theory the phase of the QNM changes as a function of
position. In addition, there are propagation and quenching ef-
fects between two spatial positions that can render the spectral
response between these two functions different in plasmonic
and TMDC systems Thus, for completeness, here we also
describe how the Poynting vector (and thus the dipole trans-
mission through some arbitrary surface) can be reconstructed
using the QNMs in the relevant spectral region of interest (in
a spatial region that is not too far from the resonators).

The Poynting vector is defined as

S(r, ω) = 1
2 Re[E(r, ω) × H∗(r, ω)], (20)

where E is the electric field and H is the auxiliary magnetic
field (H = μ−1

0 B, where μ0 is the permeability of free space
and B = (iω)−1∇ × E is the magnetic field). The electric
field due to a point dipole source with dipole moment d is
constructed from the Green function via

E(r, ω) = 1

ε0
G(r, rd, ω) · d, (21)

where we note that the Green function is a tensor of rank 2 (3
by 3 matrix). The total power flow through a surface T is then
given by

S±
z (ω) =

∫
T ±

Sz(r, ω) dr. (22)

The upper surface (T +) and lower surface (T −) values
are shown in Fig. 2, which are monitors in the xy plane
with normal vectors pointing outwards. The observed spectral
splitting due to the power transmission of a dipole for a gap
of 2 nm and temperature of 4 K is 74.1 meV. In contrast, the
splitting observed in Fig. 7 due to the complex poles and the
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FIG. 6. Generalized Purcell factor at the location of the x-
oriented dipole (rd = [44, 0, 40] nm) using QNM analysis [Eq. (19)]
for the individual QNMs of the hybridized system (dashed and dotted
lines) as well as the sum of the QNMs (solid lines), as a function of
temperature and gap size.

Purcell factor were 59.5 and 73.8 meV, respectively. There is
a slightly greater splitting when observed in the transmission
of a dipole emitter compared to the Purcell enhancement of
the emission of the same dipole emitter, as shown in Fig. 8.
This is a consequence of the changing QNM properties as a
function of space (especially the phase), which is captured in
the dipole transmission but not in the local Purcell factor.

Power transmission can typically be measured experimen-
tally by exciting the system with a plane wave or tightly
focused beam [67] and comparing the optical transmis-
sion with and without the optical scatterer. This is different
from what we have presented here, since our source is a
dipole emitter, but the transmission should be similar to
a background-free measurement. In contrast, experimentally
determining the Purcell factor requires measuring the change
in the radiative lifetime for a quantum emitter of either the
photoluminescence spectra [68] or Raman spectra [69]. These
differences are subtle but fully captured in our model. The
two-space-point Green functions can also be used to comple-
ment other formalisms for systems containing two and more
quantum emitters, since they account for important photon
exchange effects [70,71].

FIG. 7. (a) Complex poles of the QNMs for the hybridized sys-
tem at 4 and 300 K as a function of gap size (values of 0.5, 1,
2, 3, 5, and 10 nm). The TMDC does not support a QNM, so the
resonant frequency (ω1s) is given by a dashed line. The complex
pole of the MNP on the hBN substrate is given by the plus (+)
marker. (b) Frequency separation between the real part of the QNM
poles (dashed lines, solid symbols) and using the frequency at the
maxima of the spectral splitting of the generalized Purcell factor
(solid lines, open symbols) for 4 K (red) and 300 K (blue). These
lines are exponential fits to the data.

VIII. CONCLUSIONS

In summary, we have presented a QNM approach for the
description of the modal physics of a hybrid TMDC-MNP sys-
tem in the strong coupling regime. In this fully 3D approach,
there is no fixed g, but rather the splitting behavior is captured
from the underlying hybrid modes, using the full 3D geometry
of hybrid cavity structure.

We also examined the effect of temperature, gap size, and
detuning to illustrate the characteristics of the coupling be-
tween the TMDC and MNP. Spectral splittings as large as
90 meV are observed for a gap size of 0.5 nm. Fano-like
contributions from the individual QNMs also manifest in the
splitting associated with strong coupling. These hybrid modes
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FIG. 8. Dipole transmission (upper and lower surface) from the
dipole-emitted Poynting vector, reconstructed using the QNM anal-
ysis. Here we use zgap = 2 nm and rd = [44, 0, 40] nm at (a) 4 and
(b) 300 K.

are indeed the desired dressed states of the hybrid system.
Knowing the QNMs of the system allows us to examine the

coupling as a function of frequency and space, which can
be used to examine more exotic and complex systems such
as coupled arrays of dipoles or quantum emitters. Moreover,
the use of a QNM model is critically important for the quan-
tization of these lossy modes in quantum optics since they
contain the full dispersive nature of the modes that arises from
complex eigenfrequencies, unlike traditional normal modes
that require phenomenologically added dephasing contribu-
tions in Jaynes-Cummings-type models [34,35]. In particular,
in the quantized QNM approach applied, there are important
nondiagonal decay terms that are not captured in a dissi-
pative Jaynes-Cumming model (namely a Lindblad decay
process that couples QNM 1 to QNM 2 and vice versa), of
the form γαβ/2[2âαρâ†

β − â†
α âβρ − ρâ†

α âβ]; these account for
dissipation-induced quantum mechanical coupling between
classically orthogonal QNMs, and can also exhibit striking
interference effects including Fano resonances [34,35]. Our
approach thus paves the way to describe such complex cavity
structures, including the coupling of more quantum emitters,
fully accounting for collective effects, as well as radiative and
nonradiative decay and transport as mediated from the hybrid
modes. Indeed, it is even possibly to add gain elements into
the cavity structures, and will use a QNM approach [72].
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