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Open spin chain realization of a topological defect in a one-dimensional Ising model:
Boundary and bulk symmetry
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We study the realizations of topological defects in a one-dimensional quantum Ising model with an open
boundary condition at criticality. Applying the construction discussed in M. Hauru, G. Evenbly, W. W. Ho,
D. Gaiotto, and G. Vidal, Phys. Rev. B 94, 115125 (2016), we prove that the Ising model on an open chain
with multiple topological defects can be transformed to the same model with boundary magnetic fields and
noninteracting boundary degrees of freedom. This results in the appearance of a linear combination of Cardy
states, which can be interpreted as an edge state of the spin or fermion chain. We show that this edge state with the
large boundary entropy can be protected under bulk perturbation, whereas it is fragile to a boundary perturbation.
Our formulation suggests the existence of nontrivial edge physics under the existence of topological defects and
opens many interesting questions for future analysis related to boundary and bulk physics.
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I. INTRODUCTION

Massless field theories have played an essential role in the
description of gapless systems [1]. Notably, the conformal
field theory (CFT) is one of the most powerful and success-
ful methods to study them, especially in (1 + 1)-dimensional
critical systems [2]. One celebrated example is the Tomonaga-
Luttinger liquid (TLL), which describes the property of a large
class of one-dimensional (1D) interacting electrons [3,4]. If
electrons are physically confined to 1D, as in a quantum wire,
they can no longer be described as effectively noninteracting.
In other words, the Fermi liquid picture has to be replaced
by a TLL. The TLL can be explained as a special case of the
c = 1 CFT [5], which also describes the critical system of the
Gaussian universality appearing in a wide range of physics
[6].

Considering boundaries or defects in gapless systems is
one of the most important topics in CFTs [7]. Such a system
can be analyzed by boundary CFTs (BCFTs). BCFTs have
been the significant theoretical framework to investigate not
only boundary critical phenomena but also a wide variety of
problems in condensed matter, high energy, and mathemat-
ical physics [8–11]. One important feature of BCFT is that
not only the bulk but also the boundaries must satisfy the
conformal invariance. Such a strong restriction results in the
complete classification of the permissible boundary condi-
tions for some simple cases [8,12], while it has been a difficult
problem to classify them for the general BCFT [13].

One of the most important applications of BCFTs in con-
densed matter physics is the analysis of gapless systems where
effectively noninteracting electrons are coupled to a magnetic
impurity via a spin exchange in an s-wave channel, known
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as the Kondo problem [14]. This problem can be reduced
to a 1D problem which is formally equivalent to a quantum
wire junction problem [9,15], and the corresponding BCFT
successfully reveals the critical properties of such a system
[16–18]; for a review, see Ref. [19]. The BCFT approach can
be used to describe the spin-exchange coupling to a spinful
impurity [20,21], confirming earlier renormalization-group
(RG) results [22]. As for the different problem of potential
scattering against a spinless impurity in a TLL, it was shown
that such an impurity can have significant effects on the prop-
erty of the conductivity of the electrons [15,23,24]. Such a
system can be mapped onto a system with a boundary by
folding it across the impurity site [25].

After this folding trick, one can consider the impurity prob-
lem as the boundary interaction problem of the folded model
in general. Hence, it becomes possible to analyze the system
by the BCFT by the folding trick. More generally, multiple
impurities or multiple wire junction problems have attracted
much attention of theoretical physicists, and many nontrivial
boundary critical behaviors have been proposed [16,26,27].
Also, it is proposed that these settings could be realized in ex-
periments in the junctions of quantum wires or quantum Hall
edges, which can be theoretically studied in the framework
of BCFTs [10,19,28,29]. Moreover, junctions of 1D quantum
systems can serve as building blocks of quantum circuits [30].
To realize such models in the experiment and develop their
application to mesoscopic physics, further investigations of
the impurity problem have been still significant.

In BCFT, especially when a single impurity is repulsive,
it divides the system into decoupled wires under the RG flow
[10,19,28,29]. Such a repulsive impurity or defect should be
treated as factorising defects, which is known as a class of
conformal defects [31]. Since the cut ends of the decoupled
regions at the defect correspond to the conformal bound-
ary states, it is important to study the conformally invariant
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boundary conditions to understand this kind of defect further
[31–34].

In addition to the factorising defects, another type of defect
is known, called topological defects [35]. A topological defect
is a transmissive defect and can be thought of as an operator
which generates a general “twist” corresponding to the duality
or the symmetry of the system [36]. The constructions of
topological defects in the lattice models have been explored
by using integrability [37] and more recently by using a tensor
network [38]. Also, the RG behavior of topological defects
has been studied, for example, in Refs. [32,39].

More generally, the construction and classification of var-
ious conformal defects, which may connect different CFTs,
have been discussed [27,31,40–42]. The defects between two
CFTs connected by an integrable bulk perturbation are al-
gebraically constructed [41,42]. Surprisingly, this algebraic
construction is shown to be consistent with the perturbative
calculation of the identity defect [43]. Hence, further research
is required on the relations between RG flows of CFT and
(purely) algebraic construction of conformal defects to grasp
the nature of phase transitions.

Since these two types of defects, the factorising and topo-
logical defects, can be defined independently, in principle, one
could consider the systems in which both types of defects
coexist. It is practically significant to consider the multiple-
defect systems with these two types because real materials can
have the topological defects in the presence of open bound-
aries, which can be described as a factorising defect.

Most of the existing works, nevertheless, consider the sys-
tem with either topological or factorising defects. Hence, as
the simplest example, we study the 1D transverse field Ising
model [44] on the lattice in the presence of both open bound-
ary conditions and topological defects. We show that it can be
transformed into the same model without any topological de-
fects by using the property of the defects. In this construction,
we demonstrate that the appearance of the linear combination
of the conformally invariant boundary states [32] can be in-
terpreted as the edge degrees of freedom, which is like the
recently advocated gapless topological phases [45,46]. More-
over, our result also suggests the nondecreasing of boundary
entropy g [47] under the bulk perturbation even in the lattice
model, which may signal nontrivial edge physics [48–50].

We would like to comment that the 1D transverse field
Ising model is not only a toy model easy to analyze the-
oretically but also can be realized experimentally [51–54].
Therefore, we expect that our results could be observed exper-
imentally in the future, after the realization and precise control
of the topological and factorising defects in the experiments.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the topological defects and the conformal
boundary states more precisely than in this section and review
the basic concepts of the BCFT, especially the Cardy states.
We also explain the known properties of the Ising BCFT
in 1 + 1 dimensions. In Sec. III, we discuss the transverse
field Ising chain on the lattice. After introducing the lattice
realization of the Cardy states and the topological defects, it
is elaborated on how the topological defects interact with the
open boundaries. We demonstrate that the topological defects
in the bulk can be absorbed into the boundary states, where
the fusion between the defects and the boundaries obeys the

fusion rule of the Ising CFT. We also show that the fusion
with the multiple topological defects yields the superposition
of the conformally invariant boundary states at the boundary.
The extension to the fermionic Ising BCFT is also discussed.
After discussing the RG argument of the boundary states in
Sec. IV, we conclude our results in Sec. V.

II. TOPOLOGICAL DEFECT AND ITS ACTION TO
BOUNDARY STATE

A. The topological defect and the factorising defect

First of all, we begin with reviewing the conformal defects
since both topological and factorising defects can be under-
stood as special classes of conformal defects. The conformal
defects, which connect CFT1 and CFT2, are line objects X
which satisfy

T1 − T1 = T2 − T2, (1)

along the defect line, where Ti is the energy momentum tensor
of CFTi and T i is the antiholomorphic counterpart [31,35].
The complete classification of the conformal defects for two
different CFTs is a difficult problem and has never been
accomplished. By folding the system along the defect, the
problem reduces to the construction of boundary states in the
product theory CFT1 × CFT2, which may in general break ex-
tended symmetry such as Lie group symmetry [13,27,31,40].
Though the construction of these boundary states is a fas-
cinating and difficult problem, in this paper, we concentrate
on connecting the same CFTs (i.e., CFT1 = CFT2) by two
classes of conformal defects which are called topological and
factorising defects, especially for the A series minimal CFT
with a diagonal torus partition function [55].

The topological defects for CFTs were extensively studied
by Petkova and Zuber [35]. They are transmissive confor-
mal defects, which can be moved and deformed continuously
without changing the behavior of the system [31]. The topo-
logical defects satisfy a stronger condition than in Eq. (1):
T1 = T2 and T1 = T2, along the defect line.

For the Ising model, there exist three topological defects
D1, Dε , and Dσ , where each index of the defects corresponds
to the primary operator with the conformal dimension h1 = 0,
hε = 1

2 , and hσ = 1
16 , respectively [35,56,57]. These defects

satisfy the following fusion rule:

Dε × Dε = D1,

Dε × Dσ = Dε, (2)

Dσ × Dσ = D1 + Dε .

It should be noted that, although this fusion rule is the same
as that of bulk fields of the Ising CFT, the correspondence
between the bulk operator and the topological defect is not
always true.

On the other hand, a factorising defect is a totally repulsive
conformal defect. More specifically, it is described by the
Dirichlet boundary condition [32], which can be expressed as
the operator

X =
∑
a,b

fa,b|a〉〈b|, (3)
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where |a〉 and |b〉 are the conformal boundary states which we
will define precisely in Sec. II B, and fa,b is a coefficient.

Our strategy for constructing topological defects in the
presence of the open boundary conditions in a 1D spin chain
is quite simple:

(1) We consider the realization of topological defects on a
spin chain with the periodic boundary condition.

(2) Then we insert a factorising defect which is equivalent
to assigning an open boundary condition.

(3) Finally, we put it near the open boundary and make the
defect absorbed into the boundary. We can move the topolog-
ical defect freely by some unitary transformation thanks to its
transmissiveness.

In this paper, we only consider a specific lattice model, the
1D quantum Ising model at criticality, because this third step
requires some detailed information about the spin chain [58].
However, we believe the above construction can be applied to
other general models described by CFT because the existence
of topological defects could be assumed under the symmetries
or the dualities of the system [59,60].

B. BCFT and Cardy states

BCFT is defined by assigning a boundary condition which
can preserve conformal symmetry of the theory [7]. Even for
the general theory described by the extended algebra larger
than the Virasoro algebra, one can consider symmetry break-
ing or preserving boundary conditions which can preserve
conformal symmetry [13].

Here, we concentrate on the established case, the A series
minimal model with the diagonal partition function [8]. The
conformal boundary state satisfies the following boundary
condition:

(Ln − L−n)|B〉 = 0, (4)

where Ln is the generator of the local conformal transforma-
tion, and L̄n is the antiholomorphic one. A solution of this
equation is given by the linear combination of the Ishibashi
states:

| j〉〉 =
∑

M

| j, M〉 ⊗ | j, M〉, (5)

where j is an index of the primary fields which contain the
identity operator labeled by 0, and M labels its descendant
level.

However, the Ishibashi state is not a “physical” basis if we
consider the open string partition function 〈〈 j|e−τHCFT |k〉〉 =
δ j,kχ j (τ ). By using the modular S transformation, the annulus
partition function should be written as

Zj,k (τ ) = 〈 j|e−τHCFT |k〉 =
∑

i

ni
j,kχi

(
− 1

τ

)
, (6)

where ni is a nonnegative integer matrix, and | j〉 is some
boundary state labeled by the index j. As the easiest solution,
Cardy obtained |Ba〉 = ∑

j
Sa j√

S0 j
| j〉〉 where he has taken n as

fusion matrix N [8]. This solution of the conformally invariant
boundary state is called the Cardy state.

For the Ising BCFT, it is know that there exist three differ-
ent Cardy states labeled as |1〉, |ε〉, and |σ 〉, respectively [8].

Like the topological defects, these boundary states are related
to the three primary operators in the Ising CFT. Notice that, in
the language of the transverse field Ising chain, these Cardy
states correspond to the fixed points of the boundary states in
the sense of the boundary RG:

|1〉 = |+〉, |ε〉 = |−〉, |σ 〉 = |free〉, (7)

where |free〉 corresponds to the disordered boundary state
with the Z2 symmetry, while |±〉 represents the magnetized
and Z2 symmetry-broken boundary state with + or − spin,
respectively.

We would like to comment that, when one considers lattice
models with boundaries, it may be natural to start with the
boundary perturbation theory to Cardy states in BCFT [34].
In this setup, some nontrivial existence of boundary states de-
scribed by the linear combination of the Cardy states is shown
by this boundary RG argument of the least relevant boundary
field ψ(1,3) in the minimal CFT [33,34,61]. The complete
description of boundary perturbation theory inevitably needs
extensive analytical calculations such as RG analysis and the
truncated conformal space approach (TCSA).

C. Graham-Watts states

By considering multiplication of the topological defect to
the Cardy states, one can obtain another series of “physical”
states which are represented by the linear combination of the
Cardy states [32]:

Da|Bb〉 =
∑

j

N j
ab|Bj〉 = |a × b〉. (8)

We call these states Graham-Watts states.
The RG flow from a Cardy state |Ba〉 to another one |Bb〉

implies the existence of RG flow from a Graham-Watts state
Dd |Ba〉 to Dd |Bb〉 for an arbitrary index d [32]. Hence, the
Graham-Watts state can give an easy construction of the ex-
tended boundary states with the information of RG flow. The
essential part of their proof of the existence of such a flow
is quite simple. First, we think about two annulus partition
functions Zd,a and Zd,b. The RG flow from Zd,a to Zd,b is
implied by the RG flow from |Ba〉 to |Bb〉. Second, we interpret
the boundary state |Bd〉 as Dd |0〉. Because the topological
defect Dd can freely move, we can obtain the RG flow from
Z0,d×a to Z0,d×b, which suggests the boundary RG flow of the
Graham-Watts states from Dd |Ba〉 to Dd |Bb〉.

For the Ising model, by multiplying Dε and Dσ recursively
to Cardy states, we can obtain the following set of states:

|+〉, |−〉, 2n|free〉, 2n(|+〉 + |−〉), (9)

where n is a positive integer including 0. One can see these
results from the fact that Dε just flips the spin in the boundary
as Dε |±〉 = |∓〉 and Dε |free〉 = |free〉, while Dσ makes the
Z2-symmetric boundaries as Dσ |±〉 = |free〉 and Dσ |free〉 =
|+〉 + |−〉 [remember the fusion rule of the Ising CFT like in
Eq. (2) and the definition of the Ising Cardy states in Eq. (7)].
In this setup, the states like |+〉 + |−〉 + |free〉 do not appear.

The lattice realization of the cat state |+〉 + |−〉 was first
considered in the BCFT analysis of the tricritical Ising model
as far as we know [62–64], and recently, this state in the Ising

125418-3



YOSHIKI FUKUSUMI AND SHUMPEI IINO PHYSICAL REVIEW B 104, 125418 (2021)

model started to capture attention in the field of the symmetry-
protected topological phases [45,46]. We believe, at least with
respect to the bulk and boundary RG and the topological
defect theory, that the appearance of this Graham-Watts state
is ubiquitous.

We would like to comment that, if one thinks about the
(boundary and bulk) RG flow [48,49,65], the Graham-Watts
states like |+〉 + |−〉, 2|free〉 exhibit coincidentally similar be-
havior to the edge state of the SPT or the intrinsic topological
phases [45,46], as will be discussed in Sec. IV.

It should also be noted that there exists more general
lattice models, A-D-E lattice models, which should be de-
scribed by minimal conformal field theories [66]. In these
models, topological defects and open boundary conditions
can be implemented by using the technique of the (bound-
ary) Yang-Baxter equation, and these models can be mapped
to anyonic chains [67,68]. However, in these works, what
boundary operator may trigger the boundary RG flow is not
fully classified, especially for Graham-Watts states. Hence,
by applying our argument of the boundary (and bulk) RG
flow of Graham-Watts states, one can possibly predict or even
construct nontrivial edge modes in the open anyonic chain in
general. This RG analysis only requires transformation law of
boundary operators by applying topological defects and the
RG flows of Cardy states, as we have discussed.

III. ISING MODEL WITH TOPOLOGICAL DEFECTS AND
OPEN BOUNDARY CONDITION

A. Lattice realization of topological defects
on the critical Ising chain

We consider the quantum Ising model on a semi-infinite
chain with the following Hamiltonian:

H = −
[ ∞∑

i=1

(
σ z

i σ z
i+1 + �σ x

i

) + hσ z
1

]
, (10)

where σα with α = x, y, z are the Pauli matrices, � is the
transverse field, and h is the longitudinal field only on the
boundary. Tuning � = 1 brings this model to the gapless
point, whose low-energy physics can be described by the
(1 + 1)-dimensional Ising CFT.

As is already mentioned, corresponding to the three pri-
mary fields, there can be three conformally invariant boundary
conditions in the Ising CFT [8]: |1〉 = |+〉, |ε〉 = |−〉, and
|σ 〉 = |free〉, each of which represents the fixed boundary
condition with + spin and − spin in the σ z basis, and the free
boundary condition, respectively. These boundary conditions
can be realized by controlling the boundary magnetic field h
in Eq. (10). Here, h = 0 yields the free boundary condition,
which has a relevant field with the scaling dimension 1

2 since
the conformal spectra of this boundary fixed point are 1 ⊕ ε.
Because this relevant field corresponds to the boundary exter-
nal field h, the infinitesimal magnetic field h induces the flow
to the ordered boundary states at h = ±∞: h > 0 corresponds
to |+〉 state, while h < 0 to |−〉 state [69].

The topological defects in the Ising CFT can also be
realized on the lattice by controlling the parameters in the
Hamiltonian [58]. Corresponding to the primary fields, the
classified three topological defects in the Ising CFT are D1,

Dε , and Dσ [70], as is also introduced in Sec. II. The D1
represents the trivial Z2 symmetry defect, which means there
is no defect, and it has no effect in the system. The Dε is called
the (nontrivial) Z2 symmetry defect, whose lattice realization
is the same as the antiperiodic boundary condition. Therefore,
the insertion of the symmetry defect into the bond between
the ith and (i + 1)th sites on the critical Ising chain can be
performed by the following transformation for the parameter
in the Hamiltonian:

σ z
i σ z

i+1 → −σ z
i σ z

i+1, (11)

which means a change of the interaction between the ith and
(i + 1)th spin into an antiferromagnetic one. We refer to this
situation as “there is a Dε in the (i, i + 1) bond.”

The last defect Dσ is called the Kramers-Wannier (KW)
duality defect, which can be inserted into the ith site on the
lattice by [58,70]

σ z
i−1σ

z
i + σ x

i → σ z
i−1σ

y
i . (12)

B. The fusion between the Cardy states and topological defects

Now we have the lattice realization of the Cardy states
and the topological defects on the critical Ising chain. In
this subsection, we consider the fusion between them on the
lattice. The key point in our analysis is that the topological
defects can be moved freely by using the appropriate uni-
tary transformations [70]. Namely, after the insertion of the
topological defects Da into the bulk, we can move it near the
boundary and finally have it absorbed into the edge states |b〉
by the unitary transformations. The resulting boundary states
should be, according to the conjecture of CFT, consistent with
the fusion rule of the Ising CFT |a × b〉. We demonstrate that
the boundary states on the gapless Ising chain obtained by
being fused with the topological defects are consistent with
the conjecture of the Ising CFT [35].

1. The symmetry defects

First of all, we discuss the trivial Z2 symmetry defect D1.
Since the lattice realization of D1 is just the absence of any de-
fects, trivially, the unitary transformation for moving it is just
an identity transformation. Then the boundary states remain
unchanged after the fusion with the D1, which is consistent
with the fusion rules of the identity operator and arbitrary
operators in the Ising CFT:

1 × 1 = 1, (13)

1 × ε = ε, (14)

1 × σ = σ. (15)

Next, we discuss the fusion of the Cardy states and the
nontrivial symmetry defect Dε . We consider the critical Ising
model on a semi-infinite chain with the symmetry defect in
the (2, 3) bond:

H (2,3)
Dε

≡ −
(

σ z
1σ z

2 − σ z
2σ z

3 +
∞∑

i=3

σ z
i σ z

i+1 +
∞∑

i=1

σ x
i + hσ z

1

)
,

(16)
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which can be obtained by Eq. (11). A unitary transformation
to move the defect from the (2, 3) bond into the (1, 2) bond is
the Pauli matrix σ x

2 :

σ x
2 H (2,3)

Dε
σ x

2
† = −

(
−σ z

1σ z
2 +

∞∑
i=2

σ z
i σ z

i+1 +
∞∑

i=1

σ x
i + hσ z

1

)

≡ H (1,2)
Dε

. (17)

In the same way, we can move the defect from the (1, 2)
bond to the boundary, i.e., let it be absorbed into the boundary
by the σ x

1 transformation:

σ x
1 H (1,2)

Dε
σ x

1
† = −

( ∞∑
i=1

σ z
i σ z

i+1 +
∞∑

i=1

σ x
i − hσ z

1

)
, (18)

which is equivalent to the Hamiltonian without any defect
in Eq. (10), whose boundary external field is flipped. There-
fore, the fusion of Dε has the following effects on the Cardy
states:

Dε |+〉 = |−〉, (19)

Dε |−〉 = |+〉, (20)

Dε |free〉 = |free〉. (21)

Notice that these relations are consistent with the fusion rules
between the ε operator and the primary fields corresponding
to each Cardy state:

ε × 1 = ε, (22)

ε × ε = 1, (23)

ε × σ = σ. (24)

Now we are able to confirm that the effect of the Dε on the
boundary states is consistent with the Ising CFT.

2. The duality defect

We turn to the discussion of the duality defect Dσ . Let
us consider the critical Ising chain with Dσ at the third site,
whose Hamiltonian can be obtained by Eq. (12):

H (3)
Dσ

≡ −
(

σ z
1σ z

2 + σ z
2σ

y
3 +

∞∑
i=3

σ z
i σ z

i+1

)

−
(

σ x
1 + σ x

2 +
∞∑

i=4

σ x
i

)
− hσ z

1 . (25)

The unitary transformation which transfers the defect into the
second site can be defined as

U3→2 = [(
R

π
4

y R
π
4

x
)

2 ⊗ (
R

π
4

z
)

3

] ⊗ CZ2,3, (26)

where (Rθ
a )i = cos θ × 1i + i sin θ × σ a

i and

CZi,i+1 = (| ↑〉〈↑ |)i+11i + (| ↓〉〈↓ |)i+1σ
z
i , (27)

is the control Z operator [58]. The simple calculation results
in

U3→2H (3)
Dσ

U3→2
†

= −
[(

σ z
1σ

y
2 +

∞∑
i=2

σ z
i σ z

i+1

)
+

(
σ x

1 +
∞∑

i=3

σ x
i

)
+ hσ z

1

]

≡ H (2)
Dσ

, (28)

which represents the Hamiltonian with Dσ at the second site.
Applying the unitary transformation U2→1 for Eq. (28)

yields the absorption of the defect into the boundary. The
resulting Hamiltonian is

U2→1H (2)
Dσ

U2→1
† = −

( ∞∑
i=1

σ z
i σ z

i+1 +
∞∑

i=2

σ x
i + hσ

y
1

)

≡ H (1)
Dσ

, (29)

where the boundary field is applied along the y direction, and
the boundary transverse field term σ x

1 is absent.
The boundary states of Eq. (29) can be interpreted as fol-

lows. When the original boundary state before the fusion with
Dσ is in the free boundary condition, there is no boundary
longitudinal field h = 0. Since in this case the Hamiltonian
in Eq. (29) is commutable with σ z

1 , the ground state |ψ〉 can
be decomposed into two different sectors depending on the
parity of 〈ψ |σ z

1 |ψ〉 = ±1. For each ± sector, the Eq. (29) can
be described as

H (1)
Dσ

= −
(

±σ z
2 +

∞∑
i=2

σ z
i σ z

i+1 +
∞∑

i=2

σ x
i

)
, (30)

which is equivalent to the critical Ising Hamiltonian in
Eq. (10) with h = ±1 and without any defect. Since any finite
boundary longitudinal field h induces the ordered boundary
states, the resulting boundary state for each parity sector is
|±〉, respectively. Therefore, because the boundary state of
Eq. (29) is the superposition of the boundary states of the two
parity sectors, we can conclude that

Dσ |free〉 = |+〉 + |−〉. (31)

When the original boundary states before applying Dσ are
in the fixed boundary conditions |±〉, on the other hand, the
Hamiltonian in Eq. (29) is no longer commutable with σ z

1 due
to h = 0. Here, let us focus on the case where h > 0 and the
original boundary state is |+〉. As is already explained, since
the fixed point for the free boundary condition is unstable for
the perturbation of h, a positive finite h flows to h = ∞ for
the boundary RG, which allows us to analyze the Hamilto-
nian in Eq. (29) with the limit of h → ∞ taken. Therefore,
the ground state |ψ〉 of Eq. (29) necessarily maximizes hσ

y
1 ,

which amounts to

|ψ〉 = 1√
2
|σ y = 1〉1 ⊗ |s2, s3, · · · 〉, (32)

where the spin state at the boundary is determined as the
eigenstate of σ

y
1 with the eigenvalue +1, and the other

part is described as |s2, s3, · · · 〉. Notice that Eq. (32) yields
〈ψ |σ y

1 |ψ〉 = 1 and 〈ψ |σ z
1 |ψ〉 = 0. Therefore, the effective
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Hamiltonian results in

H (1)
Dσ

= −
( ∞∑

i=2

σ z
i σ z

i+1 +
∞∑

i=2

σ x
i + h

)
, (33)

which is equivalent to the critical Ising Hamiltonian with the
free boundary condition since the constant term h has only
irrelevant effect.

Although we discuss only the case of h > 0, the negative h
also yields essentially the same effective Hamiltonian:

H (1)
Dσ

= −
( ∞∑

i=2

σ z
i σ z

i+1 +
∞∑

i=2

σ x
i − h

)
, (34)

the difference of which from the case of h > 0 is just the
constant term. As a result, we can conclude

Dσ |+〉 = Dσ |−〉 = |free〉. (35)

In conclusion, according to Eqs. (31) and (35), we can
observe that the fusion between the duality defect and the
Cardy states is consistent with the fusion rules of the Ising
CFT:

σ × 1 = σ, (36)

σ × ε = σ, (37)

σ × σ = 1 + ε. (38)

3. Comment on the stability of |+〉 + |−〉
As shown in Eq. (31), the boundary state generated by

the fusion with the free boundary and the duality defect is
the superposition of the Cardy states |+〉 + |−〉, which can
be realized in the Hamiltonian in Eq. (29) with h = 0. As is
explained in Eq. (10), changing the transverse field � from
the critical value 1 induces the gapped ground state. Let us
consider perturbing Eq. (29) with h = 0 into off-criticality by
controlling the transverse field:

H (1)
Dσ

= −
( ∞∑

i=1

σ z
i σ z

i+1 + �

∞∑
i=2

σ x
i

)
. (39)

Because even for the noncritical system the Hamiltonian com-
mutes with σ z

1 , the ground state can be decomposed again into
the ± parity sectors, for each of which the Hamiltonian is

H (1)
Dσ

= −
(

±σ z
2 +

∞∑
i=2

σ z
i σ z

i+1 + �

∞∑
i=2

σ x
i

)
. (40)

Even if the bulk is gapped, the boundary orders for a finite
boundary longitudinal field, then the boundary state of this
Hamiltonian is also the superposition of two ordered boundary
states fixed with + spins and − spins. This suggests that the
boundary state at criticality |+〉 + |−〉 is stable against the
bulk perturbation breaking the KW self-dual symmetry. We
discuss later this in the viewpoint of the boundary RG flow.

C. Fusion with multiple defects

We have confirmed on the lattice that the fusion between
the topological defects Da and the Cardy states |b〉 can be
derived by the fusion rule in the Ising CFT, which yields

the resulting boundary states |a × b〉. In the same way, we
can prove that fusing another defect Dc with this obtained
boundary state |a × b〉 on the critical Ising chain yields the
boundary state |a × b × c〉.

As an example, let us consider multiplying the duality
defect twice for the Cardy states in the Ising CFT. The Hamil-
tonian whose boundary takes in a single Dσ is Eq. (29). For
this Hamiltonian, we insert the other duality defect into the
second site:

H (1),(2)
Dσ

≡ −
(

σ z
1σ

y
2 +

∞∑
i=2

σ z
i σ z

i+1 +
∞∑

i=3

σ x
i + hσ

y
1

)
. (41)

Then we move the inserted defect into the boundary by the
appropriate unitary transformation:

U2→1H (1),(2)
Dσ

U2→1
† = −

( ∞∑
i=2

σ z
i σ z

i+1 +
∞∑

i=2

σ x
i + hσ x

1 σ z
2

)
.

(42)
Since σ x

1 commutes with the Hamiltonian, the boundary
states are the superpositions of the one for each Z2 parity
sector. When h = 0, the Hamiltonian for these two ± sectors
is

U2→1H (1),(2)
Dσ

U2→1
† = −

( ∞∑
i=2

σ z
i σ z

i+1 +
∞∑

i=2

σ x
i ± hσ z

2

)
,

(43)
which is equivalent to the critical Ising chain with a boundary
longitudinal field ±h, respectively. This means Dσ Dσ |+〉 =
Dσ Dσ |−〉 = |+〉 + |−〉, which is consistent with the fusion
rule of σ × σ × 1 = σ × σ × ε = 1 + ε. For h = 0, on the
other hand, the boundary site 1 does not interact with any other
sites. This represents the existence of boundary degrees of
freedom which are equivalent to the twofold degenerated free
boundary states 2|free〉. Hence, it is possible to understand the
prefactor “2” of the Graham-Watts state as a boundary degree
of freedom. Notice that these results are consistent with the
fusion rule of σ × σ × σ = 2σ .

Now we see the fusion of the Cardy states with multiple du-
ality defects on the gapless Ising chain yields the same results
with the Ising CFT. The other case of multiple applications of
the topological defects can also be easily proved. By consid-
ering the insertion of topological defects recursively, one can
obtain the boundary states like 2n(|+〉 + |−〉) and 2n|free〉,
where the factor 2n can be interpreted as the boundary degree
of freedom which does not interact with the bulk.

D. Duality connection between Ising and fermionic Ising BCFT

In this section, we introduce the possible relation of bound-
ary states between Ising CFT and fermionic CFT [71,72]. In
the 1D lattice model, these two models are realized by the
Ising spin chain and the Kitaev chain, which are related by
Jordan-Wigner transformation [73]. Because of the nonlocal-
ity of this transformation, the meaning of symmetries can be
changed in these two representations [74–76]. For example,
the topologically protected edge degree of freedom of the
Kitaev chain can be understood as the symmetry-protected de-
gree of freedom in the spin chain which prohibits the existence
of the boundary disorder field [46].
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First of all, the Cardy states of Ising CFT are written as [8]

|+〉 = 1√
2
|1〉〉 + 1√

2
|ε〉〉 + 1√

2 4
√

2
|σ 〉〉, (44)

|−〉 = 1√
2
|1〉〉 + 1√

2
|ε〉〉 − 1√

2 4
√

2
|σ 〉〉, (45)

|free〉 = |1〉〉 − |ε〉〉, (46)

where the double cap states | j〉〉 are the Ishibashi states
introduced in Eq. (5). The application of the Z2 spin flip,
which is expressed as |σ 〉〉 = −|σ 〉〉, to these states results in
the following transformations: |+〉 → |−〉, |−〉 → |+〉, and
|free〉 → |free〉. Hence, the total Hilbert space, spanned by the
positive integer linear combination of Cardy states, does not
change by this transformation.

However, if we think about the Z2 transformation |ε〉〉 →
−|ε〉〉, which corresponds to high- and low-temperature dual
transformation [77,78], to the Cardy states, the total Hilbert
space is no longer the same as the original one. For example,
the state |+〉 + |−〉 is transformed into

√
2|free〉, and it is

not an integer multiplication of Cardy states. Hence, we must
think about this transformation and the resultant Hilbert space
in BCFT other than Ising BCFT. Interestingly, the Hilbert
space spanned by the transformed boundary states by this
dual transformation coincides with that of the fermionic Ising
BCFT, which was recently proposed [71,72]. In the following,
we note the detail of this correspondence.

First, we decompose the Ising BCFT basis to the sym-
metric and antisymmetric sector under Z2 spin-flip transfor-
mation. The symmetric sector is spanned by the two bases
|+〉 + |−〉 and |free〉, whereas the antisymmetric sector is
spanned by ±(|+〉 − |−〉). Then by applying the Z2 transfor-
mation |ε〉〉 → −|ε〉〉, we can obtain the following relations:

|free〉 → |fixed,+〉NS = |fixed,−〉NS, (47)

|+〉 + |−〉 → |free〉NS, (48)

±(|+〉 − |−〉) → |±, fixed〉R, (49)

where the right-hand side represents the boundary states in the
fermionic CFT in Ref. [71], and NS and R represent Neveu-
Schwartz and Ramond sectors.

Hence, if we think about the connection between the Ki-
taev and Ising chains, which are connected by Jordan-Wigner
transformation, it may be natural to guess the former is the Z2

dual of the latter [77,78]. As the global (bulk and boundary) Z2

spin flip does not change the partition function or energy spec-
trum, the global duality transformation also may not change
the partition function or energy spectrum. Because this duality
relates low- and high-temperature physics, there may exist a
close relation between massless (massive) flow of Ising CFT
and massive (massless) flow of fermionic Ising CFT.

IV. RG ARGUMENTS OF OUR MODEL

A. g factor and boundary degree of freedom

In this section, we discuss the behavior of the Graham-
Watts state on the Ising chain under bulk and boundary
interaction and its implication on the RG argument of BCFT.
First, we introduce the general aspects of the g factor [47]
for the Graham-Watts states with respect to the boundary and

bulk RG flow. In general, beginning with the Cardy state
characterized by the identity index, the g factor or boundary
entropy takes the following form [79]:

ga×b = ga
gb

g0
. (50)

In minimal CFT, it was also pointed out that the insertion of
a topological defect inevitably increases the g factor. Hence,
we can say that the Graham-Watts states have more edge
degrees of freedom than the original Cardy states before the
multiplication of the defect. Moreover, when we think about
the boundary g theorem, protection of these boundary degrees
of freedom may need more symmetry, which can exclude
relevant boundary perturbation [47,80].

While we have commented on the boundary perturbation
on the Graham-Watts state with respect to the g factor, we also
would like to discuss the effect of the bulk perturbation on the
Graham-Watts state. The most important thing to note is that
the g factor can increase under bulk perturbation [49,65].

In other words, it means a boundary degree of freedom can
be protected (or even can be enhanced) by the bulk pertur-
bation. Hence, we can expect that some Graham-Watts states
unstable against the boundary perturbation (or protected by
boundary symmetry) may survive under bulk renormalization.
As we will show in the next subsections, the states |+〉 + |−〉
and 2| f 〉 are the first two examples of this case in the lattice
transverse field Ising model. For further research, it should be
stressed that some Cardy states can flow to a Graham-Watts
state by bulk perturbation [33,34,61]. This phenomenon can
be related to the appearance of the edge states in topological
ordered phases, although it has never been explained as such
a consequence of RG flow as far as we know. Considering the
c and g theorems of CFT [47,81], this phenomenon is unusual
because it shows a nondecreasing of the degree of freedom
under RG flow.

B. RG flow of Graham-Watts state |+〉 + |−〉
As one can see, in the Ising model, the non-Cardy state

|+〉 + |−〉 can be easily realized. Here, we note a boundary
and bulk RG argument of this state in the framework of the
minimal CFT [50].

First, as we have shown in the previous subsections, break-
ing boundary KW duality induces the flow from this state
to |free〉, which is triggered by the boundary disorder field
μ. This result is consistent with the boundary RG flow of
Graham-Watts states derived from the boundary RG flow of
Cardy states from |free〉 to |+〉 induced by the boundary order
operator σ [79].

Second, the bulk perturbation maintains |+〉 + |−〉 in the
sense that the twofold degeneracy on the boundary is robust
against the bulk KW duality breaking. It is also consistent
with massless flow of the minimal model with boundary. In
the literature [50,65], the following boundary RG flows are
discussed: |+〉 = |I〉Ising → |I〉M(2,3) and |−〉 = |φ1,3〉Ising →
|φ1,2〉M(2,3). Therefore, considering each sector of the Ising
chain Hamiltonian which corresponds to boundary spin value
σ z = ±1, we can achieve the flow from |+〉 + |−〉 to the
state |I〉M(2,3) + |φ1,2〉M(2,3) under boundary RG induced by
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the bulk perturbation. Hence, we can see the conservation of
boundary degrees of freedom.

However, we would like to note that there exist some
subtleties of the state |I〉 + |φ1,2〉. We have not used the iden-
tification of the Kac formula for the M(2, 3) model. Here,
M(2, 3) is known as trivial CFT with bulk fields with confor-
mal dimension 0, but there may still exist nontrivial boundary
critical phenomena, known as percolation. Moreover, the φ1,2

field and its singular vector are known to be described by
Schramm-Loewner evolution [82,83]. (There exists a similar
problem for the identification φ2,1 = φ1,3 for the Ising model
[84].) Hence, we will suggest that it may be an open problem
whether we can use the relation φ1,2 ∼ I at the boundary.
If this identification is true, one can observe exact fourfold
degeneracy for a finite spin chain (but it is unlikely to happen,
as we will discuss in the next subsection). As can be seen
with our lattice Hamiltonian, there should also exist similar
preservation of boundary degree of freedom under massive
flow.

Finally, we mention a general argument of the duality de-
fect [59]. The duality defect Dd is a defect which implements
the symmetry g ∈ G as

Dd × Dd =
∑
g∈G

Dg, (51)

where Dg is the symmetry defect of the theory.
The minimal CFT M(m, m + 1) has the Z2 symmetry, gen-

erated by the primary operator φ1,m [79]. The Z2 defect labeled
by this index changes the primary field as follows:

D1,mφr,s = φm−r,s. (52)

Hence, in this model, there may exist duality defects with the
condition

Dd × Dd = I + D1,m. (53)

For example, the Ising model has a duality defect D1,2 = Dσ ,
and the tricritical Ising model has a duality defect D2,1 = Dσ ′ .
Hence, when we interpret this relation by using Graham-Watts
states, there may exist similar phenomena in various models.

C. Flow from |+〉 + |−〉 to |free〉 and bulk massless flow

As we have shown, the boundary state |+〉 + |−〉 is robust
against bulk perturbation. Moreover, by using Jordan-Wigner
transformation, it explains the topologically protected edge
state of the Kitaev chain [74–76].

The point is that there exists boundary flow from |+〉 +
|−〉 to |free〉, and |+〉 + |−〉 has the larger g factor. In this
section, we will review what may happen if we added bulk
perturbation to this flow. Let us introduce the following lattice
Hamiltonian:

H = −
∞∑

i=2

(
σ z

i σ z
i+1 + �σ x

i

) − σ z
1σ z

2 + hxσ
x
1 , (54)

where hx = 0 corresponds to the boundary state |+〉 + |−〉 at
criticality, and it flows to |free〉 by choosing hx = 0. In the
massless flow, because of the spontaneous symmetry break-
ing, we can conclude hx → 0.

Hence, the system is described by the flow of |+〉 + |−〉,
which has the larger g factor. In the massive flow, this phase is

the disordered phase, and the spin chain is decoupled, which
is characterized by the eigenvalue of σ x of each site. Hence,
the boundary perturbation is still relevant, and the system is
described by the flow of |free〉.

D. Flow from 2|free〉 to |+〉 + |−〉 and bulk perturbation

In this subsection, we consider the boundary flow from
2| f 〉 to |+〉 + |−〉 and its behavior induced by bulk perturba-
tion. For this purpose, we consider the following Hamiltonian:

H = −
∞∑

i=2

(
σ z

i σ z
i+1 + �σ x

i

) + hσ z
1σ z

2 . (55)

By choosing � = 1 and h = 0, the boundary condition is
described by 2|free〉, as we have already shown. This state
has a larger g factor than |+〉 + |−〉, and it flows to this state
by boundary interaction h = 0 at criticality.

In fact, this boundary state is robust against bulk perturba-
tion. To see this, we consider the situation off-criticality. In
the massless flow, the effect of h = 0 cannot be negligible by
spontaneous symmetry breaking. Hence, the boundary flow
should become that of |+〉 + |−〉. In the massive phase, the
interaction becomes irrelevant because the system is in the
disordered phase. Hence, the boundary spin- 1

2 degree of free-
dom can survive in this regime, and it is like an edge state of
the Haldane phase.

Our model is trivial to some extent, but it coincidentally
shows similar behavior to the phase transition between the
Haldane phase and the ferromagnetic phase, recently con-
sidered in Ref. [46]. This phase transition is protected by
boundary symmetry, which prohibits the boundary interaction
of σ z

1 and σ x
1 and bulk Z2 spin-flip symmetry. This boundary

symmetry may result from the original spin 1 XXZ Heisen-
berg chain.

V. CONCLUSIONS

We have discussed the realization of topological defects in
the presence of open boundaries, using the 1D transverse field
Ising model on the lattice. We have analytically shown that
the model can be transformed into the same model without
any defect but with boundary fields and boundary degrees
of freedom. Specifically, it has been demonstrated that one
can understand the appearance of the edge states such as
|+〉 + |−〉 or 2|free〉, as a consequence of the application of
the duality defects. Compared with other types of defects or
impurities, the characteristics of topological defects that they
can move smoothly and satisfy fusion algebra simplify the
multiple defects problem.

More generally, we expect that our formulation may sug-
gest the existence of general boundary states Da|B〉 on a 1D
critical spin chain as an edge mode. This structure is like the
edge state of the SPT phases, as we have discussed in Sec. IV.
Hence, the boundary and bulk RG argument of CFT might be
useful for a unified explanation of topological phases. In our
analysis, it should be noted that the appearance of a degenerate
edge mode is a result of the fusion of the topological defects
and Cardy states. For a more complete analysis of the edge
state, one must consider the boundary RG flow from BCFT
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to boundary topological quantum field theory starting from
boundary states with the large g values.

As a related problem, it is interesting to consider the gen-
eral realization of the flow with this nondecreasing g factor
in general lattice models. This paper treats the case which
preserves the boundary degree of freedom under bulk RG
flow, but previous papers may also predict increasing of the
boundary degree of freedom under RG flow [49,65]. It may
generate an emergent boundary degree of freedom with an
emergent boundary symmetry under the bulk RG. Hence, it
might be possible to predict that the bulk RG flow with bound-
aries can explain the appearance of nontrivial edge modes
of gapped systems. For this purpose, it may be important
to consider anyonic chains with topological defects and an
open boundary which should correspond to minimal CFT
with topological defects and an open boundary condition. By
studying the behaviors of these lattice models following our
discussion, one can learn fundamental aspects of RG flows of
Graham-Watts states as appearance of nontrivial edge modes.

Finally, it should be noted that some theoretical applica-
tions of (“smeared”) BCFT to periodic gapped systems, which
inevitably contain the linear combination of Cardy states,
were recently proposed by Cardy [85]. More recently, his con-
jecture was checked by using TCSA for some specific models
[86]. Hence, further analysis of general boundary states as we
have constructed in this paper may shed light on the analysis
of the RG flow to the gapped system and its realization in the
lattice models [87].
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APPENDIX A: KRAMERS-WANNIER TRANSFORMATION
FOR THE FINITE SIZE OPEN SPIN CHAIN

In this section, we review the KW transformation on the
finite-length Ising model with an open boundary condition
[88,89]. The point is that the Hamiltonian is not invariant
when one considers the boundary condition, but the partition
function is invariant under this transformation. Moreover, this
transformation can be thought of as the shift of the duality
defect from one boundary to the other.

First, we introduce the following Hamiltonian of the Ising
model:

H = −
N−1∑
i=1

(
σ z

i σ z
i+1 + σ x

i+1

) + h1σ
x
1 + hNσ z

N , (A1)

where the left boundary can be represented by |+〉 + |−〉 =
Dσ |free〉 with h1 = 0, and |free〉 = Dσ |+〉 = Dσ |−〉 other-
wise. Notice that the left boundary states can be represented
as the product of the duality defect and a Cardy state as Dσ |B〉.
The right boundary, on the other hand, can be represented by
|free〉 with hN = 0, and |+〉 or |−〉 with hN = 0.

Next, we introduce the KW transformation [76]:

σ z
i σ z

i+1 = σ ′x
i , (A2)

i∏
j=1

σ x
j = σ ′z

i , (A3)

with σ z
N = σ ′x

N , and i = 1, ..., N .
After this transformation, the Hamiltonian becomes

H ′ = −
N−1∑
i=1

(
σ ′z

i σ ′z
i+1 + σ ′x

i

) + h1σ
′z
1 + hNσ ′x

N . (A4)

As one can easily see, the boundary terms are not in-
variant. After this transformation, the duality defect in the
left boundary condition has been eliminated as Dσ |Bleft〉 →
|Bleft〉, and the right boundary condition acquires a duality
defect as |Bright〉 → Dσ |Bright〉. Hence, we can understand the
KW transformation as moving the duality defect from one
boundary to the other.

In fact, this shows the lattice realization of the Graham-
Watts argument when we consider the left and right edges
[32]. For example, one can see that the σ z

N , which induces
the boundary RG flow from |free〉 to |±〉, becomes σ ′x

N , which
induces the boundary RG flow from |+〉 + |−〉 to |free〉. In
the lattice models, such an argument may be trivial, but it is
far from trivial if one considers the boundary RG argument of
BCFT. Hence, it may be helpful to consider a lattice model as
verification of a BCFT analysis such as TCSA. It should be
noted that, as we have mentioned in the main text, there exist
some subtleties of the operator identification by using the Kac
table when one considers boundary fields.

As we have discussed, the duality transformation does not
preserve boundary states. Hence, we state here a more precise
implication of this transformation with respect to the corre-
lation functions. First, we introduce the n point correlation
function of the disorder operators σ ′z

i1
, σ ′z

i2
, · · · , σ ′z

in
as

〈Dσ Bleft|
n∏
j

σ ′z
i j
|Bright〉. (A5)

By using KW transformation, this multipoint correlation func-
tion is equivalent to the following correlation function of order
operators:

〈Bleft|
n∏
j

σ z
i j

Dσ |Bright〉. (A6)
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It should be noted that the boundary condition with |±〉 for
both boundaries is outside of this equivalence because we
cannot move the duality defect from one boundary to the other
in this situation (both boundaries cannot be represented as
Dσ |B〉).

APPENDIX B: KRAMERS-WANNIER DUALITY AND DUAL
Z2 CHARGE

Here, we discuss the global Z2 symmetry of the Ising model
and its implication on the boundary RG argument. As we have
stressed in the main text, such arguments require extensive
calculation like TCSA if we investigate that kind of thing in
the rigorous sense. Hence, we restrict our discussion only to
the lattice model, from which we extract some implications on
BCFT analysis.

First, we introduce the Hamiltonian with the following
form (for simplicity, we concentrate on the left boundary
indexed by the cite number 1):

H = −
∑
i�1

(
σ z

i σ z
i+1 + σ x

i+1

) + hzσ
z
1 + hxσ

x
1 . (B1)

When hz = 0, this Hamiltonian has Z2 symmetry generated
by the operator

∏
i�1 σ x

i , and the boundary condition is rep-
resented by |free〉 or |+〉 + |−〉. In other words, the boundary
operator σ z

i is charged under this symmetry.
As we have discussed, σ x

1 triggers the boundary flow from
|+〉 + |−〉 to |free〉, which is closely related to the boundary
flow from |free〉 to |±〉. Hence, it may be natural to consider
σ x

1 as a charged object.
This operator is charged under KW dual global Z2 symme-

try generated by the operator
∏

i σ
′x
i = σ z

1σ z
n , which only acts

on the boundary of the spin chain in the original representa-
tion. The same operator and related discussion can be found
in Ref. [75].

As KW dual transformation implies, this boundary opera-
tor σ x

1 induces the boundary flow from |+〉 + |−〉 to |free〉,
which corresponds to dual Z2 symmetry breaking. As was
stressed in Ref. [46], σ x

1 should be treated as a boundary
disorder operator, which is different from an order operator
and an energy operator with respect to Z2 and dual Z2 charge
(in Ref. [46], it was also shown that it is possible to eliminate
the relevant boundary disorder operator if the it is charged
under some nontrivial symmetry transformations by assigning
the symmetry on the total Hamiltonian. In these cases, the
dual Z2 symmetry can only be broken irrelevantly under these
symmetries).

It should also be noted that this boundary disorder op-
erator may have the conformal dimension 1

2 [71], which
is different from conformal dimension 1

16 of the order
operator [89].

This may imply that the duality defect (and corresponding
duality transformation) can change the conformal dimension
of the boundary operators in general. Hence, we believe that
this type of argument in the lattice models, such as the ZN

parafermion model, suggests a lot of boundary RG flows,
which are quite nontrivial from the view of BCFT.

APPENDIX C: GENERALIZATION TO ZN

FATEEV-ZAMOLODCHIKNOV MODEL

Our analysis in Sec. III in the main text can be applied to
the ZN Fateev-Zamolodchikov model, which can be described
by the ZN parafermion or c = 1 theory [90,91] (or complex
CFT [92,93]). The ferromagnetic Hamiltonian which corre-
sponds to the ZN parafermion can be written as

H = Hbulk + Hboundary, (C1)

Hbulk = −
∞∑
j=1

N−1∑
k=1

1

sin kπ
N

(
Zk

j ZN−k
j+1 + X k

j

)
, (C2)

Hboundary = −
N−1∑
k=1

1

sin kπ
N

hZk
0 ZN−k

1 . (C3)

where Z and X satisfy by the following relations

ZN = X N = 1, (C4)

Z† = ZN−1, (C5)

X † = X N−1, (C6)

ZX = ωXZ, (C7)

with ω = exp(2iπ/N ), and Z is a diagonal matrix with eigen-
values 1, ω,...., ωN−1.

Here, Z0 commutes with the Hamiltonian, and we can
decompose the Hamiltonian by each sector corresponding
to the eigenvalue of this boundary operator 1, ω, ..., ωN−1.
For example, in the sector with the eigenvalue 1, we
can obtain

HZ0=1 = Hbulk −
N−1∑
k=1

1

sin kπ
N

hZk
1 . (C8)

For the other eigenvalues, we can obtain almost the same
expression, and the expressions can transform each other by
the cyclic ZN transformation generated by

∏∞
j=1 X k

j . Hence,
we can conclude that this model has at least an N boundary
state, which is protected by dual ZN symmetry.

For a finite-sized spin chain, by considering unitary trans-
formation to the left edge to assign eigenvalue 1, we can
obtain N boundary states with degeneracy N correspond-
ing to the eigenvalue of the right edge. If the edge of the
above model goes to some conformal boundary state |B1〉,
the total state is described by applying ZN cyclic transforma-
tion � recursively

∑N−1
k=0 �k|B1〉. It seems natural to name

this state as the ZN duality state, which is in close rela-
tion to the duality defect with fusion Dd × Dd = ∑

g∈ZN
Dg

[59] and its robustness under bulk perturbations. By applying
parafermionic Jordan-Wigner transformation, one can observe
a similar protected edge state of this model as Ising and Kitaev
chains [94]. Although further investigation of this model with
boundary magnetic field is desired, it is out of the scope of
this paper.
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