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Bound states in the continuum in asymmetrical quantum-mechanical
and electromagnetic waveguides
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We study transport properties and the formation of bound states in the continuum (BIC) in asymmetric quan-
tum mechanical and electromagnetic waveguides. An analytical model for an arbitrary asymmetric two-terminal
quantum mechanical waveguide is proposed, and conditions of BIC formation are formulated. We show that the
Friedrich-Wintgen mechanism of BIC formation in a system coupled to two continua takes place regardless of
the symmetry of the system as long as the proportionate coupling condition is fulfilled. This result is illustrated
by numerical simulation of two-dimensional quantum billiard and optical waveguide with a cavity. Due to the
universal wave nature of BIC, the proposed BIC formation mechanism allows one to obtain BICs in the broader
class of quantum mechanical, electromagnetic, acoustic, and other types of structures.
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I. INTRODUCTION

Bound states in the continuum (BIC) take a prominent
place among other interference phenomena in quantum me-
chanics and optics [1,2] because it took quite a long time
to understand BIC origin’s physical mechanisms, which
combine peculiarities of both constructive and destructive
interference of resonances. Initially considered as a purely
mathematical trick invented by von Neumann and Wigner on
the dawn of quantum mechanics [3], BIC is now recognized
as a widespread physical phenomenon with many promising
applications [4–12].

Original formulation of key properties and mechanism of
BICs physics was performed within the quantum mechani-
cal formalism [3,4] that provides more straightforward and
transparent description compared to, e.g., optics. Theoret-
ically, quantum mechanical BICs for electrons have been
described in quantum conductors comprising electronic bil-
liards (resonators) of various shapes [5,8,13], in multiply
connected tight-binding quantum conductors [6,7,14], as well
as in one-dimensional (1D) systems driven by an external
oscillating field [15,16]. However, realization of electronic
BICs might be questionable due to many-body interactions
[16–19].1 At the same time, technological control of struc-
ture parameters on a subwavelength scale needed for the
experimental implementation of BIC is much easier to per-
form for electromagnetic [10,21–23] or acoustic waves [9,24]
than for electrons. In particular, electromagnetic BICs have
been successfully observed in experiments on electromagnetic
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1Nevertheless, recently we have theoretically demonstrated the

possibility of BICs formation in single-molecule conductors with
Coulomb correlations taken into account (at least partially) within
the ab initio calculations [20].

waveguides [25,26], photonic crystals [23,27,28], and meta-
surfaces [12,29,30].

In Ref. [1], classification of BICs has been presented,
which comprises three main classes. These are symmetry-
protected BICs (decoupling from continuum is due to
different symmetries of the BIC and the continuum states
wave functions) [31,32], Fabry-Perot BICs (the resonant state
between two scatterers possessing perfect reflection at the
BIC energy) [33], and Friedrich-Wintgen (FW) BICs [4].
All these mechanisms rely on universal properties of wave
interference and are equally applicable to classical (electro-
magnetic, acoustic) or quantum (electrons) waves. In recent
years a sophisticated FW mechanism attracted close attention
[2] as a very productive approach for BIC design. In the FW
model, BIC is formed in an open channel due to the destruc-
tive interference of waves scattered by two closed channels
corresponding to localized states (when decoupled from an
open channel). Though being initially developed for atomic
physics, this model is very general and suitable for a large
variety of wave phenomena [34–36]. In optics and acoustics,
localized states inherent to FW mechanism can be constructed
in resonators [9,37]. In quantum mechanics, an electronic
analog of a classical resonator is, e.g., quantum billiard [5,8].

Being an infinitely long-living state, BIC can be related
as a resonance with zero width, which corresponds to the
scattering matrix pole at real axes. Hence, finding BIC in a
specific model is equivalent to obtaining the null condition of
the imaginary part of the scattering matrix pole [2]. A generic
FW model is based on a common picture of wave interference
without any explicit symmetry restrictions. However, in the
case of arbitrary asymmetric waveguides (open channels) with
continuous coordinate variables, finding poles of scattering
matrix located on real axis is a multiparametric and cum-
bersome task (one should not only describe scattering on the
localized state but simultaneously satisfy the resonance con-
ditions for such state to exist) [11]. Until recently, BICs have
been described explicitly mainly in symmetric waveguides
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coupled to symmetric resonators (of different physical nature)
[8,9], where symmetry conditions reduce the number of the in-
dependent system’s parameters, which dramatically simplifies
the task of searching for a BIC. Few exceptions include, for
instance, BICs in 3D acoustic resonators [38], photonic crystal
slabs [11], anisotropic media [39], and some other. However,
the proposed structures either retain some symmetry elements
[11,38] or are coupled to a single continuum [39], where the
standard models are applicable.

To tackle the problem of BIC description in completely
asymmetric structures, we take into consideration that the
FW model [4] operates with a concept of localized states
of fundamental origin (atomic states) rather than emergent
localized states as in classical and quantum resonators. Hence
one should expect that analysis of quantum interference in
waveguides with localized states of fundamental origin (pre-
existing localized states, e.g., in molecular conductors) will be
more instructive and could provide some insight into how to
gain the full power of the FW model and expand the range
of system properties satisfying BIC condition to asymmetric
systems. The fundamental difficulty of BIC description in
asymmetric systems arises since, in general, geometrically
different waveguides provide different continuous channels.
Hence, according to the Pavlov-Verevkin theorem [40], one
needs, e.g., three degenerate states to provide a BIC formation
in a system coupled to two geometrically different waveg-
uides. In this paper, we apply the recently developed theory
of quantum transport in molecular conductors [14,41] to show
that under specific analytical conditions, two continua of geo-
metrically different waveguides can be effectively considered
as single, which allows BIC formation in a quantum conductor
possessing no symmetry elements for just two degenerate
states. Within this theory, BIC can be considered either as res-
onance with zero width or as antiresonance with zero width.
A separate description of exact positions of resonances and
antiresonances makes it possible to establish simple BIC exis-
tence analytical rules in asymmetric waveguides. The derived
relations are pretty universal and applicable to either quantum
or electromagnetic waveguides comprising quantum billiards
or optical resonators respectively. Analytic relations for BIC
existence conditions are beneficial to determine a good initial
approximation for more realistic numerical simulations.

The structure of our paper is as follows. In Sec. II the con-
dition of proportionate coupling is deduced for BIC existence
in a waveguide with asymmetric input and output. This condi-
tion is verified by numerical modeling of scattering problem
for 2D quantum billiard in Sec. III. Also, we show here by 2D
numerical modeling that proportionate coupling condition for
BIC existence works for electromagnetic waveguides. A short
conclusion is presented in Sec. IV.

II. THEORETICAL MODEL AND GENERAL RELATIONS

A. Model and transmission coefficient

We start the theoretical consideration with a general
quantum-mechanical scattering problem, which can be ap-
plied to nuclear or atomic systems, molecular conductors,
electronic waveguides, etc. To be specific, we focus on an
electron resonator connected to two electron waveguides (we

will refer to them as left and right). We assume that each
waveguide has only one propagating mode within the energy
range of interest, i.e., we consider energies between the first
and second states of transverse quantization. Hereinafter we
neglect the interelectron Coulomb repulsion. Its influence on
the BIC formation process deserves a special study and will
be published elsewhere.

In the basis of eigenmodes, or equivalently in the basis of
molecular orbitals (MO) in molecular electronics, the Hamil-
tonian of the resonator is diagonal:

Ĥ0 = diag(ε1, . . . , εN ). (1)

Here εi is the energy of the ith state. Attaching the waveguide
to this resonator results in the coupling of its eigenstates
with the modes of the left and right waveguides. Assuming
fully coherent transport, one can describe this coupling by the
following matrices [42,43]

�̂L,R(E ) = uL,R(E )u†
L,R(E ), (2)

where vectors uL,R are defined as:

uL,R(E ) = √
πρL,R(E )

(
γ L,R

1 (E ), . . . , γ L,R
N (E )

)�
. (3)

with ρL,R(E ) being the density of modes per unit energy in the
left or right waveguides and γ L,R

i (E ) being the matrix element
between the ith state of the resonator and the left or right
waveguide mode with energy E .

Typically, the energy dependence of all γ L,R
i (E ) is the

same for any i (but different, in general, for the left and right
waveguides) as it arises from the coupling to a mode with a
particular energy [44]. Thus, energy and state index depen-
dencies of γ L,R

i (E ) can be factorized: γ L,R
i (E ) = γ L,R

i γL,R(E ).
Under this assumption, matrices �̂L,R(E ) and δ̂L,R(E ) repre-
senting anti-Hermitian and Hermitian parts of the left or right
waveguide self-energy, respectively, can be written as

�̂L,R(E ) = uL,Ru†
L,RgL,R(E ),

δ̂L,R(E ) = uL,Ru†
L,RhL,R(E ). (4)

Here gL,R(E ) = πρL,R(E )|γL,R(E )|2, hL,R(E ) is a Hilbert
transform of gL,R(E ), and coupling vectors uL,R are energy
independent:

uL,R = (
γ L,R

1 , . . . , γ L,R
N

)�
. (5)

Transmission coefficient can be calculated by the standard
Landauer-Büttiker-Fisher-Lee formula [45]:

T (E ) = Tr[�̂L(E )Ĝr (E )�̂R(E )Ĝa(E )]. (6)

Here Ĝr (E ) = [Ĝa(E )]† = [EÎ − Ĥeff (E )]−1 is the retarded
or advanced Green’s function with

Ĥeff (E ) = Ĥ0 + δ̂L(E ) + δ̂R(E ) − i�̂L(E ) − i�̂R(E ) (7)

being the Feshbach’s effective Hamiltonian [46]. Using fac-
torization (4) and applying Sherman-Morrison theorem [47]
and matrix determinant lemma [48] to Eq. (6), one can arrive
to the following expression for the transmission coefficient:

T (E ) = |P(E )|2
|P(E )|2 + |Q(E )|2 , (8)
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with

P(E ) = 2
√

gL(E )gR(E )FLR(E ), (9)

Q(E ) = {1 − FLL(E )[hL(E ) + igL(E )]}{1 − FRR(E )[hR(E )

− igR(E )]} − |FLR(E )|2[hL(E ) + igL(E )][hR(E )

− igR(E )], (10)

where

FLL(E ) = u†
L(EÎ − Ĥ0)−1uL =

N∑
i=1

∣∣γ L
i

∣∣2

E − εi
,

FRR(E ) = u†
R(EÎ − Ĥ0)−1uR =

N∑
i=1

∣∣γ R
i

∣∣2

E − εi
,

FLR(E ) = u†
L(EÎ − Ĥ0)−1uR =

N∑
i=1

γ L∗
i γ R

i

E − εi
. (11)

Formula (8) for the transmission coefficient is typical for any
two-terminal quantum conductor and allows for an illustrative
analysis of main interference features: a real root of function
P(E ) corresponding to a zero antiresonance and a real root of
function Q(E ) describing a unity-valued resonance [14].

It is important to note that here Eq. (8) with P(E ) and Q(E )
functions (9) and (10) are derived in the basis of eigenstates
(MO basis in molecular electronics) contrary to Ref. [14],
where it was performed in the tight-binding (atomic orbital)
basis. Eigenstates (MO) approach is more appropriate for the
treatment of systems with continuous coordinate variables
such as quantum mechanical and optical waveguides with
cavities discussed in the numerical simulation section below.

Functions P(E ) and Q(E ) as they are defined in Eqs. (9)
and (10) are rational functions of energy. However, as one can
see from the transmission coefficient (8) that they are defined
up to a common factor, and hence one can multiply them by
det (EÎ − Ĥ0) to make holomorphic in convenience with the
definition in Ref. [14].

B. Bound states in the continuum and proportionate
coupling condition

Transmission coefficient formula (8) provides a natural
condition for a bound state in the continuum (BIC) to arise.
Indeed, the presence of a common real root of P(E ) and
Q(E ) functions indicates the presence of a real eigenvalue
of the effective Feshbach’s Hamiltonian [14], which means
the formation of a BIC [1]. If all the transmission resonances
are well separated and narrow (couplings to the waveguides
are much smaller than quantum system energy level spacing:
|γ L,R

i |2 � min|εi − ε j | for any i and j �= i), then a BIC can
form from the ith eigenstate for γ L

i = γ R
i = 0. In particular,

this is the case of a symmetry-protected BIC.
According to the FW mechanism [4], a more complicated

picture takes place when two states have close energies at
certain values of the parameters. Without loss of general-
ity, we suppose, there are two eigenstates |1〉 and |2〉 with
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FIG. 1. Schematic dependence of the eigenstates energy on
some parameter. The avoided crossing region is magnified and
reparametrization by eigenvalues of Ĥ2×2 from Eq. (12) is illustrated.
Blue thick solid lines describe exact eigenvalues ε1,2 in the avoided
crossing region, and thin black dashed lines show their asymptotics
ε0

1,2.

energies ε1 and ε2 such that |ε1 − ε2| � |ε1 − εi|, |ε2 − εi|
for any i �= 1, 2. Assume, functions gL,R(E ) and hL,R(E ) are
smooth in the vicinity of ε1,2 and can be treated as con-
stants: gL,R(E ) ≈ gL,R[1/2(ε1 + ε2)] = gL,R = const > 0 and
hL,R(E ) ≈ hL,R[1/2(ε1 + ε2)] = hL,R = const.

In general, in an arbitrary nonsymmetric quantum system,
eigenvalues demonstrate avoided crossing behavior rather
than crossing with degeneracy [8,49]. In order to take this
into account explicitly, one can approximate close energies
ε1,2 as eigenvalues of some effective two-level model with the
Hamiltonian

Ĥ2×2 =
(

ε0
1 �

� ε0
2

)
(12)

given by the following relations:

ε1,2 = ε0
1 + ε0

2

2
±

√
�2 +

(
ε0

1 − ε0
2

)2

4
. (13)

In Eqs. (12) and (13), ε0
1,2 describes the asymptotic of ε1,2

away from the avoided crossing region2 and 2� > 0 defines
the minimal split between them (see Fig. 1). In this case, γ L,R

1,2
are matrix elements away from the avoided crossing region.

Using the introduced above two-level reparametrization in
the vicinity of ε1,2, one can get numerators of P(E ) and Q(E )
functions as square polynomials in E space (see Appendix A).
The condition for P(E ) and Q(E ) to have a common real root,
i.e., the condition for BIC formation, can be derived from

2The avoided crossing region in the parameter space is identified as
|ε0

1 − ε0
2 | � �.
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analysis of the resultant of their numerators:

Res
{
P(E )

[(
E − ε0

1

)(
E − ε0

2

) − �2
]
, Q(E )

[(
E − ε0

1

)(
E − ε0

2

) − �2
]}

= 4gLgR

{[
ε0

2 − ε0
1 + �

(
γ L

1

γ L
2

− γ L
2

γ L
1

)]
C1 +

(
γ R

1

γ L
1

− γ R
2

γ L
2

)
C2

}{[
ε0

2 − ε0
1 + �

(
γ R

1

γ R
2

− γ R
2

γ R
1

)]
C3 +

(
γ L

2

γ R
2

− γ L
1

γ R
1

)
C4

}
, (14)

where Ci are some complex quantities. Resultant (14) turns to
zero if either of the two expressions in the braces vanishes.
In general, a linear combination of two complex numbers C1

and C2 (or, equivalently, C3 and C4) with real coefficients
can turn to zero only if both real coefficients turn to zero
simultaneously. Thus, generally, functions P(E ) and Q(E )
have a common real root at energy

E = EBIC = ε0
1 + ε0

2

2
− �

2

(
γ L

1

γ L
2

+ γ L
2

γ L
1

)

= ε0
1 + ε0

2

2
− �

2

(
γ R

1

γ R
2

+ γ R
2

γ R
1

)
(15)

if the following conditions are fulfilled:

ε0
2 − ε0

1 = �

(
γ L

2

γ L
1

− γ L
1

γ L
2

)
= �

(
γ R

2

γ R
1

− γ R
1

γ R
2

)
, (16)

then
γ R

1

γ L
1

= γ R
2

γ L
2

. (17)

Substituting condition (16) into Eq. (13), one can make
sure that in terms of the exact eigenvalues (ε1,2), the BIC
energy (15) becomes either EBIC = ε1 or EBIC = ε2 depending
on the relative sign of matrix elements �, γ L,R

1 and γ L,R
2 . The

condition (16) can be rewritten in this case as

ε2 − ε1 = ±�

∣∣∣∣γ L
2

γ L
1

+ γ L
1

γ L
2

∣∣∣∣ = ±�

∣∣∣∣γ R
2

γ R
1

+ γ R
1

γ R
2

∣∣∣∣, (18)

where sign in the right-hand side is chosen appropriately.
Here we have studied the well-known model of Friedrich

and Wintgen [4] in the case of two continua, which is typical
for quantum transport problems. In general, system cou-
pled to two continua should have three degenerate states to
posses a BIC [40,50,51]. However, as we have shown, the
specific condition of proportionate coupling (17) establishes
the formal equivalence between two and single continua be-
cause it reduces the rank of the self-energy matrix to one.
The same result can be derived in the standard notion of
Feshbach’s effective Hamiltonian (see Appendix B). It can
be illustratively interpreted as follows. The FW mechanism
assumes some proper relation between wave-function ampli-
tudes corresponding to interfering states. At the same time,
proportionate coupling condition (17) ensures that the same
relation holds for states in both incoming and outgoing chan-
nels. It is important to note that condition (17) concerns just
two close eigenstates regardless of couplings for all the rest
levels. Thus, we explicitly show that the FW mechanism of
BIC formation can take place even if the input and output
waveguides are not equivalent geometrically and the system
does not possess any symmetry. This conclusion represents
the key result of our paper.

We admit that a very specific situation can exist if
the ratio of C1 and C2 (or C3 and C4) is real. In this

case resultant (14) turns to zero also for ε0
2 − ε0

1 =
�(γ L

2 /γ L
1 − γ L

1 /γ L
2 ) + C2/C1(γ R

1 /γ L
1 − γ R

2 /γ L
2 ) or ε0

2 −
ε0

1 = �(γ R
2 /γ R

1 − γ R
1 /γ R

2 ) + C4/C3(γ L
2 /γ R

2 − γ L
1 /γ R

1 ).
Moreover, one must additionally check that the common root
of P(E ) and Q(E ) is real. Satisfying all these conditions
simultaneously seems to be highly unlikely in general.

In some cases, e.g., in symmetric systems, energies of the
eigenstates of the isolated quantum system can demonstrate
crossing with a possibility of degeneracy. Analysis of such
systems can be performed via general expressions above with
� = 0 and ε0

1,2 = ε1,2. Thus, BIC formation still requires pro-
portionate coupling (17), but condition (16) or (18) is replaced
by the requirement of degeneracy: ε1 = ε2.

In general, one can distinguish three qualitatively different
configurations fulfilling the proportionate coupling condition
(17):

γ L
1 = γ R

1 and γ L
2 = γ R

2 , (19a)

γ L
1 = −γ R

1 and γ L
2 = −γ R

2 , (19b)

γ R
1 /γ L

1 = γ R
2 /γ L

2 for
∣∣γ L

1

∣∣ �= ∣∣γ R
1

∣∣ and
∣∣γ L

2

∣∣ �= ∣∣γ R
2

∣∣.
(19c)

The case (19a) takes place if, for example, the system with
waveguides is mirror-symmetric and states |1〉 and |2〉 are
of the same parity; whereas the case (19b) corresponds, for
instance, to the configuration invariant under central point re-
flection (centrosymmetric) with states |1〉 and |2〉 being of the
opposite parity. Such BICs were studied in various structures
[8–10]. On the other hand, BIC in the case (19c) arises in a
system coupled to waveguides in some arbitrary asymmetric
way, which, to our concern, was not discussed in the literature
before. In the next sections, we provide examples of such
BICs in asymmetric configurations of quantum billiards and
optical waveguides.

It should be noted that BIC energy (15) and conditions
(16) and (17) are derived under the assumption of a single
(propagating) transverse mode in each electrode. However,
typically attached waveguides or electrodes provide many
transverse modes. In the energy range, where there is only
one propagating mode, the rest are evanescent but they do
influence the interference in the quantum transport. This influ-
ence arises due to nonzero Hermitian parts of the evanescent
modes self-energies. One can take it into account following
the general multiterminal approach [41] (see Appendix C for
details). Thus, in general, Eqs. (15)–(17) provide only a good
initial guess for finding an exact position of BIC.

C. Transmission coefficient near BIC

It is known that the transmission coefficient is dis-
continuous at the very point of BIC formation in the
energy-parameters space [5–8,14,22]. Thus, analysis of the
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transmission spectrum behavior near BIC deserves special at-
tention. In order to perform such analysis, we introduce some
detuning parameters a and b, which describe the deviation
from the conditions (16) and (17) respectively:

a = ε0
2 − ε0

1 − �

(
γ L

2

γ L
1

− γ L
1

γ L
2

)
,

b = γ R
1

γ L
1

− γ R
2

γ L
2

. (20)

Expansion of functions P and Q near E = EBIC in terms of
variables a and b gives

P(E ) ≈ CP × (E − EP ), Q(E ) ≈ CQ × (E − EQ), (21)

where CP,Q are some scaling prefactors and

EP = EBIC + Raa + RP
aaa2 + RP

abab,

EQ = EBIC + Raa + RQ
aaa2 + RQ

abab + RQ
bbb2

+ i
(
IQ
aaa2 + IQ

abab + IQ
bbb2

)
(22)

are the roots of the P and Q functions respectively. Here real
coefficients Ra, RP,Q

aa , RP,Q
ab , RP,Q

bb , IQ
aa, IQ

ab, and IQ
bb are some

cumbersome functions of microscopic parameters of the sys-
tem. For a qualitative analysis one can treat them as some
phenomenological values.

Figure 2 depicts the typical behavior of the transmission
coefficient evolution near BIC. The graphs are plotted accord-
ing to Eqs. (21) and (22) with the following phenomenological
parameters (in arbitrary units) Ra = 1, RP

aa = 2, RP
ab = −0.5,

RQ
aa = −0.9, RQ

ab = 1.3, RQ
bb = 2, IQ

aa = 0.1, IQ
ab = −0.4, and

IQ
bb = 0.2. Situation with b = 0, shown in Fig. 2(c), corre-

sponds to the exact fulfillment of condition (17) taking place
either in mirror-symmetric systems or in systems invariant un-
der central point reflection. In the next section such behavior
of the transmission coefficient is confirmed in 2D quantum
billiards and optical resonators.

III. NUMERICAL SIMULATIONS

A. Quantum billiard

Consider a 2D rectangle resonator attached to two elec-
tronic waveguides (Fig. 3). One can deal with the scattering
problem for this system by solving a 2D Schrödinger equation

∂2
(x, y)

∂x2
+ ∂2
(x, y)

∂y2
+ [E − U (x, y)]
(x, y) = 0 (23)

with appropriate boundary conditions on 
(x, y). For definite-
ness we assume that the potential energy U (x, y) vanishes in
the internal region and is kept constant and equal to U0 = 1 eV
in the external region of the billiard. Effective mass of electron
is set to m = 0.0665m0.

The geometry of the considered system provides the fol-
lowing potential profile

U (x, y) =
⎧⎨
⎩

UL(y), x � 0,

U0(y), 0 < x � L,

UR(y), x > L,

(24)

E
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0.
1

0

1

T

a

FIG. 2. Typical evolution of the transmission coefficient in the
vicinity of BIC with varying detuning a for b = 0.05 (a), b = 0.025
(b), and b = 0 (c). Blue solid thick lines highlight transmission spec-
tra with symmetric Fano antiresonance, and red dashed thick lines
correspond to spectra with unity peak. BIC takes place for a = b = 0
and corresponds to smooth transmission shown by the thick black
line in part (c).

where UL,R(y) defines the transverse potential in the left or
right waveguide, and U0(y) is the transverse potential in the
resonator region of length L. Schrödinger equation (23) with
U (x, y) from Eq. (24) allows variable separation, and the gen-
eral solution in each region (left waveguide, resonator, right
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W

x

y

(a)

yRyL

hR
hL

(b)

(c)
L0

Y
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FIG. 3. General schematic view of the 2D quantum billiard at-
tached to two electronic waveguides (a). Mirror-symmetric system
with hL = hR and yL = yR (b) and configuration invariant under cen-
tral point reflection with hL = hR and yL = W − hL,R − yR (c).

waveguide) an be written as [52–55]


 j (x, y) =
∑

n

(
Aj

neik j
n x + B j

ne−ik j
n x

)
� j

n(y). (25)

Here k j
n = 1/h̄

√
2m(E − α

j
n ) is the wave number along the

propagation direction, j labels one of the regions in (24) and
n stands for the transverse quantization mode number. Trans-
verse wave functions �

j
n(y) with corresponding eigenvalues

α
j
n are found from the effective 1D Schrödinger equation:

d2�
j
n(y)

dy2
+ [

α j
n − Uj (y)

]
� j

n(y) = 0. (26)

We consider the energy range, where there is only a single
propagating mode in each waveguide: E ∈ (max (αL

1 , αR
1 ),

min (αL
2 , αR

2 )). For the particular values of the left and right
waveguides width (hL = 5 nm and hR = 4 nm), the energy
range we focus on becomes E ∈ (183, 506) meV.

Summation in Eq. (25) is performed over all infinite num-
ber of transverse modes in the jth region, including both states
of discrete and continuous spectra. The latter is simulated by
a dense set of discrete states formed between artificial borders
with infinite potential along the x axis at some distance Y from
the resonator. Continuous spectrum corresponds to the limit
Y → ∞. However, a finite value of Y can be defined from the
convergence conditions of the results. Within this section, we
perform calculations for W = 10 nm, in which case Y = 10
nm is enough. The convergence condition also defines the
total number of transverse modes taken into account, and for
our calculation, it is typically about 30–40.

According to Eq. (16) initial guess on the BIC conditions
and energy can be based on analysis of the spectrum of the
localized states of the isolated structure (without waveguides).
Localized states of a rectangle quantum billiard can be found
in factorized form:

ψ(nx,ny )(x, y) = χnx (x)φny (y), (27)

where quantum numbers nx − 1 and ny − 1 define the number
of nodes of ψ(nx,ny )(x, y) in x and y directions, respectively.
Figure 4 shows energy of such localized states (nx, ny) with
varying length of the resonator. BICs are expected near the
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B

FIG. 4. Energies of localized states ψ(nx ,ny ) of a closed 2D bil-
liard with W = 10 nm and different values of L. Red lines indicate
symmetric states, and blue lines antisymmetric. BICs are labeled
by black open squares for mirror-symmetric system and by black
open circles for centrosymmetric system. Due to evanescent modes
in the waveguides, BICs do not coincide perfectly with points of
degeneracy, even in symmetric configurations.

points of degeneracy. To be specific we focus on those labeled
as A and B in Fig. 4 with EA ≈ 184.98 meV, LA ≈ 17.3314
nm and EB ≈ 210.82 meV, LB = 10 nm.

Configurations with mirror symmetry [Fig. 3(b)] and in-
variant under central point reflection, i.e., centrosymmetric
[Fig. 3(c)], are known to posses BICs [8,9], and hence it
is illustrative to begin our discussion from these cases. As
was discussed above, condition (19a) implies that BICs in
mirror-symmetric structures arise for the states of the same
parity [nx,1 ≡ nx,2 (mod 2)], shown by open black squares
in Fig. 4, and condition (19b) provides BICs in centrosym-
metric systems form from the states of the opposite parity
[nx,1 − nx,2 ≡ 1 (mod 2)], represented by open black circles
in Fig. 4.

Parameters of the attached waveguides and the incident
electron energy are chosen to provide just a single propagating
mode in each waveguide (all the other modes are evanescent).
Thus, couplings of localized states in the resonator with the
continuum in leftor right waveguide are equal to the couplings
with the single propagating mode [8,56]:

γ L,R
(nx,ny ) = ∂χnx (x)

∂x

∣∣∣∣
x=0,L

μL,R
1ny

. (28)

Here

μL,R
1ny

=
∫

φL,R
1 (y)φny (y)dy (29)

is the corresponding element of the unitary matrix connecting
transverse modes in the waveguide and the resonator. In par-
ticular, φL,R

1 (y) is the y-component of the first transverse mode
in the left or right waveguide.

In the present paper we focus on the possibility for BIC
formation in asymmetric systems, and hence we study quan-
tum billiard with waveguides of different sizes (hL �= hR). In
this case condition (17) in its the most general form (19c) is
not fulfilled automatically, as in the discussed above symmet-
ric cases. Therefore, some parameters should be additionally
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11 vs. position of the waveguide yL,R for hL,R = 5 nm (solid

blue lines), hL,R = 4 nm (dashed green lines), and hL,R = 3 nm (dot-
dashed red lines).

tuned to satisfy it. In case of the considered rectangle res-
onator, condition (19c) applied for two states (nx,1, ny,1) and
(nx,2, ny,2) with couplings (28) reduces to

μL
1ny,1

μL
1ny,2

= ±
μR

1ny,1

μR
1ny,2

. (30)

Plus sign in Eq. (30) corresponds to the case nx,1 ≡ nx,2

(mod 2), and minus sign – to nx,1 − nx,2 ≡ 1 (mod 2). We
consider only the first two transverse modes in the resonator,
and hence ny,1 and ny,2 can be either 1 or 2. According to
Fig. 4, the states with the same ny cannot become degenerate.
Thus, we analyze condition (30) only for ny,1 = 1 and ny,2 = 2
or vice versa.

Ratios μL
12/μ

L
11 and μR

12/μ
R
11 in Eq. (30) depend similarly

on hL, yL or hR, yR respectively. Figure 5 depicts the ra-
tio μL,R

12 /μL,R
11 as a function of yL,R for different values of

hL,R. This diagram allows one, for instance, to determine
parameters of the right waveguide (hR and yR), which satisfy
condition (30), for a given parameters of the left waveg-
uide (hL and yL). For hL = 5 nm and yL = 1 nm it provides
μL

12/μ
L
11 ≈ 0.57494 (blue dot in Fig. 5). The same ratio for

the right waveguide with hR = 4 nm takes place for either
yA

R = 1.5871 nm (green point A in Fig. 5) if we take sign plus
in Eq. (30), or yB

R = 4.4129 nm (green point B in Fig. 5) if
we take minus plus in Eq. (30). The former case corresponds
to the nearly mirror-symmetric configuration and the latter –
to the nearly centrosymmetric one. Thus, the initial guess for
the BIC conditions and energy can be made from Fig. 4 for L
and E and from Fig. 5 for hR and yR. Taking other transverse
modes into account results in a slight violation of the exact
BIC parameters from these estimations, as is shown below.

We determine the exact position of BIC from a precise
numerical solution of the scattering problem. In general, lo-
calized states of the billiard manifest themselves as Fano
resonances [57] in the transmission spectrum. The width of
this resonance �E , i.e., energy split between the peak and the
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FIG. 6. Evolution of the transmission spectrum of the mirror-
symmetric system with hR = hL = 5 nm and yR = yL = 1 nm for
different values of L (a). Evolution of the transmission spectrum
of an asymmetric system with hR = 4 nm and yR = 1.45 nm for
different values of L (b). In part (b), blue solid thick lines highlight
transmission spectra with symmetric Fano antiresonance, and red
dashed thick lines correspond to spectra with unity peak.

dip, shrinks when approaching the BIC point, where it turns
to zero exactly [14,22].

For a mirror-symmetric [Fig. 3(b)] or centrosymmetric
system [Fig. 3(c)] with hL = hR, condition (30) and hence
condition (17) are fulfilled automatically due to the symmetry.
Thus, for such systems, �E varies monotonically with L and
it turns to zero form some LBIC, which is close to either LA or
LB depending on the considered structure. Figure 6(a) shows
T (E ) vs. L evolution for the mirror-symmetric configuration
with hR = hL = 5 nm and yR = yL = 1 nm. In this case LBIC

is about LBIC ≈ 17.2180 nm that is pretty close to the initial
estimation LA (Fig. 4). One can admit that qualitative behavior
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of the transmission spectrum shown in Fig. 6 agrees well with
the phenomenological model in Fig. 2(c).

In the case of an asymmetric system, the behavior of
the transmission coefficient with varying L becomes more
complicated. Figure 6(b) depicts the evolution of T (E ) with
varying L for a system with hR = 4 nm and yR = 1.45 nm,
which is close to the condition of exact proportionality of
the couplings (point A in Fig. 5). Similar T (E ) behavior is
observed for a wide range of yR values. By analogy with sym-
metric configurations, there is a range of L values, where �E
decreases. However, here it changes slightly and remains finite
within this range. Transmission peak value Tmax also behaves
in a complicated manner. First, it decreases with decreasing
width, and at some L, the T (E ) curve turns into a symmetric
Fano antiresonance – it does not have a maximum at all within
the range of interest [blue graph in Fig. 6(b)]. Then Tmax

increases and reaches unity without any considerable change
of the resonance width [red dashed graph in Fig. 6(b)]. Further
tuning of L again provides the situation with the absence of
a maximum, after which a significant increase in the reso-
nance width begins. When approaching the BIC, along with
a decrease in the widths of resonances, the distance in energy
between symmetric Fano antiresonances (Fano resonances
without peak) also decreases and vanishes at the BIC point
exactly. The observed behavior of the transmission spectrum
fully agrees with the phenomenological model proposed in
Figs. 2(a) and 2(b).

Exactly at the BIC energy and corresponding parameters,
the transmission peak and the dip must coincide [14]. Thus,
we apply the following algorithm to find exact BIC conditions
and energy. For each value of yR, we find L, which provides
a transmission spectrum with a unity peak. Energy difference
�E between this resonance and zero-valued dip in the trans-
mission is treated as a Fano resonance width associated with
given yR and L. Figure 7(a) illustrates the dependence �E (yR).
The BIC corresponds to the point �E = 0. It is important to
show that �E does vanish at some point instead of having a
local minimum, where it remains small but finite. The inset
shows the region near the minimum with a much smaller
scale. Precise parameter tuning allows one to make �E close
to zero with any accuracy. Thus, we prove that there is the true
BIC for a system with completely asymmetric waveguides
attachment.

In L-E plane positions of the transmission peaks and
the dips are shown in Fig. 7(b). They coincide at the
BIC which is slightly shifted from the degeneracy point
A due to the multiple evanescent modes taken into ac-
count in numerical calculations. In this case the BIC occurs
at EBIC,A ≈ 184.64213 meV for yBIC,A

R ≈ 1.5574 nm and
LBIC,A ≈ 17.2696 nm. These parameters are pretty close to
the initial estimations derived from the general conditions
(16) and (17), i.e., from the requirement of degeneracy (point
A in Fig. 4) and proportionate coupling (point A in Fig. 5).
In the same way, BIC for another pair of degenerate states
(point B in Fig. 4) can be analyzed. The transmission peaks
and the dips are shown in Fig. 7(c), and BIC takes place
for yBIC,B

R ≈ 4.4419 nm and LBIC,B ≈ 9.9703 nm at energy
EBIC,B ≈ 209.61988 meV that is again close to the initial
guess. All these results are summarized in Table I.
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FIG. 7. Minimal Fano resonance width �E vs. position of the
right waveguide yR for hR = 4 nm, hL = 5 nm, W = 10 nm, and
yL = 1 nm (a). Energies of the localized state (3,1) and (1,2) of
the closed billiard (red thick solid line and red thick dashed line
respectively) near the degeneracy point A (see Fig. 4) in the L-E
plane (b). Energies of the localized states (2,1) and (1,2) (blue thick
solid line and red thick dashed line respectively) near the degeneracy
point B (see Fig. 4) in the L-E plane (c). BICs are located where
transmission peak (black thin solid lines) meets transmission dip
(black thin dashed lines).

It is illustrative to trace the probability density distribution
in the structure corresponding to a BIC. Figure 8 shows the
probability distributions for situations A and B. The interfer-
ence contribution of states (1,2) and (3,1) is clearly manifested
in BIC corresponding to the case A [Fig. 8(a)], and states (1,2)
and (2,1) of isolated billiards appear in the case B [Fig. 8(b)].
The calculations also show that the scattering wave function
at the energies of maximum and minimum transmission near
the BIC is close to the corresponding BIC wave function, as it
should be according to the general theory [14].

TABLE I. BICs energy and parameters in 2D quantum billiard.

Initial guess from
conditions (16) and (17) Exact values

Nearly EA ≈ 184.98 meV EBIC,A ≈ 184.64213 meV
mirror- LA ≈ 17.3314 nm LBIC,A ≈ 17.2696 nm
symmetric yA

R ≈ 1.5871 nm yBIC,A
R ≈ 1.5574 nm

Nearly EB ≈ 210.82 meV EBIC,B ≈ 209.61988 meV
centro- LB = 10 nm LBIC,B ≈ 9.9703 nm
symmetric yB

R ≈ 4.4129 nm yBIC,B
R ≈ 4.4419 nm
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FIG. 8. Probability density distribution of BIC states in the
quantum billiard. Parameters are the following: W = 10 nm, yL =
1 nm, hL = 5 nm, hR = 4 nm, and (a) yR = yBIC,A

R ≈ 1.5574
nm, L = LBIC,A ≈ 17.2696 nm, E = EBIC,A ≈ 184.64213 meV
or (b) yR = yBIC,B

R ≈ 4.4419 nm, L = LBIC,B ≈ 9.9703 nm, E =
EBIC,B ≈ 209.61988 meV.

B. Cavity in optical waveguide

Due to the natural correspondence between 2D
Schrödinger and scalar Helmholtz equations [58], one can
expect effects of BIC formation in an optical waveguide with
a cavity. We consider a 2D dielectric optical structure with
geometry similar to Fig. 3(a). In optics, we use wavelength λ

instead of energy (or frequency). Two-dimensional Helmholtz
equation for TE wave can be written as follows [58]:

∂2E (x, y)

∂x2
+ ∂2E (x, y)

∂y2
+

[
2π

λ
n(x, y)

]2

E (x, y) = 0, (31)

where E (x, y) is the electric field and λ is the radiation
wavelength. The refractive index distribution n(x, y) in the
considered system can be described by the step-like function
along the propagation coordinate similar to the potential en-
ergy of a 2D quantum billiard (24), [Fig. 3(a)]:

n(x, y) =
⎧⎨
⎩

nL(y), x � 0,

n0(y), 0 < x � L,

nR(y), x > L,

(32)

The waveguides and the resonator (cavity) in (32), shown
in Fig. 3(a), have refractive index n = 1.5, while the refractive
index of environment is n0 = 1. With Eq. (32) taken into ac-
count, the Helmholtz equation (31) can be solved by variable
separation similar the Schrödinger equation (23). Its general
solution takes the form (25) with k j

n = 2π/λ
√

β
j
n , where β

j
n is

derived from the following effective 1D equation:

d2�
j
n(y)

dy2
+

(
2π

λ

)2[
n2

j (y) − β j
n

]
� j

n(y) = 0. (33)

BIC is a zero-width state of an open system. The lifetime
of a BIC may be considered infinite. In general, finite width
transforms a BIC into a decaying state, which manifests itself
in scattering as a Fano resonance [6,7,14,22]. In quantum
mechanics, bound states of an electronic billiard, which are re-
sponsible for Fano resonances in the scattering of propagating
mode in the waveguide, correspond to the decaying modes.
Such modes have energies below the levels of transverse quan-
tization in the waveguide (E < α).

Contrary to quantum mechanics, in purely dielectric
waveguides, we have no cutoff frequencies (energies), and de-

0

2

L/
h L

3.6 3.8 4 4.2
λ/hL

(1, 1)

A

B

4.4

4

6

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(1
, 2

)

(2, 2
)

(3, 2
)

FIG. 9. Wavelengths of localized modes in the cavity with W =
10 nm and different values of L. Red lines indicate symmetric states
and blue lines antisymmetric.

caying modes in the propagation direction (in our case – x) do
not exist. To have true bound states with β < 0 in the propaga-
tion direction, one should either confine electromagnetic field
in the transverse direction as in metal waveguide [58] (ana-
logue of size quantization) or use an “extra dimension” [59]
(propagating wave has a component in direction orthogonal to
the 2D system [60], z in our case). These conditions produce
an effect of the evanescent waves in the waveguide propaga-
tion direction. Here we imply the first option and insert our
dielectric waveguide between two ideally conducting metal
plates, located at some distance Y from the cavity (Fig. 3). The
electric field of the TE-wave takes zero values at these plates.
Thus, in this case, the numerical result depends strongly on
Y . However, the qualitative conclusions on the BIC formation
are universal, as shown above in the theoretical section, and
hence we focus on the simplest situation with Y = 0. Here
again we focus on the wavelength range, where there is only
a single propagating mode in each waveguide, i.e., βL,R

1 > 0
and βL,R

n < 0 for n = 2, 3, 4, . . . . For the particular geome-
try we consider (hR = 0.8hL), the wavelength range becomes
3.588hL < λ < 6.459hL .

In order to study BIC formation in a way similar to the
quantum billiard, we start with the determination of geometric
parameters of the resonator providing degenerate eigenmodes.
Without loss of generality, we normalize all lengths in the con-
sidered problem to the width of the left waveguide hL. Figure 9
depicts the wavelengths of some cavity modes depending on
its length L for W = 3hL. According to the condition (16),
BICs are expected in the vicinity of degeneracies, i.e., inter-
section points. We focus on two degeneracies – labeled as
A and B in Fig. 9, where λA ≈ 4.34079hL , LA ≈ 3.87591hL

and λB ≈ 4.16243hL , LB ≈ 3.03912hL . Like in the case of
quantum billiard, point A corresponds to a field distribution
symmetric along the x axis, and point B to a centrosymmetric
configuration. Positions of the waveguides yL,R do not signifi-
cantly change cavity eigenmodes. Therefore, it can serve as
a reference point for the search for a BIC in systems with
asymmetric attached waveguides.

In quantum mechanics, energy enters the Schrödinger
equation linearly, whereas, in optics, the Helmholtz equation
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is quadratic in wavelength. It leads to wavelength dependency
of the effective refractive index, making the computation more
sophisticated. To determine the parameters of the asymmetric
system, we set the width of the left waveguide yL, and for
each yL we find the values of yR and the wavelength λ, which
ensure the fulfillment of condition (30), i.e., condition (17). As
a result, one can obtain a family of curves λ(yR) for different
values of yL. Figure 10 depicts these curves for the plus sign
in condition (30), i.e., for the nearly mirror-symmetric con-
figurations with yR < 1

2 (W − hR). A similar diagram can be
obtained for the nearly centrosymmetric configuration as well.
As one can see from Fig. 10, in contrast to quantum billiards,
there is the possibility for a BIC at two values of yR for the
nearly mirror-symmetric configuration and at two values of
yR for nearly centrosymmetric configuration. In particular,
one gets yA,1

R ≈ 0.2205hL , yA,2
R ≈ 0.5152hL for λ = λA, and

yB,1
R ≈ 1.708hL , yB,2

R ≈ 1.9773hL for λ = λB.
Typical transmission spectrum T (λ) of an optical system

near a BIC behaves similarly to the quantum billiard and cor-
responds to the phenomenological model shown in Figs. 2(a)
and 2(b). There is a region of L values, which provides a small
width of the Fano resonance, with a curve reaching Tmax = 1
and symmetric Fano antiresonances with no peaks nearby.
BICs can be found in the same way as in the case of quantum
billiard. For each yR we find L, which provides Tmax = 1, and
evaluate the corresponding Fano resonance width �λ. Then,
we make sure that minimum �λ(yR) vanishes at some critical
value of yR, which implies a BIC formation.

Figure 11(a) shows the �λ(yR) dependence near point A
in Fig. 9 (nearly mirror-symmetric case). Two zero minima
are observed: the first at yBIC,A,1

R ≈ 0.2229hL , corresponding
to λBIC,A,1 ≈ 4.33878hL , LBIC,A,1 ≈ 3.8619hL , and the second
at yBIC,A,2

R ≈ 0.4864hL , with λBIC,A,2 ≈ 4.33826hL , LBIC,A,2 ≈
3.8746hL . It should be noted that between these minimal
values, �λ remains quite small, i.e., the system can posses a
resonator with a high Q factor in a wide range of parameters.
The intensity distribution in this case is qualitatively similar
to the BIC in the quantum billiard [Fig. 8(a)].
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A similar dependence of the Fano resonance width is ob-
tained for the nearly centrosymmetric case [Fig. 11(b)]. BIC
formation again takes place at two points: the first at yBIC,B,1

R ≈
1.7394hL , LBIC,B,1 ≈ 2.0329hL , and λBIC,B,1 ≈ 4.15393hL and
the second at yBIC,B,2

R ≈ 1.9742hL , LBIC,B,2 ≈ 2.0209hL , and
λBIC,B,2 ≈ 4.15539hL . The intensity distribution in this case
is qualitatively the same as the the BIC density distribution
in quantum billiard [Fig. 8(b)]. All the results for an optical
waveguide with a cavity are summarized in Table II.

TABLE II. BICs wavelength and parameters in 2D optical
waveguide with cavity.

Initial guess from
conditions (16) and (17) Exact values

Nearly λA ≈ 4.34079hL λBIC,A,1 ≈ 4.33878hL

mirror- LA ≈ 3.87591hL LBIC,A,1 ≈ 3.8619hL

symmetric yA,1
R ≈ 0.2205hL yBIC,A,1

R ≈ 0.2229hL

yA,2
R ≈ 0.5152hL λBIC,A,2 ≈ 4.33826hL

LBIC,A,2 ≈ 3.8746hL

yBIC,A,2
R ≈ 0.4864hL

Nearly λB ≈ 4.16243hL λBIC,B,1 ≈ 4.15393hL

centro- LB ≈ 3.03912hL LBIC,B,1 ≈ 2.0329hL

symmetric yB,1
R ≈ 1.708hL yBIC,B,1

R ≈ 1.7394hL

yB,2
R ≈ 1.9773hL λBIC,B,2 ≈ 4.15539hL

LBIC,B,2 ≈ 2.0209hL

yBIC,B,2
R ≈ 1.9742hL
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An additional criterion for BIC formation can be the di-
vergence of the intensity in the cavity when approaching BIC
in this wavelength-parameters space. Figure 11(c) shows the
dependence for the maximum electric field modulus |Emax|
in the structure and is normalized by electric field amplitude
of the incident wave in the first mode of the left waveguide.
Sharp increase in |Emax| is observed near the points of �λ

vanishing.

IV. CONCLUSION

Design of structures with embedded BICs is of primary
importance not only for fundamental study of interference
phenomena but for a large number of applications based on
high-Q resonances such as Refs. [1,2,21]. BICs in past years
have been studied in a tremendous number of electronic and
electromagnetic structures, the vast majority of which are
symmetric. BIC energies and corresponding system’s param-
eters can be determined by finding a root of some single
variable functions in spatially symmetric structures. In the
general case of asymmetric structures, the problem becomes
multiparametric and much more cumbersome.

It was shown by Pavlov-Verevkin and coauthors in
Ref. [40] that, in general, an N-level system coupled to K con-
tinua can support N − K BICs if all N states are degenerate.
However, if the rank of the coupling matrix becomes lower
than K (due to the collinearity of the coupling vectors), then
the number of BICs can be increased. Our paper extends this
idea to consider not only degenerate states forming BIC and to
include all the rest eigenstates. At the same time, our approach
generalizes the FW model and is applicable to the avoided
crossing case as well. We have shown explicitly how the con-
dition of proportionate coupling (collinearity of the coupling
vectors) arises in the case of two continua that are repre-
sented by two geometrically different waveguides. Therefore,
in the limiting case of the level crossing, where degeneracy
is possible, our condition requires the degeneracy of only two
levels instead of three according to the general statement of
Pavlov-Verevkin as discussed in, e.g., Refs. [50,51].

In this paper, we have developed principal design rules (16)
and (17) for constructing spatially nonsymmetric electronic
and electromagnetic systems with BICs originated from the
FW mechanism. Our approach is based on the analysis of

BIC formation via a unified theory of transport phenomena
in quantum conductors, which can be applied with equal
success to both tight-binding and continuous models. The
analytic results are formulated in terms of energy levels of
the isolated system and couplings with the input and output
waveguides. The particular meaning of such couplings is dif-
ferent in tight-binding and continuous approaches, but, as our
numerical simulations show, the formulated rule works well in
both limits. Physically, the ratio of wave function (light field)
amplitudes providing destructive interference in the coupling
of the quantum state (resonator’s mode) with the continuum
should be the same for both waveguides, i.e., the condition of
proportionate coupling should be fulfilled. In fact, it means
that though the system possesses two geometrically different
input and output waveguides, it can be considered within a
single channel scattering problem. Analytic derivation of the
proportionate coupling condition is performed by considering
a single propagating mode in each waveguide. Hence this con-
dition is not exact. However, as our results show, it can serve
as an excellent initial guess for the search of BIC location
points using multimode numerical modeling.

In practice, BICs are typically revealed as extremely
high-Q resonances. Such resonances find many applications,
mainly in optics, including enhancement of light-matter in-
teraction for lasing and harmonic generation, efficient light
guiding, and sensing [21]. We believe that the proposed idea
of proportionate coupling and the results of our paper broad-
ens the class of structures allowing for the BIC formation,
which can benefit in a wide range of wave phenomena.
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APPENDIX A: P(E ) AND Q(E ) FUNCTIONS NEAR BIC

In the vicinity of BIC, where exact eigenvalues ε1,2 are
close to each other, we use the two-level reparametrization
(12) and get the following approximation for functions from
Eq. (11):

FLL(E ) ≈
(
E − ε0

1

)(
γ L

2

)2 + (
E − ε0

2

)(
γ L

1

)2 + 2�γ L
1 γ L

2(
E − ε0

1

)(
E − ε0

2

) − �2
+ CLL,

FRR(E ) ≈
(
E − ε0

1

)(
γ R

2

)2 + (
E − ε0

2

)(
γ R

1

)2 + 2�γ R
1 γ R

2(
E − ε0

1

)(
E − ε0

2

) − �2
+ CRR,

FLR(E ) ≈
(
E − ε0

1

)
γ L

2 γ R
2 + (

E − ε0
2

)
γ L

1 γ R
1 + �

(
γ L

1 γ R
2 + γ R

1 γ L
2

)
(
E − ε0

1

)(
E − ε0

2

) − �2
+ CLR. (A1)

Here CLL, CRR, and CLR take into account the contribution
from all the rest energy levels (i �= 1, 2), which we take as
constants in the energy range of interest. Hereinafter, we re-
strict γ L,R

1,2 and CLR to be real quantities, all the rest parameters

are real by their definition. Substituting Eqs. (A1) into Eqs. (9)
and (10), one can get approximated expressions for P(E )
and Q(E ) functions near BIC. One should be cautious that
exactly at BIC [under conditions (16) and (17)] numerator and
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denominator of functions (A1) turn to zero simultaneously at
E = EBIC.

APPENDIX B: BIC FROM THE EFFECTIVE
HAMILTONIAN PERSPECTIVE

The exact expression for the effective Hamiltonian (7) of
the N-level two-terminal quantum conductor is derived by the
Feshbach’s projection operator technique [46]. Analysis of its
properties in the vicinity of ε1 and ε2 can be performed in
the same manner—by projection onto the subspace of states
|1〉 and |2〉. Thus, effective Hamiltonian of these two states
incorporating waveguides self-energies and influence of all
the rest states of the quantum conductor can be written in the
following form:

Ĥ eff
2×2 = Ĥ2×2 + �̂. (B1)

Here Ĥ2×2 is defined in Eq. (12) and �̂ is the total self-energy:

�̂ = �̂L + �̂R − �̂LR, (B2)

with

�̂L,R = ũL,Rũ†
L,R

[
2 − 1 − CRR,LLσR,L

D

]
σL,R, (B3)

�̂LR = (
ũLũ†

R + ũRũ†
L

)
σLσR

CLR

D
, (B4)

where σL,R = hL,R − igL,R, ũL,R = (γ L,R
1 , γ L,R

2 )�, and

D = [1 − CLLσL] × [1 − CRRσR] − CLRσLσR. (B5)

Couplings γ L,R
1,2 are energy-independent and quantities CLL,

CRR, CLR, hL,R, and gL,R are defined in Sec. II B.
Condition of proportionate coupling (17) results in ũL ∝

ũR, which in turn implies �̂L ∝ �̂R ∝ �̂LR according to
Eqs. (B3) and (B4). Therefore, under this condition non-
Hermitian part of the effective Hamiltonian (B1) has rank 1.
Hence Ĥ eff

2×2 can have a real eigenvalue, i.e., BIC formation
takes place, due to the Friedrich-Wintgen mechanism if the
condition (16) is fulfilled.

APPENDIX C: TAKING EVANESCENT MODES
IN WAVEGUIDES INTO ACCOUNT

Coupling of the N-level quantum system to KL,R + 1
channels in the left or right electrode (waveguide) respec-
tively can be described by introduction of the corresponding
self-energies. Hermetian and anti-Hermitian parts of this self-
energies are given similarly to Eqs. (4) but with N × (KL,R +
1) coupling matrices ĜL,R(E ) [and their Hilbert transforms
ĤL,R(E )] instead of N × 1 coupling matrices (vectors) uL,R

defined in Eq. (5) [43]:

�̂L,R(E ) = ĜL,R(E )Ĝ†
L,R(E ),

δ̂L,R(E ) = ĤL,R(E )Ĥ†
L,R(E ). (C1)

We assume that there is a single propagating channel in
each electrode and KL,R evanescent modes, respectively. Due
to the orthogonality of different modes, one can treat each
channel as an independent terminal. Thus, Eq. (C1) may be

rewritten similarly to the multiterminal case [41]:

�̂L,R(E ) = uL,Ru†
L,RgL,R(E ),

δ̂L,R(E ) = uL,Ru†
L,RhL,R(E ) +

KL,R∑
i=1

uL,R;iu
†
L,R;ihL,R;i(E ). (C2)

Here uL,R, gL,R(E ), and hL,R(E ) are introduced in Sec. II B.
Quantities uL,R;i and hL,R;i(E ) are defined similarly, but corre-
spond to the ith mode in the left or right electrode. Substituting
Eqs. (C2) into (6), one can derive the transmission coefficient
in the same form (8) with P(E ) and Q(E ) functions given by
Eqs. (9) and (10) but with hybridized Hamiltonian

Ĥhyb = Ĥ0 +
KL∑
i=1

uL;iu
†
L;ihL;i(E ) +

KR∑
i=1

uR;iu
†
R;ihR;i(E ) (C3)

instead of the bare Hamiltonian of the isolated system Ĥ0.
Thus, states |1〉 and |2〉 should be considered as eigenstates
of the hybridized Hamiltonian (C3).

Nevertheless, one can rewrite P(E ) and Q(E ) functions in
terms of the eigenstates of the isolated system. In this case
all Eqs. (8)–(10) remain the same but with FLL, FRR, and FLR

replaced by

Fab = Fab + (F†
aL F†

aR)

[(
1̂KL 0

0 1̂KR

)
−

(
f̂LL f̂LR

f̂RL f̂RR

)]−1

×
(

FbL

FbR

)
. (C4)

Here subscripts a, b show the correspondence either to the left
or right waveguide (i.e., a, b ∈ {L, R}), functions Fab are from
Eq. (11), and 1̂KL,R is the identity matrix of dimension KL,R.
Components of the KL-dimensional vectors FLL and FRL and
KR-dimensional column-vectors FLR and FRR are defined as
follows:

[Fab]i = √
hb;i(E )

N∑
k=1

γ a
k γ b;i∗

k

E − εk
, (C5)

where γ L,R;i
k is the kth element of the coupling vector uL,R;i.

Similarly, one can write matrix elements of f̂LL, f̂LR, f̂RL, and
f̂RR:

[ f̂ab]i j = √
ha;i(E )hb; j (E )

N∑
k=1

γ a;i∗
k γ

b; j
k

E − εk
. (C6)

The absolute strength of the evanescent modes influence
is governed by the functions hL,R;i(E ), whereas the rela-
tive strength of the evanescent modes influence on different
eigenstates of the isolated system is defined through γ L,R;i

k .
In general, derivation of an exact condition for BIC for-
mation in terms of isolated quantum system eigenstates is
extremely tough. However, if the influence of the evanescent
modes is weak, then one can assume that functions Fab from
Eqs. (C4) differ only slightly from those without evanescent
modes taken into account: Fab given by Eq. (11). Therefore,
in general, we expect the BIC formation not exactly for the
conditions (15)–(17), but in some vicinity of them in the
energy-parameters space.
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FIG. 12. Parameters corresponding to BIC formation for differ-
ent strength of the evanescent modes influence. Red solid circle
shows the parameters of BIC formation without evanescent modes
taken into account. Black open circles correspond to BIC with hR;1 =
0.5hL,1 and hL;1 varying from 0 to −0.1gL with a −0.01gL step.

As an example, we consider the simplest case with one
evanescent mode in each waveguide (KL = KR = 1). In this
situation, vectors (C5) and matrices (C6) will be just 1 × 1
scalars. In the vicinity of two eigenstates with close energies
ε1 and ε2, one can approximate Eqs. (C5) and (C6) similar to

Eq. (A1). For simplicity we consider the case, when crossing
of ε1 and ε2 is possible (� = 0), and get:

[Fab]i ≈ √
hb;1

(
γ a

1 γ b;1
1

E − ε1
+ γ a

2 γ b;1
2

E − ε2
+ Aab

)
,

[ f̂ab]1 ≈ √
ha;1hb;1

[
γ a;1

1 γ b;1
1

E − ε1
+ γ a;1

2 γ b;1
2

E − ε2
+ Bab

]
. (C7)

Here constants Aab and Bab take into account eigenstates be-
yond |1〉 and |2〉. We also assume that all tunneling couplings
are real and we approximate functions hL,R;1(E ) as energy-
independent constants hL,R;1 in the energy range of interest.

In Fig. 12, we show the positions of BIC in the
parameter space of �ε = ε2 − ε1 and γ R

2 for different influ-
ence strength of the evanescent modes (different values of
hL,R;1). Parameters are set as follows: γ L

1 = 0.3, γ R
1 = −0.5,

γ L
2 = 0.9, CLL = 0.1g−1

L , CRR = 0.02g−1
L , CLR = −0.08g−1

L ,
gR = 0.5gL , hL = 0.4gL, hR = −0.1gL , ALL = 0.1g−1

L , ARR =
−0.18g−1

L , ALR = 0.14g−1
L , ARL = 0.02g−1

L , BLL = 0.06g−1
L ,

BRR = 0.12g−1
L , BLR = −0.08g−1

L , γ L;1
1 = 0.9, γ R;1

1 = 0.5,
γ L;1

2 = −0.5, and γ R;1
2 = 0.4. Without evanescent modes

taken into account BIC formation takes place exactly for
conditions (16) and (17), which are shown by dashed lines
in Fig. 12.
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