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General relation between stacking order and Chern index: A topological map
of minimally twisted bilayer graphene
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We derive a general relation between the stacking vector u describing the relative shift of two layers of bilayer
graphene and the Chern index. We find C = ν(1 − sign(|VAB| − |VBA|)), where ν is a valley index and |Vαβ |
the absolute value of the u dependent stacking potentials that uniquely determine the interlayer interaction; AA
stacking plays no role in the topological character. With this expression we show that while ideal and relaxed
minimally twisted bilayer graphene appear so distinct as to be almost different materials, their Chern index maps
are, remarkably, identical. The topological physics of this material is thus strongly robust to lattice relaxations.
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I. INTRODUCTION

Ideal and atomically relaxed twist bilayer graphene be-
comes, in the small angle regime, essentially different
materials [1–5]. While the ideal lattice geometry is that of
a moiré, for θ < 1◦ the material relaxes (”reconstructs” [3])
into domains of AB and BA stacking bounded by pure screw
partial dislocations [6,7]. However, the remarkable electronic
properties of the graphene twist bilayer have predominately
been established for the ideal geometry [8–14], and a natural
question is therefore how the rich electronic physics of the
graphene moiré is impacted by the profound lattice relaxation
that occurs at small angles [5,15–19].

AB and BA stacked bilayer graphene have different valley
Chern numbers, generating a pair of topologically protected
states with valley momentum locking at the domain walls of
regions of AB and BA stacking. In the ordered network of
AB and BA domains that constitute minimally twisted bi-
layer graphene these one-dimensional states lead to a ”helical
network” of valley-momentum locked states [20,21] and a
remarkable electrically controllable and complete nesting of
the Fermi surface [22], with a correspondingly rich magneto-
transport that is only beginning to be explored [19,21]. In this
paper we will ask the inverse question to that posed above:
Can such a network of one-dimensional states be found in the
moiré as well as the dislocation network?

Intuitively this may appear unlikely as while the partial
dislocation network consists of a mosaic of well defined AB
and BA tiles, the ideal moiré geometry does not possess
such a bulk/boundary structure. However, as boundary states
arise from the change in valley Chern number the possi-
bility exists that, for sufficiently slow stacking modulation,
such states exist in the ideal twist geometry through the

dependence of the local valley Chern number on the local
stacking vector. Remarkably, as we show here, the moiré
and the partial dislocation network have essentially identical
topological character, in the sense that the spatial dependence
of the valley Chern number is indistinguishable between these
two systems. This represents an example of a property of the
twist bilayer fully robust to lattice relaxation and suggests (i)
that the helical network will survive at twist angles when the
relaxation to a dislocation network is incomplete and (ii) that
in Dirac-Weyl materials for which the energetic balance of
in-plane strain and interlayer stacking energy may not favor
reconstruction to a dislocation network, the physics of the
”helical network” may nevertheless be found.

Our approach will be to generalize the widely known fact
that AB and BA stacked bilayer graphene have different valley
Chern numbers to a statement concerning an arbitrary stack-
ing vector and the corresponding Chern index. Employing
the fact that, under quite general assumptions, the interlayer
interaction in bilayer graphene can be represented by three
unique ”stacking potentials” (corresponding to the three high
symmetry stacking types of AB, BA, and AA stacking), we
demonstrate that the valley Chern index C depends only on
the sign of the difference of the AB and BA potentials as

C = ν − ν sign(|VAB| − |VBA|) (1)

with ν = ±1 an index labeling the conjugate K valleys. An
intervening metallic state is required at a topological phase
transition, and we show that the stacking phase diagram of
bilayer graphene contains ”permanent metal lines” at which
the system remains metallic for arbitrary interlayer bias, and
that these lines exactly correspond to the stacking vectors at
which the valley Chern index changes (Sec. IV). We then
numerically investigate the veracity of Eq. (1) through a
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series of artificial domain walls for which C is predicted to
be different or identical, as well as considering the case of
one-dimensional smooth stacking orders looking for bound
states associated with a sign change of |VAB| − |VBA| (Sec.
VI). Finally, we show (Sec. VII) that employing Eq. (1) the
topological character of both ideal and relaxed twist bilayer
graphene is identical.

II. EFFECTIVE HAMILTONIAN THEORY

To derive the continuum Hamiltonian to be employed in
this work we adopt the approach of Ref. [23]. The key to
this approach is to consider the tight-binding description of
an arbitrary system in terms of a high symmetry system to
which a deformation is applied resulting in a generally com-
plex and spatially dependent change in the hopping matrix
elements. The relevant two-center tight-binding Hamiltonian
can be written as

HTB =
∑
αβ

rδ

tαβ (r, δ)c†
βr+δ

cαr. (2)

Here α, β represent the combined atomic degrees of freedom
of the underlying high symmetry lattice, i.e., layer index,
basis atom index, angular momentum, and spin. The function
tαβ (r, δ) defines the tight-binding hopping matrix element
from position r on sublattice α to position r + δ on sublattice
β. Note that for graphene in the Hückel tight-binding model
(i.e., π -band only) the atomic indices α and β reduce to just
the layer and sublattice degrees of freedom.

As shown in Ref. [23] for deformations slow on the scale
of the unit cell of the high symmetry system there is a one-to-
one relationship between this tight-binding Hamiltonian and
continuum Hamiltonian H (r, p) given by

[H (r, p)]αβ = 1

AUC

∑
G j

[Mj]αβ ηαβ (r, K j + p), (3)

where AUC denotes the area of the unit cell and G j are the
reciprocal lattice vectors. The sum thus represents the trans-
lation group of a conveniently chosen expansion momentum
K0: K j = K0 + G j , where in graphene K0 is chosen to be
one of the high symmetry K points of the hexagonal Brillouin
zone. The function ηαβ is the Fourier transform of the enve-
lope function tαβ (r, δ) describing the tight-binding hopping
matrix element described above,

ηαβ (r, q) =
∫

dr eiq.δtαβ (r, δ), (4)

while the so-called ”M matrices” are given by

[Mj]αβ = eiG j ·(να−νβ ), (5)

where the να denote the basis vectors of the individual sub-
lattices within the unit cell of the underlying high symmetry
structure. These matrices encode through the basis vectors να

and reciprocal vectors G j the physics of the high symmetry
system, while the deformation applied to this high symmetry
system, is captured through the spatial dependence of the
function tαβ (r, δ).

For a high symmetry system, a Taylor expansion in mo-
mentum p of Eq. (3) will generate a series of increasingly

accurate Hamiltonians about the expansion point. In graphene
the lowest order Hamiltonian will be the Dirac-Weyl equa-
tion describing the conical intersection at K , with the higher
order terms encoding a series of increasingly accurate low
energy approximations to the full band structure [23]. In the
presence of deformation fields the layer diagonal blocks of
Eq. (3) can also be Taylor expanded for slow deformation
to yield the exact single layer tight-binding Hamiltonian plus
deformation corrections expressed through (at lowest order)
the pseudogauge and spatial variation of the Fermi velocity
tensor, as described in Refs. [22,24]. For systems with both
intralayer as well as interlayer deformations the electronic
structure is dominated by the latter, as shown in Ref. [22], and
so we will not include in-plane effective fields here. The dom-
inance of the interlayer deformation arises as while in-plane
deformations are restricted by the strong covalent bonding
of graphene, interlayer stacking deformations may have es-
sentially arbitrary magnitude (as in a twist deformation) with
local stacking varying continuously between the high symme-
try types of AA, AB, and BA. As the low energy electronic
structure of a bilayer depends profoundly on stacking type
(consider the AB as compared to AA spectrum), interlayer
deformations are expected to dominate over intralayer defor-
mations in the electronic structure of the bilayer.

Upon applying deformation fields u1(r) and u2(r) to layers
1 and 2 an interlayer hopping vector δ will transform as δ →
δ + u2(r + δ) − u1(r). For deformation fields varying slowly
on the scale of the electron hopping this can be approximated
as δ → δ + �u(r) with �u(r) = u2(r) − u1(r). The inter-
layer hopping function is then tαβ (r, δ) = t (0)

αβ (δ + �u(r))
with t (0)(|δ|) the tight-binding hopping function describing
the hopping between two π orbitals. The Fourier transform
in Eq. (4) can now be performed exactly, yielding a form for
the interlayer matrix elements [23]

[S(r, p)]αβ = 1

AUC

∑
j

[Mj]αβ e−i�u(r)·G j t (0)(K j + p) (6)

with an explicit dependence on �u(r), the deformation field
describing a local shift of the two layers by �u at r. For
further details we refer the reader to Ref. [23] as well as
several applications of the method: to minimally twisted bi-
layer graphene [22], partial dislocation networks [25–27], and
in-plane deformation fields [24,28].

The C3 symmetry of graphene demands that each star of the
translation group of momentum boosts encoded in the above
equation is described by the same 3 ”M matrices”:

M0 =
(

1 1

1 1

)
, M± =

(
1 e±2π i/3

e∓2π i/3 1

)
(7)

and for this reason the interlayer coupling can be expressed as
a sum of three distinct components. The most convenient way
to do this is to decompose the interlayer interaction in terms
of the three stacking potentials associated with AB, BA, and
AA stacking, which have matrix structure σ+, σ−, and σ0, re-
spectively. This then yields a general form for the Hamiltonian
of bilayer graphene for arbitrary (spatially varying) interlayer
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FIG. 1. Shift vector �u and magnitude of the corresponding
interlayer stacking potentials given by Eq. (6) [see also Eq. (8)] for
a partial dislocation of partial Burgers vector a( 1

2 , 1
2
√

3
) with a the

lattice constant of graphene. The interlayer potentials VAB, VBA, VAA

reflect the local stacking structure, with a transition from AB to BA
stacking seen across the partial dislocation. For detailed discussion
of these potentials see Sec. II.

stacking given by

H =

⎛
⎜⎜⎜⎝

� νpx − ipy VAA(r) VAB(r)

νpx + ipy � VBA(r) VAA(r)

VAA(r)∗ VBA(r)∗ −� νpx − ipy

VAB(r)∗ VAA(r)∗ νpx + ipy −�

⎞
⎟⎟⎟⎠,

(8)
where we have truncated the layer-diagonal blocks at linear
order, which is convenient for the analytical work which
follows. The diagonal blocks are thus Dirac-Weyl opera-
tors with valley index ν = ±1, interlayer bias �, and the
Fermi velocity set to unity. The interlayer potentials VAB(r),
VBA(r), and VAA(r) are the elements of the matrix given by
Eq. (6). Through their spatial dependence these potentials
can describe either a dislocation (Sec. VI) or an ideal or
reconstructed twist bilayer (Sec. VII), while in Sec. III they
will simply be constant potentials describing a rigid shift of
the two layers. For the case of a partial dislocation these
potentials are shown in the lower panel of Fig. 1, along with
the components of corresponding relative shift vector �u(x),
upper panel.

III. FROM STACKING ORDER TO VALLEY CHERN INDEX

Analytical calculation of the Berry curvature of Eq. (8)
would, for an arbitrary stacking, be opaquely complex. To
simplify this problem we decompose the full Hamiltonian into
two subsystems: a low energy sector spanned by the single
layer states labeled 1 and 2 in Fig. 2 and a high energy sector
spanned by states 3 and 4. These basis functions are just the
eigenstates of Eq. (8) in the absence of interlayer coupling;
note also that we consider the case � > 0. The two basis sets

FIG. 2. Full lines: band structure of AB stacked bilayer graphene
in the presence of a nonzero interlayer bias but with the interlayer
coupling switched off (i.e., no electron hopping between the two
layers). The single layer bands indicated by the numbers 1–4 are
employed as a basis in the calculations of Sec. III and Sec. IV, with
black shaded bands (1 and 2) forming a low energy basis and the
red shaded bands (3 and 4) a high energy basis. As described in
Sec. III, both the low and high energy sectors are required to obtain
the correct valley Chern number for a general stacking. The broken
lines represent the band structure of AB stacked bilayer graphene
with the interlayer coupling switched on, showing the hybridization
of the two Dirac-Weyl cones.

are therefore

∣∣
 (L)
1

〉 = 1√
2

⎛
⎜⎜⎜⎝

1

−νeiνφ

0

0

⎞
⎟⎟⎟⎠

∣∣
 (L)
2

〉 = 1√
2

⎛
⎜⎜⎜⎝

0

0

1

+νeiνφ

⎞
⎟⎟⎟⎠ (9)

for the low energy sector and

∣∣
 (H )
3

〉 = 1√
2

⎛
⎜⎜⎜⎝

1

+νeiνφ

0

0

⎞
⎟⎟⎟⎠

∣∣
 (H )
4

〉 = 1√
2

⎛
⎜⎜⎜⎝

0

0

1

−νeiνφ

⎞
⎟⎟⎟⎠
(10)

for the high energy sector. In these expressions φ =
arctan(ky/kx ) is the polar angle of the momentum. The jus-
tification for decomposing the full Hamiltonian in this way is
that the Berry curvature will be associated with those parts
of momentum space that, when the interlayer coupling is
tuned to zero, have degenerate states. This is the physics
captured by the low energy sector described by states 1 and
2. In calculating the Berry curvature for AB and BA stacking
Zhang et al. [29] employed an alternative basis of states 1
and 4, calculating the Berry curvature deep in the valence
band. We find that for the case of a general stacking this leads
to an erroneous AA contribution to the topological invariant;
apparently for the more general case a careful treatment of the
low energy bands becomes important. As we will show, our
result reproduces as a limit that of Ref. [29].

The low energy Hamiltonian in the basis of states 1 and 2
is

H low =
(

� − |k| O

O∗ −� + |k|
)

(11)
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while the high energy Hamiltonian in the basis of states 3 and
4 is given by

Hhigh =
(

� + |k| −O

−O∗ −� − |k|
)

(12)

where in both cases the off-diagonal elements are given by

O = ν

2
(VABeiνφ − VBAe−iνφ ) =: |O|eiθ . (13)

The φ dependent phase θ (φ) will turn out to encode a layer
dependent phase twist determining the valley Chern index. To
bring this out we first diagonalize in the high and low energy
sector finding for the eigenvalues

E low = ±
√

(� − |k|)2 + |O|2 =: ±ξ, (14)

and

Ehigh = ±
√

(� + |k|)2 + |O|2 =: ±ζ (15)

with the corresponding eigenvectors given by

|vlow
± 〉 = 1√

2

⎛
⎝

√
1 ± �−|k|

ξ

±
√

1 ∓ �−|k|
ξ

e−iθ

⎞
⎠ =:

(
c±

±c∓e−iθ

)
(16)

and

|vhigh
± 〉 = 1√

2

⎛
⎝

√
1 ± �+|k|

ζ

±
√

1 ∓ �+|k|
ζ

e−iθ

⎞
⎠ =:

(
d±

±d∓e−iθ

)
. (17)

From these we can then reconstruct the wave functions in the
original layer-sublattice space finding

|
 low
± 〉 = 1√

2

⎛
⎜⎜⎜⎝

c±
−νeiνφc±
±c∓e−iθ

±νeiνφc∓e−iθ

⎞
⎟⎟⎟⎠ (18)

and

|
high
± 〉 = 1√

2

⎛
⎜⎜⎜⎝

d±
+νeiνφd±
±d∓e−iθ

∓νeiνφd∓e−iθ

⎞
⎟⎟⎟⎠. (19)

Note that for both the high and low energy sector for asymp-
totically large k different stacking types are related by the
gauge transformation

|
〉 → |
〉 ei(1−τz )(θ1(φ)−θ2(φ))/2 (20)

which, limiting to the two cases of AB or BA stacking for
which θ = μνφ [see Eq. (13)] with μ = ±1 for AB and
BA stacking, respectively, exactly recovers the gauge relation
found in Ref. [29].

From these sublattice-layer space wave functions we
can then determine the Berry connection Alow/high

± =
−i 〈
 low/high

± 〉 ∂φ

low/high
± , finding

Alow
± = 1

2
(ν − c2

∓θ ′) (21)

for the low energy sector and

Ahigh
± = 1

2
(ν − d2

∓θ ′) (22)

for the high energy sector, where θ ′ = ∂φθ . The valley Chern
number is defined as the integral over momentum space of the
Berry curvature of the occupied bands. Summing the Berry
connection over occupied states, i.e., A = Alow

− + Ahigh
− , we

find

A = ν − θ ′ − θ ′

2

(
� − |k|

ξ
+ � + |k|

ζ

)
. (23)

To ensure fully integrating the Berry curvature over mo-
mentum space we must integrate the connection on an
asymptotically large contour around the K point, leading to
the vanishing of the second bracketed term as both ξ and ζ

reduce to |k| as |k| → ∞. We thus arrive at an expression for
the Chern number given by

C = ν − θ (2π ) − θ (0)

2π
(24)

which depends only on the valley index ν = ±1 and the wind-
ing number of O, Eq. (13). Expressing the generally complex
interlayer potentials as their absolute value and phase, we
define VAB = |VAB|eiθAB and VBA = |VBA|e−iθBA , the equation
for O can be written in polar coordinates as

O = ν

2
[|VAB|ei(θAB+νφ) − |VBA|e−i(θBA+νφ)]

= ν

2
ei θAB−θBA

2 [(|VAB| − |VBA|) cos φ̃

+i(|VAB| + |VBA|) sin φ̃] (25)

where the angle φ̃ is given by

φ̃ = νφ + (θAB + θBA)

2
. (26)

Equation (25) describes an ellipse in the complex plane with
turning direction determined by the relative sign between the
sine and cosine terms. In the ν = +1 valley we see that
if |VAB| > |VBA|, the ellipse turns counterclockwise and the
winding number is plus one while if |VAB| < |VBA| it turns
clockwise and the winding number is minus one; for the
ν = −1 valley, the situation is reversed. The valley Chern
number for arbitrary stacking is therefore

C = ν − ν sign(|VAB| − |VBA|) (27)

where the potentials VAB and VBA are related to the stacking
through Eq. (6). From the Berry connection for AB and BA
stacking derived in Ref. [29] one can obtain the corresponding
formula C = ν(1 − μ) for stacking types AB (μ = +1) and
BA (μ = −1); evidently Eq. (27) reduces to this in the limit of
considering only these stacking types. As one would expect,
both these results vanish when summed over inequivalent
valleys.

Employing the formalism of the previous section to obtain
|VAB| − |VBA| as a function of stacking vector �u (see Sec. V
for numerical details) the phase diagram of winding number
versus stacking vector can be obtained and is shown in Fig. 3.
A rather simple structure is observed in which the AA and
SP structures (the structure midway between AB and BA
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FIG. 3. Winding number phase diagram of bilayer graphene as
a function of the relative shift of the two layers �u = (�ux, �uy )
(measured in units of the lattice constant a); red denotes a winding
number of −1 and blue a winding number of +1. AB stacking cor-
responds to �u = 0, the center of the diagram, with BA and AA on
the vertices. The stacking type SP is that found at a partial dislocation
core and lies equidistant between AB and BA. The dashed lines are
the ”metal lines” on which the system remains metallic irrespective
of the magnitude of the interlayer potential. The labeled crosses are
the stacking vectors used to construct artificial domain walls to probe
bound states associated with changing winding number; each panel
in Fig. 5 corresponds to a pair of stacking vectors.

structures and found at the center of a partial dislocation) all
lie on boundaries at which the valley Chern number changes.

IV. METALLIC LINES IN THE STACKING PHASE
DIAGRAM

In a Gedanken experiment one can trace a path through
this phase diagram by sliding two layers of graphene and so
cross a boundary separating distinct topological invariants. On
such a boundary the gap must therefore close irrespective of
the magnitude of the interlayer potential. This thus represents
a robust test of the valley Chern number diagram derived in
the previous section: lines on which the valley Chern number
changes must correspond to a permanent metallic state of the
graphene bilayer for any interlayer potential.

To see that the lines separating regions of distinct topolog-
ical invariants indeed correspond to ”permanent metal lines”
we calculate the band gap using the low energy Hamiltonian
from the previous section. Its eigenvalues are

E = ±
√

(� − |k|)2 + |O|2 (28)

and so the gap minimum is at |k| = � and can only vanish on
this circle for

O = 1

2
(VABeiνφ − VBAe−iνφ ) = 0. (29)

Rewriting the potentials in polar form gives

|VAB|ei(νφ+θAB ) = |VBA|e−i(νφ+θBA ) (30)

and so for the band gap to vanish at some momentum angle φ

a necessary and sufficient condition is thus that the two poten-
tials have the same magnitude, |VAB| = |VBA|. Note that just as
in the calculation of the topological invariant the AA potential
naturally drops out of the discussion, without artificially need-
ing to be set to zero. The two complex numbers on either side
of the equality are then identical for φ = −ν(θAB + θBA)/2,
from which O = 0 follows. To determine which stacking vec-
tors this corresponds to, we employ the stacking potentials in
the first star approximation which from Eq. (6) are found to
be

VAB = t (0)

[
1 + 2e− 2π i

a �ux cos

(
2π√

3a
�uy

)]
(31)

VBA = t (0)

[
1 + 2e− 2π i

a �ux cos

(
2π√

3a
�uy + 2π

3

)]
(32)

and insertion of these potentials in Eq. (30) then yields

�uy =
√

3a

2
n + a√

3
(33)

�uy = ±
√

3a�ux +
√

3am + a√
3

(34)

with m, n ∈ Z. This corresponds precisely to the three lines
on which the winding number changes sign. These ”metallic
lines” in the stacking phase diagram connect the regions of
AA stacking and pass through the so-called ”SP” structure that
lies midway between AB and BA stacking. To numerically
confirm this analytical result we display in Fig. 4 the gap as a
function of stacking for interlayer bias of 0.2 eV and 1.0 eV;
in both cases the gap can be seen to vanish on the metallic
lines.

V. NUMERICAL METHOD

In order to probe both the veracity and consequences of
the general relation between topological index and stacking
order, Eq. (27), we now turn to numerical calculations. Our
electronic structure calculations involve solving Eq. (8) nu-
merically for both an analytical model of a single partial
dislocation (see below) and for minimally twisted bilayer
graphene, with the relaxed atomic structure obtained via
semiempirical force field calculation. In what follows we
describe our methodology for both electronic structure sim-
ulation and atomic relaxation; a complete description of
method and numerical details can be found in Ref. [22].

A. Electronic structure calculations

We denote the relative shift in region i by �ui and model
the displacement field around the boundary between different
regions with the function

�u(x) = u1 + 1

2
(u2 − u1)

(
1 + tanh

(
L(x − x0)

w

))
(35)

that depends on three parameters; the location of the boundary
x0, its width w, and the length of the unit unit cell L. The
vectors u1 and u2 are the shift of the two bulks either side
of the dislocation relative to some reference structure. An
illustration of the form of this domain wall model can be seen
in Fig. 1 along with the corresponding interlayer potentials.
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FIG. 4. The gap of bilayer graphene as a function of the relative
shift of the two layers �u = (�ux,�uy ) (measured in units of the
lattice constant a) and presented for two different values of the
interlayer symmetry breaking potential: � = 0.2 eV in panel (a) and
� = 1.0 eV in panel (b). On the lines at which the valley Chern
number changes in the stacking phase diagram, Fig. 3, and illustrated
by the dashed lines here, the gap remains zero irrespective of the
interlayer bias applied.

As we employ periodic boundary conditions, we require two
domain boundaries which we locate at x0 = 1/3 and x0 = 2/3
and for the sum of the partial Burgers vectors (u2 − u1) for
these two partial dislocations to sum to zero.

For the tight-binding method that underpins the contin-
uum formalism we employ a π -band only approximation
and take the in-plane and interlayer hopping functions to be
parametrized by the same Gaussian form

t (δ) = Ae−Bδ2

(36)

with A‖ and B‖ are chosen to give an in-plane nearest neighbor
hopping of 2.8 eV and the interlayer A⊥ and B⊥ chosen such
that the hopping between nearest interlayer neighbors in the
AB structure is 0.4 eV.

For numerical work we do not need to enforce a restriction
to linear momentum (Dirac-Weyl approximation) and instead
use a Hamiltonian in which the layer diagonal blocks are
the full tight-binding description, with the layer off-diagonal
blocks treated through Eq. (6):

H =
(

H (1)
TB S(x)

S†(x) H (2)
TB

)
. (37)

It is numerically efficient to use a basis of single layer eigen-
states, determined from the layer diagonal blocks as [22]

H (n)
TB

∣∣
 (n)
ik

〉 = ε
(n)
ik

∣∣
 (n)
ik

〉
. (38)

We find a basis size of 1600 of the lowest energy states from
each layer provides good convergence for the low energy elec-
tronic structure of Eq. (37). In this basis the matrix elements
of Eq. (37) are given by

[H]n′i′k′nik = δn′i′k′nikε
(n)
ik + (1 − δnn′ )

〈



(n′ )
i′k′

∣∣ S(x)
∣∣
 (n)

ik

〉
.

(39)

B. Lattice relaxation

To calculate atomic relaxation we employ the GAFF
force field [30] for the C-C interactions within the graphene
layers and the registry-dependent interlayer potential of
Kolmogorov-Crespi [31] using our own implementation
[7,22]. For the ideal AB-stacked graphene bilayer this cal-
culational setup results in an equilibrium lattice constant of
a0 = 2.441 Å and an interlayer distance of dAB = 3.370 Å.
Shifting the graphene layers to AA stacking increases the
layer separation to dAA = 3.597 Å (+0.227 Å as compared to
AB stacking). The AA-stacked bilayer has a higher energy of
4.4 meV per atom as compared to AB stacking, correspond-
ing to a stacking fault energy of γAA = 54.9 mJ/m2. In SP
stacking order (see Fig. 3) the equilibrium distance of the
graphene layers and the stacking fault energy are dSP = 3.390
Å (+0.020 Å) and γSP = 7.1 mJ/m2 (0.6 meV per atom),
respectively, in excellent agreement with ACFDT-RPA calcu-
lations of Srolovitz et al. [32].

VI. PROBING THE PHASE DIAGRAM

We consider a model system consisting of a periodic unit
cell with domain walls at x = 1/3 and x = 2/3 separating re-
gions of stacking in the sequence �u1 → �u2 → �u1 (here
the vectors refer to the relative shift between the two layers).
By choosing �u1 and �u2 to have either the same or dif-
ferent valley Chern numbers according to the phase diagram
of Fig. 3, a robust test of the relation between valley Chern
number and stacking vector can be performed. Note that the
valley Chern number, being just the integral of the Berry
curvature at one valley, can be defined for a single bilayer
system of arbitrary stacking. As pointed out in Ref. [33]
at best a marginal version of bulk-boundary correspondence
exists for the valley Chern number since, as shown by these
authors, it does not hold for the bilayer-vacuum interface. The
goal of the present numerical investigation is thus to establish
whether the difference of Chern numbers across a boundary
between arbitrarily stacked bilayer graphene samples is ro-
bustly related to the existence of a boundary state. In Fig. 5
we show band structures that result from a representative set
of choices of �u1,2. The corresponding stacking vectors for
each panel can be read off from the panel label and, as may
be observed, in each case where �u1,2 fall either side of a
metal line, i.e., have different Chern numbers, gapless states
are found in the spectrum. This thus establishes numerically
bulk-boundary correspondence for arbitrarily stacked bilayer
graphene samples.
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FIG. 5. Probing the topological phase diagram of bilayer graphene. Band structures for domain walls created between stacking types
close to the ”metal lines” of the stacking phase diagram separating regions of different valley Chern numbers. The labeling of each panel
corresponds to the stacking vector either side of the domain wall, as indicated in Fig. 3, with the two stacking regions connected by a continuous
change in stacking (”domain wall”) given by Eq. (35) (w = 50a). The band structures in each row are almost identical, but in the third
column gapless states appear. As can be seen from the phase diagram Fig. 3, in this column the stacking vectors fall either side of the
metal line, and hence have different valley Chern numbers, while in the first two columns the stacking vectors fall on the same side of the
metal line.

As a further numerical test, we probe the occurrence of
bound states at nodes of the function sign(|VAB| − |VBA|) in
systems with smoothly modulated stacking potentials. We
consider a unit cell L = 10000a in which we have two partial
dislocations at x = 1/3 and x = 2/3 separating regions of AB
and BA stacking; the stacking sequence through the unit cell
is thus AB→BA→AB, with the domain walls characterized
by the partial Burgers vectors (0,−√

2/3)a and (0,+√
2/3)a.

A smooth stacking variation can then be obtained simply by
allowing the partial width to become comparable to L. In
Fig. 6 we see the band structures (left column) and squared
wave functions and interlayer potentials (right column) for
dislocation widths of w = 50a (a realistic partial dislocation
width), and 1000a, 1250a, and 1500a. For the systems shown
here we have taken B⊥ = 4, a fast decaying potential. This
implies that for the misregistry of the layers seen within the
core of partial dislocation a weak interlayer coupling, as for
hopping vectors much greater in length than the minimal inter-
layer nearest neighbor separation the hopping matrix element
quickly falls to zero. This is the reason for the overall weaker
coupling seen at the center of the cell. While this decay is
significantly faster than in bilayer graphene (the tight-binding
fitting of Ref. [34] corresponds to B⊥ = 0.43) it generates

the crossing of AB and BA potentials that we require for a
numerical test of Eq. (27).

As can be seen from Fig. 6, as the sharp AB→BA→AB
transition of the partial dislocation is broadened to a smooth
modulation, an increasing number of states appear in the gap,
which is almost closed for the w = 1250a system. However,
for each system there are two crossing points of the stacking
potentials |VAB| and |VBA| and at each, as predicted by the
change in topological index, bound states are seen in the right
hand panel. [Note that to clearly associate the bound state
with the crossing of |VAB| and |VBA| in panels (b), (d), and
(h), we show a restricted view of a single crossing point.] For
the 50a domain wall two right moving and two left moving
linear gapless states very similar to those reported in the lit-
erature [34] can be seen; this is expected from bulk boundary
correspondence as the difference in Chern number across the
boundary is 2. As the dislocation broadens the gap fills with an
increasing number of additional states. In each case, however,
exactly at the crossing points of |VAB| − |VBA| bound states are
observed, fulfilling the expectation of Eq. (27). Note that all
states in the gap of the pristine bilayer (100 meV) are shown
in right hand panels, which accounts for the large number of
states in each panel.
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FIG. 6. Bound states at the crossing of VAB and VBA poten-
tials. Left hand panels: Band structures for unit cells containing
two boundaries (at x/L = 1/3, and 2/3) with increasing dislocation
widths of 50a, 1000a, 1250a, and 1500a for panels (a), (c), (e), and
(g), respectively. The length of the unit cell is L = 10000a. Right
hand panels: The red and black lines indicate the corresponding VAB

and VBA potentials. In panel (b) the potentials indicate a sharp domain
wall connecting regions of AB and BA stacking, with a smooth
stacking modulation as w increases, panel (f). The green lines are
the square of the wave function for all states in the gap of the pristine
bilayer (100 meV), see panel (a). Despite the increasingly smooth
modulation, in all cases at the crossing of the VAB and VBA potentials
is seen a series of pronounced bound states. [Note in panels (b),
(d), and (h) a restricted region of the unit cell is shown for ease of
identification of the correspondence of potential crossing with bound
state).

VII. A CHERN INDEX MAP OF THE TWIST BILAYER

Having numerically tested the veracity of the relation be-
tween valley Chern number and stacking vector, we now

address the question as to how the spatial variation of the val-
ley Chern index is impacted by lattice relaxation in minimally
twisted bilayer graphene. For the ideal twist bilayer (row 1 of
Fig. 7, θ = 0.1◦) the stacking potentials show an equal weight
of AB, BA, and AA stacking types in the system (as they
would for any three stacking projections which would produce
a very similar picture but with potential maxima shifted off
the high symmetry positions). Upon lattice relaxation this
potential landscape dramatically alters: In row 2 we see that
the AA potential has all but vanished, remaining only weakly
visible at the dislocation core and nodes, with the AB and BA
potentials describing a mosaic tiling with C3 symmetry. In-
creasing the twist angle smooths the edges of this mosaic, and
increases strength of the AA potential contribution, see row 3
of of Fig. 7 (θ = 0.33◦) and row 4 (θ = 1.02◦). The fourth and
fifth columns of Fig. 7 display the difference |VAB| − |VBA|
and the winding number sign(|VAB| − |VBA|). Remarkably,
we see that the spatial variation of the winding number is
identical for all systems. From the results of Secs. III and
VI, this indicates that the formation of valley-momentum
helical states, which is driven by the changing valley
Chern number, will be impacted only in details by lattice
relaxation.

To examine this we show in Fig. 8 the density of states
and Fermi surfaces for a twist bilayer of θ = 1.02◦ ([p, q] =
[1, 65] in the notation of Ref. [9]). While the density of states
shows pronounced changes close to the Dirac point, the ”val-
ley” between the Dirac point peak and the two shoulder peaks
remain largely unchanged. This low, almost constant DOS in
the valley region corresponds to the gapless topological states,
and as can be seen from the Fermi surfaces, Fig. 8(b), the de-
tails of this band structure remain qualitatively the same, with
some increased hybridization due to relaxation opening the
intersection points of the nested Fermi surface [particularly
seen in Fig. 8(g)].

VIII. DISCUSSION

We have provided a general relation between the topo-
logical invariant of bilayer graphene and the stacking vector
that describes mutual translation of the layers. We find that
the Chern index is given by C = ν(1 − sign(|VAB| − |VBA|)),
with |VAB| and |VBA| the AB and BA components of the
interlayer stacking potential. This generalizes the well known
result that AB and BA stacked bilayer graphene have valley
Chern numbers of 0 and 2 (for the K and K′ valley) and
2 and 0, respectively. A consequence of this generalization
is that the valley Chern number is now associated with a
condition on the interlayer fields rather than the fixed AB and
BA structures, and this allows consideration of the occurrence
of topologically protected states in regions of smooth stacking
variation, such as moirés. As a numerical test of this we have
performed simulations of artificially broadened domain walls
finding bound states at the crossing of the |VAB| and |VBA|,
as would be expected due to the change in value of C at this
point.

With this tool in hand we have examined the valley Chern
number for minimally twisted bilayer graphene, finding that
the underlying spatial dependence of the valley Chern in-
dex is, essentially, independent of atomic relaxation. The
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FIG. 7. Stacking order and Chern index of the twist bilayer. In columns (a)–(c) are shown the absolute values of the VAB, VBA, and VAA

potentials of a series of twist bilayers. The ideal twist bilayer for θ = 0.1◦ ([p, q] = [1, 661] in the notation of Ref. [9] with 1 310 764 atoms
in the unit cell) is shown in panels 1(a)–1(c), and a similar picture would be found for any angle. In rows 2–4 the stacking potentials for the
relaxed twist bilayer at twist angles of 0.1◦, 0.33◦, ([p, q] = [1, 199], 118 804 atoms) and 1.02◦ ([p, q] = [1, 65], 12 676 atoms) are displayed.
Evidently, at small angles the ideal and relaxed structures appear to be two completely different materials. The difference of |VAB| − |VBA|,
however, exhibits a closer resemblance between the different systems [panels 1(d)–4(d)], and the sign of this difference, which determines the
valley Chern number, is essentially identical for all systems [panels 1(e)–4(e)].

topological physics of this material, in particular helical net-
work states, is thus qualitatively similar in the ideal and
relaxed twist bilayer. In fact, the ideal twist geometry can

be expected to have a much ”cleaner” manifestation of the
helical network due to the reduced scattering as the interlayer
coupling contains only three (first star) momentum boosts,

FIG. 8. Density of states and Fermi surfaces for relaxed and unrelaxed minimally twisted bilayer graphene for a twist angle of θ = 1.02◦

in an applied bias of V = 200 meV. Left hand panel: While the density of states changes significantly close to the Dirac point upon atomic
relaxation, the low DOS region between the Dirac point and shoulder peaks remains very similar. Right hand panel: This robustness to
relaxation extends to the Fermi surfaces, which upon relaxation exhibit hybridization at the intersection of the nested Fermi lines and some
change in the nesting vector, but remain qualitatively the same in both ideal and relaxed structures. Note that the energies at which the Fermi
surfaces are evaluated are scaled so that they correspond to the same relative position between the Dirac and shoulder peaks.
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FIG. 9. Phase diagrams obtained from using eigenstates 1 and 4 from Fig. 2 as the basis for deriving the auxiliary Hamiltonian used in
calculation of the Berry connection for arbitrarily stacked bilayer graphene. This choice generates an erroneous dependence of the valley Chern
number on the relative strengths of the AA stacking part of the interlayer coupling, the VAA potential, and the AB/BA stacking part of the
interlayer coupling, VAB and VBA, see Eq. (A7). The relative strengths of these potentials is, in turn, determined by the range of the interlayer
coupling; in the interlayer tight-binding form t⊥ = A⊥e−B⊥δ2

B takes on values 12.0, 4.0, 0.6, and 0.1 in panels (a)–(d), respectively, within each
case the value of A⊥ is chosen such that the direct interlayer coupling (i.e., for atoms coincident in the x-y plane) is 0.4 eV. This corresponds
to a change from a very short range interlayer interaction [panel (a)] to a soft longer range interlayer interaction, panel (d).

as opposed to the continuum of momentum boosts of the
dislocation network.
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APPENDIX: CALCULATION WITH INCORRECT VAA

CONTRIBUTION

As mentioned in the main text, performing the calculation
of Sec. III with eigenstates 1 and 4 from Fig. 2 generates
an erroneous VAA contribution to the Chern number. Here we
present this calculation.

Projecting the Hamiltonian from Eq. (8) onto these basis
states yields the single auxiliary Hamiltonian

H aux =
(

� − |k| O

O∗ −� − |k|
)

(A1)

with the off-diagonal elements given by

O = VAA − ν

2
(VABeiνφ + VBAe−iνφ ). (A2)

Note that the form of the auxiliary Hamiltonian off-diagonal
potential, O, has changed here as compared to the result
obtained in Sec. III. In particular the ”occupied bands” basis
employed here yields a dependence of O on the AA stacking
potential not found when using the full basis, see Eq. (13).
The matrix in Eq. (A1) has eigenvalues

E = −|k| ±
√

�2 + |O|2 =: −|k| ± ξ (A3)
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and eigenvectors

v± = 1√
2

⎛
⎝

√
1 ± �

ξ

±
√

1 ∓ �
ξ

eiθ

⎞
⎠ =:

(
c±

±c∓eiθ

)
. (A4)

We construct new states in a four-dimensional space via
|
±〉 = v±,1 |
1〉 + v±,2 |
4〉 and from these the Berry con-
nection

A± = −i 〈�±〉 ∂φ�± = 1

2

(
ν − θ ′ ± θ ′

ξ

)
(A5)

can be obtained. Tracing over the two occupied bands and
integrating around a fixed k path we end up with the valley
Chern number

C = ν − θ (2π ) − θ (0)

2π
. (A6)

This is formally equivalent to the result given in the main
text. However, the valley Chern number is defined through the
winding number of the off-diagonal elements of the Hamilto-
nian Eq. (A1). In contrast to the off-diagonal elements given
by Eqs. (11) and (12) of the main text, we now have a plus sign
between the VAB and VBA terms and an additional VAA term.

The plus sign does not affect the winding number, however, if
the VAA term becomes sufficiently large, the off-diagonal term
O will no longer encircle the origin during the angular inte-
gral, leading to zero winding number. The winding number is
thus only nonzero if

|VAA| <
1

2
[(|VAB| + |VBA|)2 cos2 φ̃

+ (|VAB| − |VBA|)2 sin2 φ̃]
1
2 . (A7)

Numerical investigation of dependence of this valley Chern
number on stacking shows that the phase diagram depends
on the range of the interlayer coupling (which determines the
strength of the AA stacking potential VAA). As can be seen in
Fig. 9 as the interaction range increases, from a very short
range interaction in panel (a) to a longer range interaction
in panel (d), the magnitude of VAA compared to that of the
AB/BA potentials increases and the patches of zero winding
number grow. If correct, this would imply that the existence
of boundary states would depend on the particular form of the
interlayer coupling, and no such dependence has been found
in our numerical calculations.
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