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Helical and topological phase detection based on nonlocal conductance measurements
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The helical state is a fundamental prerequisite for many spintronics applications and Majorana zero mode
engineering in nanoscopic semiconductors. Its existence in quasi-one-dimensional nanowires was predicted
to be detectable as a characteristic reentrant behavior in the conductance, which in a typical two-terminal
architecture may be difficult to distinguish from other possible phenomena such as Fabry-Perot oscillations.
Here we present an alternative method of helical gap detection free of the mentioned ambiguity, based on
the nonlocal conductance measurements in a three-terminal junction. We find that the interplay between the
spin-orbit coupling and the perpendicular magnetic field leads to a spin-dependent trajectory of electrons and as
a consequence a preferential injection of electrons in one of the arms. This causes a remarkable enhancement of
nonlocal conductance in the helical gap regime. We show that this phenomenon can be also used to detect the
topological superconducting phase when the junction is partially proximitized by an s-wave superconductor.

DOI: 10.1103/PhysRevB.104.125410

I. INTRODUCTION

Spin-orbit (SO) interaction, which couples the spin of
electrons to their momentum, is an essential ingredient of
many quantum devices including spin qubits [1,2], spin-
tronic devices [3–8], Cooper pair splitters [9,10] or Majorana
nanowires [11–13]. In general, this relativistic phenomenon
results from breaking the inversion symmetry which, in
semiconductors, could be either intrinsic, related to the crys-
tallographic structure (Dresselhaus SO coupling [14]), or may
be induced by the confinement potential (Rashba SO coupling
[15,16]) in an electrically controllable fashion. The ability
to control the Rashba SOC component makes it especially
important in spintronics applications and Majorana zero mode
(MZM) engineering where the spin can be altered electrically
via external gates attached to the nanostructure [5,6,17,18].
For this reason, zinc-blende nanowires (NWs) grown along
the [111] direction, which preserves the crystal inversion sym-
metry and makes the Dresselhaus term negligible [19], have
attracted a growing interest in recent years [17,19–24].

In NWs characterized by a large g factor and strong Rashba
SO interaction (InAs or InSb), a helical state may exist at finite
magnetic fields, where electrons moving in opposite direction
have opposite spins [25]. This spin-momentum locking leads
to a characteristic reentrant behavior in the conductance [26]
that, in principle, can be probed in a low-temperature trans-
port measurement. Nevertheless, such measurements turned
out to be challenging and a helical gap detection remained
elusive for more than a decade. Up until now, the signature
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of the helical gap as a decline of conductance to 1e2/h at
the 2e2/h plateau, with increasing magnetic field, has been
reported for hole GaAs/AlGaAs wires [27] as well as InAs
gated nanowires [28]. Note however that even in those ex-
periments, the appearance of conductance reentrance and its
relation to the helical gap existence is not unambiguous and
requires more sophisticated methods to distinguish it from
other possible sources of the conductance drop such as Fabry-
Perot oscillations [19,29,30], Kondo effect [31] or Coulomb
interaction [32]. More selective means for determination of
the helical gap are devised in experiments which probe the
conductance features when varying the magnetic field orien-
tation [33]. Even in this case, however, as shown in Ref. [29],
the smoothness of the electrostatic potential profile between
contacts and wire plays a crucial role and under some cir-
cumstances may mask the effects of SO interaction and the
corresponding reentrant behavior of a conductance.

Although the direct experimental measurement of the
helical gap in NWs seems to be challenging, its pres-
ence has been probed indirectly by measurements of the
signatures of MZM [11]. Those end modes appear at
the boundaries of a quasi-one-dimensional spinless p-wave
superconductor, which is engineered by proximitizing a semi-
conductor NW in the helical state by an ordinary s-wave
superconductor [34–38].

In this paper, we propose an alternative method of helical
gap detection based on nonlocal conductance measurements
in a three-terminal T -shaped junction. We find that in the
presence of a magnetic field perpendicular to a three-terminal
junction, the interplay between the spin-orbit coupling and
the magnetic field results in the crosswise routing of elec-
trons with opposite spins. In the helical state, when the
injected electrons are spin-polarized, this leads to the injection
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FIG. 1. Sketch of the T junction with one arm partially covered
by a superconductor. Electrons are injected into the left lead 1 and
can flow out from the structure by all the leads 1, 2, 3 as electrons
or holes. The yellow shells correspond to a superconductor. In the
sketch, the typical trace of charge in the helical gap regime is de-
picted for the configuration considered in Sec. III B.

preference to one of the arms, which can be detected by a
nonlocal conductance measurement.

Since the presence of the helical gap is a basic requirement
for the topological superconducting phase and MZMs exis-
tence, we also demonstrate that the presented phenomenon
can be used to detect the topological phase transition in the
T junction partially covered by a superconducting shell. The
proposed method constitutes an alternative to local transport
measurements that cannot distinguish trivial from topologi-
cal bound states [39–41]. Superconducting/semiconducting
multiterminal hybrids have been recently fabricated either via
lithography on a two-dimensional electron gas (2DEG) [42]
or nanowire networks [43–45] making our proposal viable
within the current technology.

The paper is organized as follows. In Sec. II the theoretical
model and a description of the considered T -shaped junction
are provided. Our proposal of the helical gap detection on the
basis of a nonlocal conductance is given in Sec. III A, together
with the explanation of the phenomenon standing behind it. In
Sec. III B we show how the proposed T -shaped nanostructure
can be used for topological gap detection. Section IV summa-
rizes our results.

II. THEORETICAL MODEL

We consider a T -shaped device with quasi-one-
dimensional leads with Rashba SO interaction and the
superconducting pairing in one of the arms induced by a
proximity to a superconductor, as depicted schematically in
Fig. 1.

In the presence of the magnetic field B =
(0, 0, B), the Hamiltonian of the system in the basis
(ĉk↑, ĉ†

−k↓, ĉk↓,−ĉ†
−k↑)T is given by

Ĥ =
(

h̄2k2

2m∗ − μ(r)

)
σ0 ⊗ τz + 1

2
gμBBσz ⊗ τ0

+α(σxky − σykx ) ⊗ τz + �(r)σ0 ⊗ τx, (1)

where k = (kx, ky) with kx(y) = −ih̄ ∂/∂x(y), m∗ is the effec-
tive mass, �(r), μ(r) are the spatially dependent pairing and
chemical potential, σi and τi with i = x, y, z are the Pauli ma-
trices acting on the spin and electron-hole degree of freedom,
respectively. The dynamics of the electron spin is additionally
determined by the Rashba SO coupling whose strength is
defined by the parameter α.

In our model, we adopt the following material parame-
ters corresponding to InSb [43]: m∗ = 0.014, g = −50, α =
50 meV nm. For the device with induced superconductivity,
we consider the induced gap � = 0.2 meV as obtained by
proximitizing the semiconductor with a thin Al shell [46].
The numerical calculations are performed on a square lattice
with dx = dy = 5 nm and nanowire width W = 100 nm. To
determine the normal and Andreev transmission probabilities,
we use the Kwant package [47].

In the proposed nanostructure, electrons are injected from
the left lead 1, which acts as the input, and they either flow out
from the device via the upper and lower arms or are reflected
back into the input lead (see Fig. 1).

At zero temperature, the nonlocal conductance Gi j between
the contacts i and j is given by [48,49]

Gi j = e2

h

(
T ee

i j − T he
i j − δi jNi

)
, (2)

where Ni is the number of transverse modes in the lead i
and T ee

i j , T he
i j are the normal (electron-electron) and Andreev

(electron-hole) transmission amplitudes corresponding to the
situation when the electron is injected into the lead j and flow
out from the device as an electron or hole through the lead
i. For a nonsuperconducting system, the formula (2) reduces
to the standard Landuer-Büttiker formula for a three terminal
device [50] with Gi j = e2

h T ee
i j .

III. RESULTS

We shall now discuss the nonlocal conductance in the T -
shaped nanostructure separately in the case with and without
the superconducting shell. We put particular emphasis on the
detection of the helical gap, which results from the interplay
between the Rashba SO coupling and the external magnetic
field. We then discuss the possible detection of the topological
phase by a nonlocal conductance measurement.

A. Helical gap detection

Let us first consider the T -shaped junction as in Fig. 1
without the superconducting shell. For the considered nanos-
tructure we set μ = 0 and calculate the nonlocal conductance
as a function of the incoming electron energy [see Fig. 2(a)].
In nanowires with strong Rashba SO coupling, the spin-
Zeeman effect of the perpendicular magnetic field opens the
helical gap. We illustrate this by plotting the dispersion re-
lation E (kx(y) ) for the horizontal (vertical) system lead as
presented in Fig. 2(b). In this specific energy range, the spin
of an electron is directly coupled to its momentum, so that
in particular for one-dimensional nanowires, electrons flow-
ing in opposite directions possess opposite spins. As seen in
Fig. 2(a), for the energy range corresponding to the helical
gap [compared with panel (b)], the nonlocal conductance G21
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FIG. 2. (a) Local G11 and nonlocal G21(31) conductance as a func-
tion the incoming electron energy E . In the helical gap energy range,
G21 (red line) is dominant due to the injection of electrons into the
upper arm, preferred due to the interplay between the SO interaction
and the Zeeman effect. (b) Dispersion relations (two lowest in energy
subbands) E (kx(y) ) in the horizontal (vertical) lead. Green dots in
panel (b) correspond to the points in panel (a). Red dashed line marks
the value of energy E chosen for a further analysis. Panels (c) and
(d) presents the same as (a) and (b) correspondingly, but with the
inclusion of the orbital effects of the magnetic field. We can see that
orbital effects does not affect significantly the results. Here, we set
μ = 0, B = 0.15 T.

dominates over other conductance components. This is a con-
sequence of the preferred electron injection to the upper arm,
clearly seen on the current map in Fig. 3(a). Note, however,
that the preference does not result from the orbital effects

of the magnetic field and the corresponding Lorentz force,
which are not included here. Results with the inclusion of the
orbital effects [51] are presented below in panels Figs. 2(c)
and 2(d), and do not exhibit any significant difference with
respect to those depicted in panels (a) and (b). For this reason,
henceforth we neglect the orbital effects of the magnetic field.

The injection preference presented in Fig. 3 is a conse-
quence of the combined effects of the Rashba SO coupling and
the magnetic field and can be explained based on the Heisen-
berg equation, according to which the second derivative of the
position operator r̂, classically interpreted as a force, can be
expressed as

F̂(t ) = m∗ d2r̂
dt2

= m∗

h̄2 [Ĥ , [r̂, Ĥ ]]

= m∗

h̄2 {2α2(ky,−kx )σz − gμBBzα(σx, σy)}. (3)

Since the force operator F̂ depends on the electron spin, which
is an internal quantum degree of freedom, it does not have a
classical analog. The first term is related to the well-known
internal spin Hall effect [52] whereas the second corresponds
to the interplay of the perpendicular magnetic field with the
Rashba SO coupling. The physical meaning, i.e., the mea-
surable prediction is contained in the quantum-mechanical
expectation value, defined as 〈F̂(t )〉 = 〈�(t = 0)|F̂(t )|�(t =
0)〉, with the initial spinor �(t = 0) = (ψ↑

e (t = 0),
ψ↓

e (t = 0))T .
For the sake of simplicity, let us now reduce the system to

one-dimensional nanowires connected in the T -shape geome-
try. We assume that the electron with energy E = 0 from the
helical gap range is injected into the input lead 1 within the
quantum state corresponding to +kx,

�1D
+kx

= 1
√

2
(
�2

Z + α2k2
x

) 1
4

⎛
⎝

√(
�2

Z + α2k2
x

) 1
2 − �Z√(

�2
Z + α2k2

x

) 1
2 + �Z

⎞
⎠eikxx,

(4)

where �Z = 1
2 gμBB is the Zeeman energy. It flows through

the horizontal NW with the force expectation value 〈F̂(t )〉 =
0, characteristic for all eigenstates. At the fork of the T junc-
tion, the electron in the state �1D

+kx
(t = 0) is injected into the

vertical NW for which �1D
+kx

(t = 0) is not an eigenstate. As a

FIG. 3. (a) Current and (b) electron density in the T junction with a clear preference of injection into the upper arm. Panels (c)–(e) present
the spin densities sx , sy and sz, respectively. Results for E = 2.45 meV and B = 0.15 T.
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FIG. 4. (a) Nonlocal conductance asymmetry defined as G21 −
G31 vs energy of the incoming electron and the magnetic field B.
Panel (b) presents the nonlocal conductance G21(E ) and G31(E )
calculated without SO coupling at B = 0.3 T.

result, 〈F̂(t )〉 is no longer zero and takes the form

〈F̂(t )〉 = − 2m∗�Zα2

h̄2
√

�2
Z + α2k2

x

(ky, kx ) (5)

with the nonzero y component pushing electrons into the
upper arm (note that �Z < 0 as we assume g = −50). Al-
though 〈F̂(t )〉y increases linearly with the magnetic field, it
is nonzero only when the SO coupling is present. Indeed, as
shown in Fig. 4(b), for α = 0 and B 	= 0 electrons are injected
symmetrically in both the junction arms leading to the equal
nonlocal conductances G21 and G31.

The strong injection preference is characteristic for the en-
ergy range corresponding to the helical gap when the electron
in the helical state is injected into the system with a single
well-defined k vector. In this energy range, the backscattering
requires the spin flip, which is energetically less favorable
than nearly half spin rotation needed for the injection into
the upper arm; see Fig. 3. This, apart from the SO induced
force (5), additionally enhances the observed electron injec-
tion preference.

For energies outside the helical gap range, electrons can
flow in the horizontal NW within two states defined by differ-
ent wave vectors, characterized by different spin orientations.
As such, they are injected into the opposite T -junction arms
or are backscattered. As a result, the dominance of the G21

conductance is observed solely within the parameter regime
(B, E ) corresponding to the helical gap. Importantly, note that
G21 is not exactly equal to G31 also outside the helical gap
range, which is a result of nonperfect antiparallel alignment of
electron spins induced by the time-reversal symmetry break-
ing driven by the magnetic field. The asymmetry in this case
is, however, much weaker.

The magnetic field dependence of the nonlocal con-
ductance asymmetry defined as G21 − G31 is presented in
Fig. 4(a) and clearly indicates the parameter range where the
helical gap occurs.

B. Topological phase detection

As the nonlocal conductance measurement in the T -shaped
junction clearly indicates the helical gap range, we now

analyze if the same effect can be used to detect the topological
superconducting phase which requires the helical gap exis-
tence [36]. For this purpose, we consider the system depicted
in Fig. 1 with the superconducting shell covering the fork. The
superconducting shell induces electron pairing underneath, in
the semiconductor nanowire, and under appropriate condi-
tions the system undergoes the topological phase transition
resulting in zero-energy Majorana states localized at the ends
of the superconducting section. In this configuration, electrons
from the horizontal nanowire are injected directly into the
superconducting vertical arm where they can be reflected as
holes or transmitted to the leads 2 and 3 as holes or elec-
trons. We assume that the length of the superconducting shell
LSC < ξ , where ξ is the superconducting coherence length.
Note that if the chemical potential is situated in the helical
gap in the superconducting nanowire, needed for a topological
phase transition, we should observe the nonlocal conductance
asymmetry in analogy to Fig. 4(a).

As previously, the electron is injected into the nanostruc-
ture from the lead 1. If its energy lies in the helical gap at the
fork, it turns left into the upper arm due to the mechanism
described above. Here, if E < � it undergoes the Andreev
reflection as a hole with opposite spin [cf. Fig. 5]. The re-
flected hole is transmitted to lead 3. Note that due to the finite
length of the proximitized region, the Andreev reflection is
not perfect, and there is a finite probability for an electron
to escape through the lead 2. This process results in nonzero
values of the transmission amplitudes T ee

21 , T he
31 (and T ee

11 due
to the electron reflection from the fork) as can be seen around
μ = 2.45 meV in Fig. 6(a). This in turn results in the pro-
nounced difference of the nonlocal conductances G21 and G31

as presented in Fig. 6(b).
On the contrary, when the system is in a trivial regime (i.e.,

there is no helical gap in the normal leads and no topological
gap in the proximitized region) obtained for μ = 4 meV, the
electron current is distributed almost symmetrically among
leads 2 and 3. The Andreev reflection is marginal as can be
seen in Figs. 5(c) and 5(d). As a result, the corresponding non-
local conductances G21 and G31 take similar values depicted
in Fig. 6(b) with a slight difference induced by the time re-
versal symmetry breaking similarly as for the system without
superconductor. The above shows that the directional electron
flow is inherited by the superconducting system provided that
it is in the topological superconductivity phase.

So far, we assumed that the T junction can be regarded
as a homogeneous system with a constant chemical poten-
tial across the nanostructure. The electron injected into the
horizontal nanowire within the helical state remains in this
helical gap energy range also when it flows through the
vertical arm. Note however, that in practice, the assumption
of the constant μ throughout the nanotructure is difficult
to fulfill experimentally, as the electronic structure of the
vertical nanowire can be affected by the presence of the
superconducting shell. Calculations presented below, with
different values of chemical potential in the injection termi-
nal 1 and the rest of the nanostructure (vertical nanowire)
in fact allow us also to distinguish whether the directional
transport in the system with the superconducting shell stems
from the directional electron injection induced by the he-
lical state in the injection lead, as described in Sec. III A,
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FIG. 5. (a), (c) Electron and (b), (d) hole current density for
B = 0.4 T. In (a), (b) the chemical potential in the whole system
is set to μ = 2.45 meV such the normal leads are in the helical
regime, while the proximitized region is in the topological state. In
(c), (d) μ = 4 meV when the proximitized region is in the trivial
range and there is no helical state in normal leads. Dashed rectangles
mark the superconducting shell.

FIG. 6. (a) Zero energy transmission coefficients and (b) the lo-
cal and nonlocal conductance as a function of the chemical potential
for the T -shaped junction partially proximitized by a superconductor.
Results for B = 0.4 T. Gray horizontal lines present values of μ

chosen for the analysis; see Fig. 5.

FIG. 7. (a) Zero-energy transmission coefficients and (b) the lo-
cal and nonlocal conductance as a function of the chemical potential
μSC in the proximitized region while in the rest of the system it is
kept constant at μ = 2.45 meV. Results for B = 0.4 T.

or topological superconductivity in the vertical nanowire
itself.

In Fig. 7(a) we present the transmission coefficients for a
system where in the normal part we keep a constant value
of the chemical potential μ = 2.45 meV and vary only the
chemical potential μSC in the superconducting region. In the
range of μSC, in which the proximitized part is in the topolog-
ical phase, we again observe pronounced T ee

21 , T he
31 amplitudes

which results in significant differences in G21 and G31 as
presented in Fig. 7(b).

In Fig. 8, the asymmetry of the zero energy nonlocal con-
ductance G21 − G31 is clearly apparent in the case (a) when
the chemical potential is assumed to be constant throughout
the nanostructure or even when (b) the chemical potential
in the horizontal nanowire is fixed beyond the helical gap
at the energy μ = 4 meV. Note that in the latter case, there
are two spin bands available in the input lead 1. As predicted
from the analytical model, Eq. (5), the expectation value of the
force depends on kx at which the electron is injected into the
vertical nanowire, which is different for two spin-orbit split
bands preserving the asymmetry of the nonlocal conductances
G21 and G31.

In Fig. 9 we present the asymmetry of the zero-energy non-
local conductance G21 − G31 calculated for a fixed B = 0.4 T
as a function of the chemical potential in the input nanowire
μ and in the superconducting vertical nanowire μSC. The
helical gap range in the input nanowire and the topological gap
range in the superconducting nanowire are marked by dashed
vertical and horizontal lines, respectively.

As we see, the difference in nonlocal conductance is a clear
hallmark of the presence of a topological phase transition. The
conductance asymmetry is obtained regardless of the chemical
potential in the horizontal lead and even if the magnetic field
is switched off in the horizontal nanowire, preventing helical
gap creation in it.

IV. SUMMARY AND CONCLUSIONS

Using the scattering matrix approach, we have analyzed
transport properties of a T -shaped junction characterized by
the strong SO coupling. In the presence of a perpendicular
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FIG. 8. Zero-energy nonlocal conductance asymmetry G21 −
G31 as a function of the chemical potential μ and the magnetic field
B. Results for the case (a) when the chemical potential is assumed to
be constant throughout the nanostructure and (b) when the chemical
potential in the horizontal nanowire is fixed at the energy μ = 4 meV,
beyond the helical gap regime. Black lines denote the topological
phase transition calculated for a single nanowire with parameters
corresponding to the superconducting part of the T junction.

magnetic field, we have found that electrons injected with
energy in the helical gap regime are turned into the upper
arm leading to the remarkable enhancement of the nonlocal
conductance. This behavior has been explained within the
Heisenberg equation as resulting from the existence of a spin-
dependent force which results from the interplay between
the SO interaction and the magnetic field. The force pushes
electrons with opposite spins into the opposite sides of the
nanowire. Specifically, in the helical gap range, when the
electron spin is bound to its momentum, the electrons are
preferably injected into one of the arms of the T junction.
This, as proposed, allows for detection of the helical gap
regime by employing nonlocal conductance measurements.
As we noticed, the proposed method is free of possi-
ble misinterpretations resulting from Fabry-Perot oscillations
present in the two-terminal architecture and local conductance
measurements.

FIG. 9. Nonlocal conductance asymmetry G21 − G31 as a func-
tion of the chemical potential in the input horizontal nanowire μ and
in the superconducting vertical nanowire μSC. Results for B = 0.4 T.

Next, by partially covering the T junction by a supercon-
ducting shell, we analyze if the same phenomenon can be
useful in topological phase detection. We have shown that
the nonlocal conductance measurements in the T -shaped su-
perconducting junction clearly indicate the topological phase
transition even if the chemical potential in both the vertical
and horizontal nanowire is not perfectly adjusted.

Note that the calculations presented in the paper do not
include the orbital effects. Although in Sec. III A we have
shown that for the considered magnetic field the orbital effects
do not play an important role, the investigation of their influ-
ence on the superconducting shell and the topological phase
is beyond the scope of this paper and was presented in detail
in one of our previous papers [53,54]. The same regards the
Dresselhaus interaction for which we derived, for its linear
form, that the expectation value of the force is also nonzero
and has an opposite direction to that induced by the Rashba
term. The Dresselhaus SOC, however, opens the wide and
rich spectrum of analysis including different orientation of
nanowires with respect to the crystallographic structure, cubic
term or the interplay of the Rashba and Dresselhaus SOC. In
this paper we rather concentrate on the zinc-blende NW in
the (111) direction for which the Dresselhaus interaction is
neglected due to the inversion symmetry.

As a final remark, note that the theoretical predictions
presented in this paper should be verifiable within the current
state of the art epitaxial technology, which allows for the
fabrication of high-quality T -shaped, X -shaped or hashtag
nanowire networks (also with superconducting shells) and
performing precise conductance measurements [43,44].
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