
PHYSICAL REVIEW B 104, 125402 (2021)

Electronic and magnetic properties of many-electron complexes in charged
InAsxP1−x quantum dots in InP nanowires
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We present here a microscopic theory of electronic complexes in charged InAsxP1−x quantum dots in InP
nanowires with a hexagonal cross section and determine the potential use of an array of such quantum dots as a
synthetic spin chain for the possible construction of a topological qubit. The single-particle energies and wave
functions are obtained by diagonalizing a microscopic atomistic tight-binding Hamiltonian of multiple quantum
dots in the basis of sp3d5s∗ local atomic orbitals for a given random distribution of arsenic (As) vs phosphorus (P)
atoms. The conduction band electronic states are found grouped into s, p, and d quantum dot shells. For a double
dot, the electronic shells can be understood in terms of interdot tunneling despite the random distribution of As
atoms in each quantum dot. The single- and double-dot structures were charged with a finite number of electrons.
The many-body Hamiltonian including Coulomb electron-electron interactions was constructed using single
atomistic particle states and then diagonalized in the space of many-electron configurations. For a single dot
filled with Ne = 1–7 electrons, the ground state of a half-filled p-shell configuration with Ne = 4 was found with
total electronic spin S = 1. The low-energy spectrum obtained using exact diagonalization of a Hamiltonian of a
charged double dot filled with Ne = 8 electrons, i.e., half-filled p shells in each dot, was successfully fitted to the
Hubbard-Kanamori and antiferromagnetic Heisenberg spin-1 Hamiltonians. The atomistic simulation confirmed
the potential of InAsP/InP quantum dots in a nanowire for the design of synthetic spin chains.
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I. INTRODUCTION

There is currently interest in designing quantum systems
for quantum technologies, including quantum computation
and quantum communication. This includes semiconductor
quantum dots containing single- and multiple-electron com-
plexes, with quantum information embedded in electron spin
or encoded in multielectron configurations [1–15]. The single
and double quantum dots have also been explored for the
generation of single and entangled photon states [16–18],
photon cluster states [19], lasers [20–22], and quantum dot
photodetectors [23,24].

Here we focus on designing synthetic spin-1 chains us-
ing many-electron complexes in arrays of quantum dots
embedded in semiconductor nanowires [10,25,26]. Many-
electron complexes in self-assembled [26–30] and etched
quantum dots [31,32] have already been extensively investi-
gated. Here we discuss InAsP quantum dots in InP nanowires
[17,25,26,33,34]. The electronic properties of these quantum
dots can be designed by controlling the position, size, height,
and arsenic concentration. The dots have a hexagonal disk
geometry and are grown without a wetting layer using vapor-
liquid-solid epitaxy, with a relatively low concentration of
arsenic atoms replacing the phosphorus atoms [35]. As is the
case with self-assembled dots, these dots suffer from intrinsic
atomistic disorder. Despite the disorder, the conduction band
states form electronic shells [34] that strongly resemble har-
monic oscillator states observed in self-assembled quantum

dots [36–38]. The effect of disorder results in the effective
quantum dot lateral anisotropy and plays a role in the re-
moval of degeneracies of electronic shells. When engineering
the total spin of the many-electron complexes, the degenera-
cies play an important role which leads to maximal spin at
half-filled shells. Here we show that the spin-1 ground state
survives atomistic disorder and that the different realizations
of disorder on two vertically coupled quantum dots can be still
understood in terms of interdot tunneling and the formation of
bonding and antibonding electronic states. The many-electron
complexes corresponding to half-filled p shells can be under-
stood in terms of Hubbard-Kanamori and antiferromagnetic
Heisenberg Hamiltonians for coupled spin-1 particles.

The problem of many-electron complexes in vertically cou-
pled quantum dots has already been investigated using the
effective mass model where atomic disorder was neglected
and the Coulomb interactions were derived microscopically
[10,31,39–41]. The atomistic description of an InAsP quan-
tum dot in an InP nanowire and the many-exciton complexes
were previously analyzed by Zielinski [42] and by some of us
[34,43–45].

Here, we use a realistic tight-binding model consisting
of millions of atoms with twenty (spds∗) orbitals each to
compute the single-particle states, with strain, and the config-
uration interaction method to compute the many-body states
of Ne = 1 − 8 electrons in single and double vertically cou-
pled InAsxP1−x quantum dots in an InP nanowire in the
wurtzite phase.
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We demonstrate that a single quantum dot containing
Ne = 4 electrons in a half-filled p-shell configuration corre-
sponds to a spin-1 ground state. Consequently, a chain of
two vertically coupled quantum dots, each with a half-filled p
shell, was found to have a low-energy electronic spectrum that
resembles two antiferromagnetically coupled spin-1 particles.
The atomistic disorder in the dots leads to a variation of
tunneling matrix elements and spin-spin exchange coupling
constants. The microscopic theory was later used to obtain pa-
rameters of a simplified Hubbard-Kanamori and a Heisenberg
Hamiltonian. The Hubbard-Kanamori parameters obtained
from atomistic calculations enable the description of larger
chains and thus the investigation of a synthetic spin-1 Haldane
material.

The paper is organized as follows. First, we briefly dis-
cuss the tight-binding and configuration interaction methods
that are used to simulate the electronic properties of the
quantum dots. We then describe the electronic properties of
electronic complexes in a single InAs quantum dot in an InP
nanowire, where we discuss the single-particle and many-
body electronic states, and determine the spin of the ground
state of the half-filled p shell to be S = 1. Next, we provide
an analysis of the electronic properties of electrons in two
vertically coupled quantum dots. Similar to the analysis of a
single quantum dot, here we determine whether two quantum
dots with half-filled p shells behave as two coupled spin-1
particles. This is followed by a description of the effective
Hubbard-Kanamori model. Here, we compare the results of
the Hubbard-Kanamori model with the Heisenberg chain and
the atomistic tight-binding plus configuration interaction mi-
croscopic models. Finally, we discuss the results of both the
Hubbard-Kanamori and microscopic models in the context of
a synthetic Heisenberg chain.

II. MICROSCOPIC THEORY OF CHARGED InAsxP1−x

QUANTUM DOTS IN InP NANOWIRES

The microscopic theory of charged InAsP quantum dots in
InP nanowires begins with a definition of atomistic structure
followed by the computation of strain, construction of an
atomistic tight-binding Hamiltonian from ab initio methods,
and obtaining the single-particle states and energy spectrum.
This is followed by the computation of Coulomb matrix
elements constructed with the tight-binding atomistic single-
particle states. We next introduce Ne additional electrons
and construct many-body configurations and their interaction
Hamiltonian to obtain a many-body spectrum by exact diago-
nalization [34,43,44]. Analysis of the spectrum and electron
configurations then leads to our understanding of the elec-
tronic and magnetic properties of these nanostructures.

The single-particle states of a single and a double
InAsxP1−x quantum dot embedded in an InP nanowire are
expanded in terms of local atomic orbitals as

〈r|i〉 =
∑

k

∑
α

Cikαφα (r − Rk ), (1)

where φα (r − Rk ), the orbital α of atom k at location Rk , is
assumed to have the form

φα (r) = Arae−brY m
l (θ, ϕ)χσ . (2)

Each atomic orbital has a radial component which is
approximated as a Slater orbital with material-dependent pa-
rameters a and b, a spherical harmonic Y angular component,
spinor component χσ , and normalization constant A.

Next the tight-binding Hamiltonian in the basis of Norb =
20 sp3d5s∗ local atomic orbitals is constructed as

HT B =
Na∑

i=1

Norb∑
α=1

εiαc†
iαciα +

Na∑
i=1

Norb∑
α,β=1

λiαβc†
iαciβ

+
Na∑
i=1

nn(i)∑
j=1

Norb∑
α,β=1

tiα jβc†
iαc jβ. (3)

Here εiα is the on-site energy, the spin-orbit interaction is λiαβ ,
and the tunneling matrix element is tiα jβ , whereby the Roman
indices denote atom and Greek indices denote atomic orbital.
The values of these tight-binding parameters for the InAsP
quantum dot nanowires are taken directly from Ref. [34].
Determination of these parameters involves fitting (3) to an
ab initio DFT-based band structure as discussed in detail in
Refs. [34,44,45]. We next introduce Ne electrons into our
quantum dot.

The behavior of multielectron complexes is described by
the many-body Hamiltonian

HMB =
∑

i

Eic
†
i ci + 1

2

∑
i jkl

〈i j|V |kl〉c†
i c†

j ckcl , (4)

where the indices i refer to single-particle states and 〈i j|V |kl〉
are the Coulomb matrix elements.

Since the nanostructures under investigation contain sev-
eral millions of atoms, necessary approximations to the
Coulomb matrix elements are made in order to maintain
computational feasibility. First, only two center integrals
are computed, i.e., integrals that only involve scattering
of electrons on one or two atoms, and second, only on-
site and long-range terms are included, where 〈i j|V |kl〉 =
〈i j|V OS|kl〉 + 〈i j|V LR|kl〉. The on-site terms, given by

〈i j|V OS|kl〉 = e2

4πε0εOS

∑
a∈Na

∑
α,β,γ ,δ

C∗
iaαC∗

jaβCkaγClaδ

×
∫

φ∗
α (r1)φ∗

β (r2)φγ (r2)φδ (r1)

|r1 − r2| d3r1d3r2,

(5)

only contain integrals corresponding to scattering of orbitals
on a single atom a. Due to the dependence of the dielectric
constant on distance [46,47], the on-site dielectric constant
εOS is taken to be 1.

The other significant contributions to the total Coulomb
matrix element are the long-range terms, given by

〈i j|V LR|kl〉 = e2

4πε0εLR

∑
a

∑
b�=a

∑
αβ

C∗
iaαC∗

jbβCkbβClaα

× 1

|Ra − Rb| , (6)

where the electron-electron Coulomb interactions are
screened by bulk dielectric constant εLR. Since the electrons
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(b)(a)

FIG. 1. (a) Top and side cross section of the quantum dot nanowire containing about 380 000 atoms. The diameter of the quantum dot is
18.2 nm and the thickness is 4.1 nm. The diameter of the nanowire is 28.2 nm and the height is 13.5 nm. (b) Single particle spectrum (left) and
charge densities (right). The py charge density is located slightly higher than the px charge density to illustrate that the energy of the py state is
slightly higher than the px energy.

located at atoms a and b are far apart, they can be treated
as point charges which eliminates the need to compute the
integrals explicitly. Furthermore, the only terms that survive
the orthogonality relation between local atomic orbitals
are terms where the atomic orbital angular momentum is
conserved.

With the Coulomb matrix elements in place, the many-
body states |ν〉 of Ne electrons can be expanded in electronic
configurations k as |ν〉 = ∑

k Aν
k |k〉. The many-body config-

urations, |k〉 = ∏
i c†

i |0〉, are written as Slater determinants
constructed from the finite number of single-particle orbitals
i. Next, the matrix elements 〈q|H |k〉 of the many-body Hamil-
tonian are constructed in the space of configurations. The
ground and excited states of the electronic complex are com-
puted by diagonalization of the many-body Hamiltonian (4).

III. ELECTRONIC STATES OF A SINGLE InAsxP1−x

QUANTUM DOT IN InP NANOWIRE

A. Single-particle levels of a single InAsxP1−x quantum
dot in InP nanowire

Here we discuss the single-particle spectrum of a single
quantum dot in a nanowire. We start with an InP nanowire
and define a quantum dot volume. Within this volume we
randomly replace P atoms with As atoms on the InP lat-
tice, resulting in average concentration of As of 10%. The
resulting strain is obtained by moving As atoms to mini-
mize the total elastic energy. With the equilibrium position
of atoms obtained, we construct a tight-binding Hamiltonian.
Diagonalization of the tight-binding Hamiltonian (3) gives the
single-particle spectrum of an InAs0.1P0.9InP quantum dot in
an InP nanowire. Figure 1(a) shows the random distribution of
the As atoms in the quantum dot. Despite this random distribu-
tion, the single-particle states, shown in Fig. 1(b), are grouped
into s, p, and d quantum dot electronic shells, which are not to

be confused with the individual atomic orbitals as the quantum
dot shells are localized throughout the whole quantum dot.
However, due to the lateral asymmetry of the dot caused by
random distribution of As atoms, the two states of the p shell,
denoted as px and py, are not degenerate, but are split by an
energy difference of � ≈ 0.84 meV. The splitting of the p
shell is much smaller than the energy separation of different
electronic shells, e.g., s-p and p-d shells with splitting of the
order of 30 meV. Hence the p shell is approximately twofold
degenerate as is the case with previously investigated effective
mass models [14].

B. Many-electron complexes in a single InAsxP1−x quantum
dot in InP nanowire

We now turn to many-electron complexes in an InAsxP1−x

quantum dot in an InP nanowire. The many-body spectrum of
an electronic complex is obtained through the diagonalization
of the many-body Hamiltonian (4) in a basis consisting of
all possible configurations built with a set of single-particle
states. In this work, we retain 40 conduction band states. This
basis already assured converged results for multiexciton states
in a similar quantum dot [34]. For example, for Ne = 4 elec-
trons with total spin S = 0 the Hilbert space consists of 85 048
configurations while for S = 1 we find 85 325 configurations.
The overlap of the triplet configuration shown in Fig. 2 with
the numerically obtained ground state is found to be high, with
a value of 0.97. In Fig. 2 we show schematically configura-
tions with significant overlap with the correlated ground state
of the electron complexes consisting of Ne = 1–8 electrons.

C. Coulomb blockade spectroscopy

The many-body effects manifest themselves in the
Coulomb blockade spectroscopy [2,7,25,48,49]. To determine
the number of electrons Ne in the quantum dot and the effects
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FIG. 2. Top: Total spin S for corresponding electronic com-
plexes. Bottom: Coulomb blockade spectrum of many-body ground
states as a function of relative back gate voltage where V0 =
1.483 meV is the voltage corresponding to single-electron occupancy
in the quantum dot, with chemical potential set at the top of the
valence band.

of their interactions, source and drain leads can be attached
and current can be measured as a function of back gate voltage
Vg controlling the number of electrons in the quantum dot.

The current flows when the chemical potential of the quan-
tum dot μ equals the chemical potential of the leads resulting
in a Coulomb blockade spectrum [2,7]. Hence the Coulomb
blockade spectrum as a function of back gate voltage di-
rectly measures the many-body Ne and Ne − 1 electron ground
states, as

eVg = E (Ne) − E (Ne − 1). (7)

We have computed the chemical potential of the quantum
dot, the Coulomb blockade spectrum, for different electron
numbers Ne. As shown in the Coulomb blockade spectrum of
the single dot in Fig. 2, there are large gaps in between the
second and third peaks and between the sixth and seventh
peaks [25,27,32,49]. The first gap is due to the s-p shell
energy splitting and the second large gap is due to the p-d
shell energy splitting. The remaining variations in Coulomb
blockade peaks reflect electronic interactions, both exchange
and correlations, in degenerate shells [27].

Also shown in Fig. 2 is the total electronic spin S of the
ground state as a function of Vg. The oscillatory behavior
between S = 0 and S = 1 is indicative of Hund’s rule be-
ing satisfied. It is shown in the Coulomb blockade spectrum
(Fig. 2) that an Ne = 4 quantum dot with half-filled p shells
generates a spin-1 ground state. Further analysis of the Ne = 4
half-filled p-shell spectrum is necessary in order to understand
the electronic and magnetic properties of the InAsP quantum
dot nanowire.

IV. ELECTRONIC AND MAGNETIC PROPERTIES
OF A HALF-FILLED p SHELL

The evolution of the energy spectrum of the Ne = 4 com-
plex in a single dot as a function of increasing number of

different electronic configurations is shown in Fig. 3. We start
with two almost degenerate px, py orbitals. We place two
electrons, one with spin up and one with spin down, onto the
p shell as shown in Fig. 3(a). Next, we form a spin triplet
configuration with Sz = 0, schematically shown here with
both spins up, and a spin singlet configuration. The exchange
interaction Vex is then turned on. This lowers the energy of
spin triplet configuration compared to singlet configuration
by 2Vex, as shown in Fig. 3(b). Finally, we add two doubly
occupied configurations, where two electrons, spin up and
down, occupy either the px or py orbital as shown in Fig. 3(c).

We next turn on interaction among all singlet singly and
doubly occupied configurations. The antisymmetric combi-
nation of doubly occupied configurations remains decoupled
from other singlet configurations but a symmetric combina-
tion of doubly occupied configurations couples with singly
occupied one. This lowers the energy of mostly doubly oc-
cupied configurations and increases the energy of mostly
singly occupied configurations as shown in Fig. 3(d). For the
doubly occupied singlet configuration, the doubly occupied
configurations contribute 89% to the total wave function and
the singly occupied configurations contribute about 6%. The
remaining 5% comes from other contributions, such as ones
where the d state is occupied. For the singly occupied sin-
glet, contributions are interchanged, where 6% of the wave
function comes from doubly occupied configurations and 89%
comes from singly occupied configurations. So retaining only
the singly and doubly occupied configurations on a p shell
is a reasonable approximation. Finally, the gap � separating
the triplet and singlet configurations is reduced from � = 2Vx

to � = Vx − δ where δ represents the correlation contribu-
tion. The important conclusion is that the triplet configuration
remains the ground state of the Ne = 4 electron complex in
accordance with Hund’s rules. Since the ground state of a
single quantum dot is shown to behave as a spin-1, the next
step is to determine whether two quantum dots act as two
coupled spin-1’s.

V. MICROSCOPIC THEORY OF TWO COUPLED
CHARGED InAsxP1−x QUANTUM DOTS IN InP NANOWIRE

We now turn to two coupled charged InAs quantum dots in
InP nanowire. The double-dot system consists of two quantum
dots with the same dimensions and concentrations as the sin-
gle quantum dot, with a diameter of 18.2 nm and a thickness
of 4.1 nm. Cross sections of the two dots in a nanowire with an
interdot distance of 5.4 nm are shown in Fig. 4(a). The lower
panel shows the probability density of the s and two p orbitals.
The z-y cross section (bottom panel) shows that the p orbitals
on the two dots form molecular π bonds. This is due to the
tunneling between the two dots which gives rise to eigenstates
that are a linear combination of the local quantum dot orbitals
[50]. This is seen more clearly if the dots are approximated as
sites containing a local harmonic orbital (LHO) each, with |B〉
being the bottom dot orbital and |T 〉 being the top dot orbital.
If we assume the on-site energy is the same for both sites, then
the Hamiltonian in the BT basis of px (py) orbitals is given by

H2−site =
[

0 −t
−t 0

]
, (8)
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FIG. 3. (a) Schematic of configurations on the half-filled p shell. Two electrons occupy the px and py orbitals. (b) Schematic of the
low-energy spectrum containing only singly occupied configurations. The ground state is a triplet and the excited state is a singlet. The splitting
is twice the exchange energy Vx . (c) The low-energy spectrum including doubly occupied configurations. (d) The low-energy many-body
spectrum from the atomistic simulation. The splitting between the ground state and first excited state is the Coulomb interaction energy Vee.

where t is the tunneling matrix element mixing the two sites.
The eigenstates are then symmetric |S〉 = 1√

2
(|T 〉 + |B〉) and

antisymmetric |AS〉 = 1√
2
(|T 〉 − |B〉) linear combinations of

T and B orbitals, with energies −t and t , respectively. The
symmetric-antisymmetric splitting is thus 2t .

FIG. 4. (a) Cross sections of the double-dot nanowire structure
containing about 435 000 atoms. The As atoms are blue and both the
In and P atoms are yellow. (b) Charge densities of the single-particle
states.

For the atomistic double quantum dot in a nanowire, the
single-particle states come in symmetric-antisymmetric pairs
as well, where each energy level is labeled with the corre-
sponding orbital [39,51]. As is the case with the single-dot
nanowire, the charge probability densities for the double dot
exhibit s, p, and d symmetry as seen in Fig. 4(b). The tunnel-
ing strength for given orbitals on the two dots, which is half
of the symmetric-antisymmetric energy splitting, decreases
exponentially with respect to interdot distance. The tunneling
matrix element for p-shell orbitals as a function of interdot
distance is defined as |t | = EA,px − ES,px . Using the least-
squares method, the tunneling matrix element dependence on
interdot distance was obtained from atomistic energy split-
tings with an error of about χ2 = 0.06 meV2. The exponential
dependence of the tunneling strength on interdot distance
allows for tuning of the tunneling matrix element. In addition
to interdot tunneling, electron-electron interactions between
the dots must be taken into account in order to understand the
properties of the half-filled p-shell configuration of the double
dot.

VI. ELECTRONIC AND MAGNETIC PROPERTIES
OF TWO COUPLED InAsxP1−x QUANTUM DOTS

WITH HALF-FILLED p SHELL EACH

We now turn to the analysis of properties of two coupled
quantum dots, each with the half-filled p-shell configuration.
To do this we must diagonalize the many-body Hamiltonian
(4) for Ne = 8 electrons where index i denotes single-particle
eigenstates of the double-dot tight-binding Hamiltonian (3).
We construct 76 904 685 possible Ne = 8 electron config-
urations on Nc = 40 single particle states and diagonalize
the many-body Hamiltonian. The numerically obtained low-
energy many-body spectrum E (n) for Ne = 8 electrons in a
double quantum dot nanowire is shown in Fig. 5.

We see that the lowest energy, n = 0, state with energy E0

is nondegenerate and is the singlet state. The next in energy
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Bottom

Top

FIG. 5. Many-body spectrum of the 8-electron complex for a
double quantum dot nanowire of 14.9 nm interdot distance. The inset
shows schematic half-filled p-shell configurations on top and bottom
quantum dots.

are the three states E1–E3 of an almost degenerate triplet fol-
lowed by a quintuplet E4–E8 of almost degenerate states. This
low-energy spectrum is identical to the spectrum of two spin-
1’s, S1 and S2, coupled by exchange interaction and described
by the Heisenberg Hamiltonian H = JAF 	S1 · 	S2, where JAF

is the interdot antiferromagnetic exchange constant, which
is discussed in further detail in the following section. The
differences between the microscopic spectrum and that of a
Heisenberg chain are due to small contributions from higher
energy configurations, such as doubly occupied configurations
and configurations that contain d-shell orbitals and higher.
Such contributions are the largest for the quintuplet state.
We now use the numerical spectrum of the Ne = 8 complex
to obtain parameters for a simplified microscopic model, the
Hubbard-Kanamori model.

VII. EFFECTIVE HUBBARD-KANAMORI MODEL

Though the many-body Hamiltonian, Eq. (4), provides an
accurate description of the electronic complexes in up to 2
quantum dots in a nanowire it cannot be extended to a larger
number of quantum dots with 4 electrons per dot. Hence we
discuss the simplified Hubbard-Kanamori model capturing the
essential features that might give rise to the behavior of a
Heisenberg spin-1 chain. In this model, the s-shell electrons
are frozen and we retain only two orbitals, p+ and p−, and
two electrons on each quantum dot.

A. The Hubbard-Kanamori Hamiltonian

To derive the Hubbard-Kanamori Hamiltonian, we start
with the many-body Hamiltonian written in the basis of

p+ and p− degenerate orbitals localized on each idealized,
disorder-free quantum dot. The many-body Hamiltonian in
this basis is given by

HMB =
∑
i,α,σ

Eiασ c†
iασ ciασ +

∑
σ

∑
i j

∑
αβ

tiα, jβc†
iασ c jβσ

+ 1

2

∑
σσ ′

∑
i jkl

∑
αβγ δ

〈iα, jβ|V |kδ, lγ 〉c†
iασ c†

jβσ ′ckδσ ′clγ σ ,

(9)

where the Roman indices i, j, k, and l denote quantum dot
number, indices α, β, δ, and γ denote quantum dot orbitals
p+ or p−, and σ denotes the electron spin. Here, the first term
describes energies of degenerate p-shell orbitals, the second
term describes interdot tunneling and intradot disorder, and
the third term describes intra- and interdot electron-electron
interactions. With the first term describing energies of two
degenerate p orbitals, tiα,iβ describes mixing of p+, p− or-
bitals on the same dot i by the atomistic disorder, leading
to an energy splitting � while tiα,i+1α describes tunneling of
electron between p+ (p−) orbitals on neighboring dots. For
two dots, this tunneling translates to the symmetric (antisym-
metric) orbitals and energy splitting.

To simplify (9) further, all interdot and intradot tunneling
matrix elements are written as

tiασ,iβσ ≡ �

2
, (10)

tiασ, jασ ≡ t, (11)

for all i, α, β, and σ . Moreover, all of the other tunneling
matrix elements are zero since all tunneling, intradot or inter-
dot, conserves spin and interdot tunneling conserves orbital
angular momentum.

In the spirit of the Hubbard-Kanamori model, similar ap-
proximations are made for the electron-electron interaction
matrix elements, where the only nonzero matrix elements
between nearest-neighboring dots 1 and 2 are

〈1α, 1β|V |iβ, 1α〉 = 〈1α, 1α|V |1α, 1α〉 ≡ U, (12)

〈1α, 1β|V |1α, 1β〉 ≡ J

2
, (13)

〈1α, 2α|V |2α, 1α〉 ≡ V, (14)

〈1+, 2 − |V |2+, 1−〉 ≡ W. (15)

Note the last Coulomb matrix element W conserves the total
angular momentum of the electron pair but corresponds to
scattering of electron pair from dot 1 to dot 2 with exchange of
electrons. With all of these reductions, the many-body Hamil-
tonian (9) reduces to the Hubbard-Kanamori Hamiltonian for
two dots given by

H = H0(1) + H0(2)

+
∑
ασ

(t12c†
1ασ c2ασ + t12c†

2ασ c1ασ )

+V (n1,+ + n1,−)(n2,+ + n2,−)

+W L+
1 L−

2 + W ∗L−
1 L+

2 , (16)
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where H0(1) is the Hubbard-Kanamori Hamiltonian for a sin-
gle quantum dot

H0 =
∑
α,σ

Eα,σ nα,σ + �

2

∑
σ

∑
α �=β

c†
ασ cβσ

+Un−↑n−↓ + Un+↑n+↓

+
(

U−J

4

)
(n−↑+n−↓)(n+↑ + n+↓)−JS− · S+, (17)

where α ∈ {+,−} labels the two degenerate orbitals p−, p+,
Eα,σ = E are the energies of the two degenerate orbitals,
and � describes mixing of p-shell orbitals by microscopic
disorder and lattice effects, ferromagnetic exchange coupling
J aligns the spins of two p-shell electrons, ni = ni,↑ + ni,↓
is the number of electrons on state with quantum number
i, S+

iα = c†
iα↑ciα↓, S−

iα = (S+
iα )†, Sz

iα = 1
2 (c†

iα↑ciα↑ − c†
iα↓ciα↓),

L+
i = ∑

σ c†
i+σ ci−σ , and L−

i = (L+
i )†.

We note that while the tunneling of a single electron from
one dot to another conserves the angular momentum, i.e.,
tunneling takes place between p+ orbital on one dot to p+
orbital on neighboring dot, the last term is a bit unusual; it
involves tunneling of two electrons, one electron from the
p+ orbital on one dot to the p− orbital on the second dot
simultaneous with second electron tunneling from the p−
orbital to p+ orbital on a second dot. Hence the total angular
momentum of the electron pair is conserved but electrons
change orbitals in a scattering event. We also note the pres-
ence of ferromagnetic Heisenberg coupling J , which is the
exchange interaction between two electrons on the p shell
in the same quantum dot. The coupling of the two spins on
dots 1 and 2 is described by the interdot tunneling and inter-
actions. All the parameters entering the Hubbard-Kanamori
Hamiltonian will be extracted from a microscopic model
below.

B. Analysis of Hubbard-Kanamori model
for a single quantum dot

The Hubbard-Kanamori spectrum of two electrons in a
single dot is obtained by diagonalizing the Hamiltonian,
(17), in the basis of Lz, S2, and Sz simultaneous eigenstates
constructed out of singly and doubly occupied two-electron
configurations, with the spectrum identical to the one
computed microscopically and shown in Fig. 3(d). The eigen-
values of the single-dot Hubbard-Kanamori Hamiltonian are
ET = 2E for a threefold-degenerate triplet and three sin-
glet states ES1 = 2E + 1

4 [3J −
√

J2 + (4�)2], ES2 = 2E + J
2 ,

ES3 = 2E + 1
4 [3J +

√
J2 + (4�)2].

When the p-shell splitting is zero, the splitting between
the triplets and the doubly occupied singlets is equal to the
intrashell exchange J while the splitting J between 3 triplets
and the singly occupied singlet is twice the exchange matrix
element. When p-shell splitting � is nonzero, the degener-
acy of the doubly occupied configurations is lifted and the
singly occupied singlet increases in energy. This is due to
the fact that the p-shell mixing couples one of the doubly
occupied configurations to the singly occupied singlet. The
triplet states remain uncoupled because p-shell mixing must
conserve S and Sz. With the full energy spectrum expressed

FIG. 6. Comparison between Hubbard-Kanamori and atomistic
spectra.

in terms of the Hubbard-Kanamori parameters, fitting the
Hubbard-Kanamori spectrum to the atomistic spectrum shown
in Fig. 3(d) enables the extraction of Hubbard-Kanamori pa-
rameters. We find for the typical InAsxP1−x quantum dots
studied here U = 16 meV, J = 5 meV, and � = 0.8 meV.
For these parameters we show in Fig. 6 both the Hubbard-
Kanamori spectrum and the full microscopic spectrum of 4
electrons on a single dot.

The Hubbard-Kanamori and atomistic spectra are in close
agreement. The largest difference of 0.5 meV is in the en-
ergy of the singly occupied singlet. Just as in the atomistic
spectrum, the ground state is the threefold-degenerate triplet,
followed by two doubly occupied singlet states and a singly
occupied singlet. As discussed before, the spin-polarized
ground state can be understood in terms of the exchange
coupling between the p-shell electrons as shown in Eq. (16).
Having shown the correspondence between the Hubbard-
Kanamori and atomistic models for a single quantum dot,
we can now use these single quantum dot parameters in the
double quantum dot Hubbard-Kanamori Hamiltonian to de-
termine the double quantum dot spectrum for 4 electrons on
two p shells.

C. Analysis of Hubbard-Kanamori model
for a double quantum dot

Unlike in the single quantum dot, analytically determining
the many-body spectrum for a double quantum dot consisting
of 4 p-shell states and 4 active electrons would be difficult as
the Hilbert space of the Hubbard-Kanamori model consists of
70 configurations. We hence fit the Hubbard-Kanamori spec-
trum, Eq. (16), to the atomistic spectra numerically. To better
understand the effect of interdot tunneling and interactions on
the double-dot spectrum we start with a double dot without
tunneling and interactions. Assuming the two quantum dots
are identical, we form eigenstates with 2 electrons on each p
shell by forming products of many-body eigenstates between
the two single quantum dots provided S and L are conserved.
Examples of these eigenstates formed in this manner are the
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FIG. 7. Schematic energy spectrum of a double quantum dot. On
the left is the double-dot spectrum when t = 0 and on the right is the
spectrum when |t | > 0. The bottom insets show the configurations
of one of terms of the Sz = 0 triplet as well as the Sz = −1 and +1
triplet states configurations. The top inset shows one of the configu-
rations that contain three electrons in one dot. Blue arrows indicate
splittings of levels due to tunneling. On the right, the green arrows
indicate coupling between states due to tunneling. The red, green,
and cyan states correspond to the singlet, triplet, and quintuplet
states. The double-headed red arrows indicate a splitting of 2t2

U+J/2 .

ground states of maximal Sz given by

|ST = 0, Sz = 0〉 = αs(|↓↓; ↑↑〉 + |↑↑; ↓↓〉)

+βs(|↓↑; ↑↓〉 + |↓ ↑; ↓↑〉
+ |↑↓; ↓↑〉 + |↑ ↓; ↑↓〉),

|ST = 1, Sz = 1〉 = αt(|↑ ↑; ↑↓〉 + |↑ ↑; ↓↑〉
− |↑↓; ↑↑〉 − |↓↑; ↑↑〉),

|ST = 2, Sz = 2〉 = αq|↑↑; ↑↑〉. (18)

Here we neglect eigenstates with triple and quadruple
occupancy in a quantum dot. The energies of these config-
urations would be higher in energy by U. A schematic for
the noninteracting Hubbard-Kanamori spectrum without tun-
neling and electron-electron interactions is shown in Fig. 7.
The left-hand side shows the Hubbard-Kanamori spectrum of
two noninteracting quantum dots with 2 electrons each. The
spectrum is the same as a Hubbard-Kanamori spectrum of

TABLE I. Fitted Hubbard-Kanamori parameters for the double
quantum dot nanowire.

Fitted H-K Parameter Numerical Value (meV)

U 15.971
J
2 2.500

� 0.844
t 0.748
V 7.734
W 0.000

a single dot but degenerate. Hence the lowest energy band
consists of 3 triplet states on each dot, with a total of 9 states.

The right-hand panel shows the energy spectrum of a dou-
ble dot as interdot tunneling is turned on. We see that the
singlet, triplet, and quintuplet states are no longer degenerate.
This is due to the singlets and triplets coupling to the triply oc-
cupied configurations as shown in Fig. 7. The quintuplet states
however remain uncoupled since tunneling conserves S. Most
importantly, the singlet, triplet, and quintuplet degeneracies
are lifted in a manner that resembles the spectrum of a Heisen-
berg chain of spin-1 particles with coupling JH = 2t2

U+J/2−V .
The reduction of the Hubbard-Kanamori Hamiltonian (16)
to the Heisenberg spin-1 chain Hamiltonian is discussed in
further detail in Ref. [52] where interdot tunneling is treated
perturbatively. In essence, the behavior of coupled spin-1
spins arises when the ferromagnetic intradot coupling J be-
tween electrons on two different p-shell orbitals is much
stronger than the interdot coupling between composite spin-1
particles (i.e., J � JH ). If JH is large, then the tunneling is no
longer a perturbation and the intradot coupling J is no longer
strong enough to hold two electron spins parallel in a single
quantum dot.

The Hubbard-Kanamori parameters for the double quan-
tum dot are obtained in a manner similar to that for the single
quantum dot system. First initial guesses are made by relating
the parameters to the atomistic single-particle spectrum and
Coulomb matrix elements. However, in the case of the double
quantum dot, a genetic algorithm is used to make adjustments
to the parameters to obtain an accurate fit to the microscopic
many-body spectrum. The algorithm is as follows. First, ran-
dom parameters are generated within a small vicinity around
the initial guesses in parameter space and used to compute the
low-energy many-body spectra. Out of those guesses, another
set of random points is generated, but in a smaller vicinity
around the previous set of parameters that yielded a spectrum
closest to the atomistic low-energy spectrum. This process is
repeated until the difference between the Hubbard-Kanamori
and atomistic spectra is below a threshold value and the result
is a set of fitted Hubbard-Kanamori parameters. To obtain
the fitted parameters, only t , V , and W were varied while
the rest of the parameters were held stationary in the genetic
algorithm. The set of parameters for this system are given in
Table I.

We then compare atomistic, Hubbard-Kanamori, and
Heisenberg chain spectra in Fig. 8. Here, the Heisen-
berg coupling is chosen to be JH = 2t2

U+ J
2 −V

= 0.104 meV.
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FIG. 8. Comparison between atomistic, Hubbard-Kanamori, and
Heisenberg chain spectra.

The agreement between all three spectra indicates that not
only is the parametrized Hubbard-Kanamori model a valid
approximation of the atomistic Hamiltonian, but the Hubbard-
Kanamori model does in fact exhibit properties of the
Heisenberg chain. Though the Heisenberg coupling increases
as a function of interdot distance, there is a limit to the
magnitude of JH . This is shown in Fig. 9 with the compari-
son between overlaps of the Hubbard-Kanamori ground state
with the ground states of the Heisenberg Hamiltonian and the
molecular Hamiltonian given by

HMol = t
∑
ασ

c†
1ασ c2ασ + (c.c.). (19)

In the molecular Hamiltonian, the energy spectrum is dom-
inated by interdot tunneling, with two spin up and down
electrons occupying a molecular symmetric p+ and p− or-
bitals instead of forming spin-1 states on each dot. The
Heisenberg triplet ground state increasingly becomes a more
accurate description of the Hubbard-Kanamori ground state
as the interdot distance increases. Conversely, the molecu-
lar ground state is a better description for smaller interdot
distances when interdot tunneling dominates. At an interdot
distance of 10 nm, the Heisenberg ground state accounts for
∼70% of the composition of the Hubbard-Kanamori ground
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FIG. 9. Comparison between the overlaps of the Hubbard-
Kanamori ground state with the Heisenberg S = 1 ground state and
the molecular ground state.

FIG. 10. Hubbard-Kanamori and Heisenberg low-energy spec-
trum as a function of total spin S.

state. Furthermore, at this interdot distance, the system is ad-
equately described in terms of coupled spin-1 particles while
simultaneously keeping JH rather large. It is worth noting that
the squared overlaps for a given interdot distance do not sum
to unity due to the fact that the Heisenberg and molecular
ground states are not orthogonal to each other.

As shown in Fig. 10, the Hubbard-Kanamori and Heisen-
berg spectra are in agreement with a χ2 error of ∼0.35 meV.
This interdot distance yields an effective maximum for the
magnitude of the Heisenberg coupling, which in this case is
JH = 1.096 meV.

VIII. CONCLUSION

We described here electronic properties of multielectron
complexes in InAsP quantum dots in InP nanowires us-
ing a combination of a microscopic many-body Hamiltonian
based on atomistic tight-binding single-particle states and the
configuration interaction approach to electron-electron inter-
actions. We determined the evolution of total spin of the
ground state of electronic complexes with electron number
and found the synthetic spin-1 state for Ne = 4 electrons in
a dot. We related the evolution of total spin to the generalized
Hund’s rule and discussed detection using Coulomb blockade
spectroscopy. We extended the microscopic model to two
tunnel-coupled quantum dots in a nanowire. We determined
the electronic spectra as a function of interdot coupling. We
computed the Ne = 8 electron complex, with 4 electrons per
quantum dot. The low-energy spectra of Hubbard-Kanamori
and Heisenberg Hamiltonians were fitted to the low-energy
spectra of a microscopic Hamiltonian and understood in terms
of two antiferromagnetically coupled spin-1 complexes on
each dot. The Hubbard Kanamori parameters and interdot
exchange coupling were determined from microscopic calcu-
lations. This analysis has shown that a chain of InAs1−xInPx

quantum dots in an InP nanowire can be used to construct a
synthetic Heisenberg spin-1 chain described by the Hubbard-
Kanamori model. Because of the reduction of the Hilbert
space, the Hubbard-Kanamori model will allow for micro-
scopic understanding of macroscopic chains which could be
used to construct macroscopic quantum states and topologi-
cally protected qubits.
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