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Conservation of chirality at a junction between two Weyl semimetals
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In Weyl semimetals the location of linear band crossings, the Weyl cones, is not bound to any high-symmetry
point of the Brillouin zone, unlike the Dirac nodes in graphene. This flexibility is advantageous for valleytronics,
where information is encoded in the valleys of the band structure when intervalley scattering is weak. However,
if numerous Weyl cones coexist the encoded information can decohere rapidly because of band mixing. Here,
we investigate how the helical isospin texture of Weyl cones affects valleytronics in heterojunctions of Weyl
materials, and show how the chirality of this isospin texture can serve to encode information.
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An appealing strategy to realize solid-state computations
is to take advantage of the available degrees of freedom dis-
played by electrons in solids. Spintronics, for example, is
based on manipulating the spin of electrons with magnetic
fields to perform switches and memories [1–4]. Similarly,
valleytronics relies on the several different wave vectors of
conducting electrons in a crystal to process and store in-
formation [5–8]. For example, the linear band crossings, or
Dirac nodes, in graphene can serve as internal degrees of
freedom that can be manipulated using light, strain, or electric
gates [9–11]. Valleytronics can also be envisioned in Weyl
semimetals, where the three-dimensional (3D) band crossings,
the Weyl nodes, can occur at any point of the Brillouin zone,
unlike their two-dimensional (2D) counterpart [12,13]. The
flexibility of 3D platforms can be beneficial to valleytronics
but also detrimental, as multiple Weyl nodes can overlap and
complicate valleytronics [14].

The transmission of electrons at the junction between two
Weyl semimetals not only depends on the location of the
Weyl nodes, but also on the relative isospin textures of the
overlapping Fermi surfaces. Indeed, a Weyl node is not only
a conical band dispersion that can be located anywhere in
the Brillouin zone, but it also carries a helical isospin texture
Sk = 〈ψk|σ̂ |ψk〉 of its eigenstates |ψk〉 that winds on the
Bloch sphere as a function of the wave vector k [15]. Since
this texture can be different between overlapping cones on
either side of a junction, it can affect the electronic transport
between two Weyl materials. This helicity-dependent trans-
port, where the momentum dependence of isospin Sk encodes
information, is at the intersection between spintronics and
valleytronics [16,17]. In particular, the isospin texture has a
nonvanishing flux over the Fermi surface of a Weyl cone. A
Weyl material contains an equal number of Weyl cones with
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positive and negative flux [18,19], that are associated with two
chiralities.

The multiple Weyl nodes of a Weyl semimetal can be
located at various momenta in the Brillouin zone and may
have a multitude of isospin textures, eventually complicating
valleytronics and spintronics because of the many degrees of
freedom at hand. In contrast, the chirality of Weyl cones takes
only two values, and it is thus appealing to track the conser-
vation of chirality of different Weyl nodes across a junction
as a means to encode information. However, this poses the
challenge of understanding how chirality is transferred, taking
into account the possible differences in isospin textures across
the junction. This is the question we investigate in this work.

In the present paper, we compute the transport properties
of a junction between two Weyl semimetals to show how
they depend on the valley, helicity, and chirality mismatch.
In Sec. I we model the junction between two Weyl semimetals
and compute the transmission coefficient of an incoming wave
packet. We first discuss the situation where only two Weyl
nodes overlap at the junction and then the situation where
many Weyl nodes overlap. In Sec. II we compare the am-
plitude of the conductance for different separations and spin
textures of the Weyl nodes. Finally, in Sec. III we discuss
which materials and configurations are the most suitable to
observe valley- and chiraltronics.

I. SCATTERING AT THE JUNCTION BETWEEN
WEYL MATERIALS

A. Model

The electronic excitations of a Weyl semimetal, close to a
Weyl cone, are described by the Weyl Hamiltonian

H(k) = h(k) · σ̂ − b01̂, (1)

where h = (vx(kx − bx ), vy(ky − by), vz(kz − bz )) and σ̂ =
(σ̂x, σ̂y, σ̂z ) are Pauli matrices associated to an internal de-
gree of freedom that we refer to as isospin. The spectrum
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of Eq. (1) is Eσ (k) = −b0 + σ |h(k)| which describes a Weyl
cone centered at energy −b0 and wave vector b = (bx, by, bz ).
The index σ = ± denotes the conduction and valence bands,
respectively, and the linear dispersion is characterized by the
velocities v = (vx, vy, vz ). We consider Weyl cones with cu-
bic symmetry, so the principal axes associated with v are
all orthogonal and there is no tilt. The influence of the tilt
on transport was studied in Refs. [12,20,21] and we focus
our discussion on the asymmetry related to the shift of Weyl
cones in momentum and in energy, and their respective isospin
textures. The corresponding eigenmodes read

�σ
k (r) = 1√

2

(
ασ (k)
βσ (k)

)
, (2)

where φ = arg(hx + ihy) and

ασ (k) =
(

1 + σ
hz(k)

|h(k)|
)1/2

, (3)

βσ (k) = σ

(
1 − σ

hz(k)

|h(k)|
)1/2

eiφ. (4)

In the following we focus on electron dynamics in the conduc-
tion band, where σ = +, and drop the mention to the index
σ . The orientation Sk = 〈ψk|σ̂ |ψk〉 of the eigenmodes on the
Bloch sphere as a function of momentum depends on the sign
and amplitude of the velocities v = (vx, vy, vz ). The orienta-
tion of v is associated with various helical isospin textures at
the Fermi surface which can be characterized by their chirali-
ties χ = sign(vxvyvz ) = ±1. A Weyl material can have many
Weyl points, that come in pairs of opposite chiralities [18,19].
They can be centered at various momenta and energies, and a
Weyl semimetal is said to be chiral if there is a larger density
of states of quasiparticles of one chirality over the other. This
situation occurs in crystals with low enough symmetries, such
as chiral crystals where all mirrors are absent [22–29].

In the following we model the scattering of electrons at a
junction between two chiral Weyl materials. We model each
chiral Weyl semimetal by considering different energy shifts,
b0

χ , on cones of opposite chiralities, χ = ±, but with a com-
mon amplitude for the velocities, |vx| = |vy| = |vz| = 1, and
we allow v to point in arbitrary directions. The situation with
anisotropic velocities can be recovered by rescaling momenta.
We first consider the situation where electrons only scatter

between two cones, with a single cone on either side of the
interface. We then model the situation where the scattering
occurs between multiple cones.

B. Scattering between two Weyl cones

We consider a sharp interface at z = 0 where a Weyl node
is shifted in momentum and energy from bL and E0L for z < 0,
to bR and E0R for z > 0. This situation is illustrated in Fig. 1,
where blue and red cones describe the electron gas on each
side of the interface. These overlapping Weyl nodes can have
have different velocities vL,R, related to different helical spin
textures that we depict in Fig. 1 with arrows.

We suppose electrons scatter elastically; i.e., they conserve
their energy E . Also, owing to the translation invariance of
the interface, at z = 0, the components of the wave vectors

FIG. 1. Weyl semimetal junction. At each side of the interface
(gray plane), we illustrate the band structures of the two Weyl
semimetals (red and blue cones) and the overlap of their Fermi
seas (red and blue circles), with the associated isospin textures. An
incoming wave packet (blue arrow) is either transmitted (red arrow)
or reflected (green arrow). Transmission occurs if two conditions are
satisfied: (1) that the projection of the Fermi surfaces on the (kx, ky )
plane overlap, and (2) that eigenspinors are nonorthogonal.

parallel to the interface k‖ = (kx, ky) are conserved. This leads
to the following set of equalities:

kz,i ≡ −kz,r = 1

|vz,L|
√

(E − E0L )2 − v2
x,L(kx − bx,L )2 − v2

y,L(ky − by,L )2,

kz,t = 1

|vz,R|
√

(E − E0R)2 − v2
x,R(kx − bx,R)2 − v2

y,R(ky − by,R)2, (5)

where kz,i, kz,r , and kz,t are respectively the incoming, re-
flected, and transmitted wave vectors normal to the interface.
The conservation of the probability current jz = vzψ

†σ̂zψ

normal to the interface can be expressed as a linear transfor-
mation of the wave function when crossing the interface, like
ψL(z = 0) = ĝψR(z = 0) where ĝ is a matrix and ψL,R are
respectively the components of the wave function for z < 0
and z > 0 (see Appendix A 1).

In the situation where vz,L/vz,R > 0, the conservation of
current is satisfied by the continuity of the wave function
ψL(z = 0) = ψR(z = 0), so an eigenstate of energy E satisfies(

αL(ki )
βL(ki )

)
+ r

(
αL(kr )
βL(kr )

)
= tM̂

(
αR(kt )
βR(kt )

)
, (6)

where M̂ = 1̂. The L, R subscripts of α(k) and β(k) remind
us that Eqs. (3) and (4) should be evaluated for the parameters
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FIG. 2. (a)–(c) Transmittance T for each in-plane wave vector (kx, ky) for the scattering between two Weyl nodes, with energy shifts
b0,L = 0.9 and b0,R = 1.1 on the left and right side, respectively. The projected Fermi surfaces are depicted with the yellow and white dashed
circles. Left-hand columns are for cones not shifted in momentum, 	k = 0, while this shift is nonzero on the right-hand columns. The
figures are obtained for different velocities between the left and right sides of the junction: (a) vR = vL , (b) vR = (vx,L, vy,L, −vz,L ), and
(c) vR = (−vx,L, −vy,L, vz,L ). (d) Transmittance T when scattering from one to two cones, to illustrate the overlap between situations (a)
and (b).

on the z < 0 and the z > 0 half space, respectively. We then
find that

r = βL(ki )αR(kt ) − αL(ki )βR(kt )

αL(kr )βR(kt ) − βL(kr )αR(kt )
. (7)

From this expression we compute the reflectance R = |r|2,
and the transmittance T = 1 − R. In Fig. 2(a), we plot T as a
function of (kx, ky) for two different separations, 	k = bx,R −
bx,L, with by,L/R = bz,L/R = 0, between the two Weyl nodes on
each side of the interface with vL = vR. Since electrons only
scatter through the interface when there are available states
at the same energy and in-plane momenta, the transmission
probability is nonzero only where the two Fermi surfaces,
depicted by dashed lines, overlap [13]. Also, we observe
that when the two Fermi surfaces are shifted (	k �= 0), the
transmittance is smaller than for zero shift (	k = 0) because
of the imperfect overlap between spinors on each side of
the interface. Indeed, as we increase 	k, the isospin textures
on each side of the junction progressively point in opposite
directions along the x axis, suppressing T .

In the situation where vz,L/vz,R < 0, the continuity equa-
tion (6) with M̂ = 1̂ does not apply since it breaks current
conservation. In Appendix A 1, it is shown that the correct
boundary condition requires to invert the z component of the
spinor across the interface. This is related to the lack of a
solution for a hyperbolic equation governing the conservation
of current, since there is no Lorentz boost to map the two Weyl
equations. In this case, the matrix M̂ on the right-hand side of
Eq. (6) is instead

M̂ = cos(θ )σ̂x + sin(θ )σ̂y, (8)

where θ ∈ [0, 2π ) is a parameter associated with the junction.
In our model the parameter θ is arbitrary and in a realistic
heterojunction it is set by the microscopic coupling between
the two Weyl materials.

As above we compute the reflection coefficient r, re-
flectance R = |r|2, and transmittance T = 1 − R. In Fig. 2(b),
we plot T as a function of (kx, ky) for different values of
	k, keeping vx = vy = 1 across the interface but with vz,L =
−vz,R. We see that the transmittance is cigar shaped, with
a principal axis in the direction of θ . This asymmetry is a
consequence of the rotation in Eq. (8), because it not only
inverts the z component of isospin but also the component
along s⊥ = − sin(θ )ex + cos(θ )ey. Thus, for an in-plane mo-
mentum (kx, ky) along s⊥, the eigenspinors on each side of
the interface overlap poorly and lead to a smaller transmission
even if the Fermi surfaces match, i.e., even if 	k = 0.

In this section we have considered two situations depend-
ing on whether vz changes sign or not, keeping vx and vy the
same across the interface. These two situations demonstrate
the importance of the spin texture, set by v, when electrons
scatter across the junction formed by two Weyl semimetals.
In the following we discuss the more general situation where
all velocities can change direction and how transmittance de-
pends on the chiralities of Weyl cones.

C. Role of chirality on scattering

As discussed in the introduction, a central feature of Weyl
cones in Weyl semimetals is their chirality, χ = sign(vxvyvz ).
The chirality of a Weyl node only takes two values, +1 and
−1. It is thus a simpler description of the isospin texture of
Weyl nodes compared to a continuous set of isospin config-
urations described by v. In this respect, the two situations
of the previous section correspond to the transmission be-
tween cones with the same chiralities, when vz,L/vz,R > 0 in
Fig. 2(a), or with opposite chiralities, when vz,L/vz,R < 0 in
Fig. 2(b).

The junction between Weyl cones with the same chiralities
happens when vL and vR are related by a rotation. This leads
to the transmission function in Fig. 2(a) when vL = vR, or
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to that in Fig. 2(c) when vR = (−vx,L,−vy,L, vz,L ), i.e., for
a π rotation around the z axis. In general, the transmission
function is rotation invariant but its radial distribution depends
on the angle between vL and vR. For example, in Fig. 2(c) at
	k = 0, the transmission drops on the borders of the Fermi
surface because there the spinors of the two Weyl cones point
in opposite directions.

This rotation-invariant transmittance, with varying radial
distribution, between Weyl cones with the same chirality
comes from Eq. (7), which depends on φ = arg(kx + iky) only
through the coefficients β [Eq. (4)]. For scattering between
cones with same chirality but rotated with respect to each
other by an angle δφ, φR = φL + δφ, this leads to r of the form
r = ( f1(k‖) + f2(k‖)eiδφ )/( f3(k‖) + f4(k‖)eiδφ ) whose norm
is rotation invariant but with a radial distribution that depends
on δφ. This result stays valid for the boundary condition in
Eq. (8), with the replacement δφ → δφ − θ .

The junction between Weyl cones with opposite chiralities
happens when vL and vR are related by combining an inversion
with a rotation. This leads to a cigar-shaped transmission
function, similar to Fig. 2(b), with an angle θ that depends
on the relative orientation between vL and vR. In general, the
transmission function breaks rotation symmetry in the (kx, ky)
plane, even for 	k = 0. This absence of rotation symmetry
is related to the mismatch of the isospin textures on either
side of the interface along a single axis, in the direction
s⊥ = − sin(θ )ex + cos(θ )ey.

This rotation symmetry of transmittance between Weyl
cones with opposite chiralities comes from Eq. (7), which
depends on φ = arg(kx + iky) only through the coefficients
β [Eq. (4)]. For scattering between cones with opposite chi-
ralities but rotated with respect to each other by an angle
δφ, φR = φL + δφ, this leads to r of the form r = ( f1(k‖) +
f2(k‖)ei(2φ+δφ ))/( f3(k‖) + f4(k‖)e(2φ+δφ )) whose norm has a
distribution that is only rotated by δφ. This result stays valid
for the boundary condition in Eq. (8), but with δφ → δφ − θ .

Through this discussion, we find that there is a qualita-
tive difference between the transmission of electrons between
Weyl cones with the same or opposite chiralities. On one
hand, if chiralities are the same then T (kx, ky) is rotational
invariant and only its radial distribution can change. On the
other hand, if chiralities are opposite then T (kx, ky ) breaks
rotational invariance and its radial distribution is always the
same, up to a rotation in the (kx, ky) plane.

D. Scattering between multiple Weyl cones

The previous model concerns the scattering between only
two Weyl cones. Since Weyl materials usually host many Weyl
cones, the previous discussions can break down once multiple
Weyl nodes contribute to scattering. The transmission depends
on helicity and may not split evenly between each scattering
channel. In this section we consider a heterojunction where
the electron gas scatters from a single Weyl node, at z < 0, to
two Weyl nodes, at z > 0.

We model this interface assuming that the in-plane momen-
tum and the energy are conserved, and apply the conservation
relations in Eq. (5) independently for each Weyl cone.
The conservation of the probability current is discussed in
Appendix A 2 and it involves a free parameter, m12 = T1/T2,

related to the relative contribution of the two Weyl nodes
at z > 0 to scattering. Like the parameter θ in Eq. (8), m12

depends on the precise description of the interface, such as
the orbitals involved and their overlap. In the following we
assume that m12 = 1, corresponding to an equal transmission
towards any of the two cones at z > 0. The reflectance and
transmittance of the incoming wave packet are obtained by
solving linear equations similar to Eq. (6). The general ex-
pression for the transmittance is provided in Appendix A 2.

We observe that the transmittance for scattering from one
Weyl node at z < 0 to two Weyl nodes at z > 0 is not the
average transmittance for scattering to each Weyl node indi-
vidually. For example, in Fig. 2(d) we show the transmittance
for v(1)

R = vL and v(2)
R = (vx,L, vy,L,−vz,L ), which is similar

to the superposition of cases reported in Figs. 2(a) and 2(b).
Thus, our observation in Sec. I C, that the qualitative behaviors
of transmittance between two cones with same and opposite
chiralities are different, is not satisfied when scattering be-
tween multiple Weyl cones. The scattering between multiple
Weyl cones does not conserve chirality and strongly depends
on the interface-dependent parameter m12, so this configura-
tion should be avoided when using chirality as a means to
carry information.

II. CONDUCTANCE

The electric current I through the junction between two
Weyl materials can be computed within the Landauer-Büttiker
formalism as

I = e

h

∫
dE

∑
kx,ky

T (E , kx, ky)( fL(E ) − fR(E )), (9)

where T (E , kx, ky) is one of the transmittances depicted in
Fig. 2. The function fα (E ) is the Fermi-Dirac distribution in
lead α = L, R, with chemical potential μα . At zero temper-
ature, T = 0, and for a small bias voltage V at the junction
(μL = μR + eV ), the differential conductance reads

G ≡ ∂I

∂V
= e2W 2

h

∫∫
dkxdky

(2π )2
T (E = 0, kx, ky), (10)

and depends only on the transmittance at the Fermi surface.
The area of the junction is W 2 and it is assumed that W is
larger than the Fermi wavelength so that the discrete sum over
(kx, ky), defined in integer multiples of 2π/W , can be replaced
by an integral. The range of integration is set by the region
where the Fermi surfaces on each side overlap (see Fig. 2),
i.e., where kz in Eq. (5) is real. Note that this expression of
conductance is obtained for probes far away from the junction,
so their coupling via Fermi arcs at the junction is vanishingly
small. Also we suppose a bulk sample so the contribution of
other surface states is negligible.

In Fig. 3 we show the conductance of our model as a
function of the Weyl node shift 	k across the interface. The
conductance is given in units of

G0 = π
e2

h

W 2μ2

(2π h̄vF )2
, (11)

which is the conductance of a single Weyl node at chemical
potential μ, without the interface. The chemical potential μ is
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FIG. 3. Behavior of the conductance across a junction of two
Weyl materials as a function of the shift 	k = bx,R − bx,L between
the band structures along the x axis, with by,L/R = bz,L/R = 0. The
different curves are for each relative isospin texture in Figs. 2(a)–(c),
which we label with their velocities vL,R. In black, we show the
transport at a junction between two nonrelativistic band structures
(3DEG), with Hamiltonian ĤNR = h̄2(k − 	k)2/(2m).

our reference for chemical potentials, which we define to be
the geometric average of all energy shifts b0 across the inter-
face. The scattering between cones vanishes when they are too
far apart in momentum space. This property was discussed in
Ref. [13] as a way to transmit current between overlapping
Weyl cones, independently of their isospin texture, and it
illustrates valleytronics in Weyl semimetals. Such a shift of
Weyl cones in momentum space is a defining property of Weyl
semimetals, but it can also be induced by applying strain or
light [30].

Also in Fig. 3, we compare the different configura-
tions whose single-channel transmittances were illustrated in
Figs. 2(a)–(c), and show that the relative isospin textures
strongly affect transport. The conductance between two Weyl
semimetals appears to be always smaller than the conductance
between two nonrelativistic metals with the same carrier den-
sities, as a consequence of the noncollinear isospin textures.

In Fig. 4(a) we show the conductance of our model for
	k = 0, when Weyl cones exactly overlap in momentum
space, as a function of the phase shift δφ between momentum
and the isospin texture in the xy plane. This phase shift is
introduced in Eq. (4) by replacing the phase φ = arg(hx + ihy)
with

φ → φ + δφ. (12)

The transmission between cones with opposite chiralities (in
red) does not depend on the phase shift δφ while it does for
scattering between cones with same chiralities (in blue). This
can be intuitively understood from Fig. 4(b) which shows
the change in the helical spin texture on the projected Fermi
sea as a function of δφ. For an interface between cones of
the same chirality the relative in-plane isospin texture can
either point inward or outward as a consequence of this phase
shift, leading to important changes in the isospin overlap as
illustrated in Figs. 2(a) and 2(c). The transmittance between
Weyl nodes with the same chirality is minimal for δφ = π ,

FIG. 4. (a) Conductance across a junction between two Weyl ma-
terials, with 	k = 0, as a function of the phase shift δφ between the
direction of momentum and isospin in the xy plane. The conductance
between cones with the same chirality strongly depends on their
relative angle. (b) The change in the isospin texture as a function of
the phase shift δφ of the Weyl material at z > 0 and for two opposite
chiralities (χ = ±1). The horizontal axis is the same in (a) and (b).

when the in-plane isospin textures point in opposite directions
on either side of the interface. For an interface between cones
of opposite chiralities the relative in-plane isospin texture
always points outward in one direction and inward in the
other. In this case, the overall overlap between helical isospin
textures does not change, i.e., Fig. 2(b) is solely rotated, and
the conductance is independent of δφ.

This way, the relative contribution of transport between
cones that change or conserve chirality fluctuates. In partic-
ular, one can manipulate the phase shift δφ geometrically for
anisotropic isospin textures, i.e., when there are different signs
between two of the components of vL or vR.

III. TRANSPORT OF CHIRALITY IN MATERIALS

Our findings may apply to describe junctions of various
semimetals such as the transition metal monopnictides TaAs
[14,31–33], TaP [14,34], NbAs [14,35] and NbP [14,36], or
the silver chalcogenides Ag2S [37] and Ag2Se [38], which
have been studied in the development of memristive de-
vices [39,40]. These materials show multiple Weyl nodes
with rather small carrier densities, n ≈ 1017–1019 cm−3 cor-
responding to kF ≈ 0.1–1 nm−1, and located away from the
� point. For example, the band structure of TaAs contains 24
Weyl nodes located at about δk ≈ 10 nm−1 from the � point.

A particularly clean band structure can be found in chiral
semimetals [22–29], specifically in the materials CoSi and
RhSi, in space group 198. The band structure in this space
group features a topologically protected three-band cross-
ing at the � point and a doubly degenerate Weyl crossing
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FIG. 5. Transport at the interface of (a) Ag2S and Ag2Se and (b) TaAs and NbP. We draw the Fermi surface of each material with a color
that indicates if the chirality is positive (blue), negative (red), or an overlap of both (green). The trivial Fermi pockets are in orange. (c) In a
chiral Weyl semimetal, the interface between two orientations of the Weyl semimetal can help transmit only one chirality, which corresponds
to cones in red in this figure. (d) In CoSi, the double Weyl cones (red) are at the border of the Brillouin zone and their location strongly depends
on the orientation of the interface.

at the Brillouin zone corner. CoSi and RhSi are especially
favorable, as their topological band crossings are close to
the Fermi energy, with relatively small or no trivial pock-
ets at this energy. The node separation δk is maximum,
as it is half of the Brillouin zone (δk = π/a). The trans-
port lifetime is shorter in RhSi (≈13 fs) [41] than in CoSi
(47 fs) [42,43]. For the latter the carrier density is around
2.2 × 1020 cm−1 corresponding to kF = 1.9 nm−1 [42,43],
and the lattice constant is a = 0.4485 nm, which results in
δk = 7 nm−1. An interface between the [001] and [111]
surfaces of either CoSi or RhSi is sketched in Fig. 5(d).
In the [001] direction the threefold and double Weyl nodes
project to the center and corner [at (kx, ky) = (π/a, π/a)]
of the surface Brillouin zone. In contrast, on the [111] sur-
face the threefold and double Weyl nodes fall on top of
each other at the center of the Brillouin zone [at (kx, ky) =
(π/a, π/a)]. The position of the double Weyl nodes in
the (kx, ky) plane thus shifts by 	k = √

2π/a = 9.9 nm−1

between the two orientations.
The junction between two Weyl semimetals in Sec. I can

describe the interface between two different Weyl materials
or between two orientations of the same Weyl material. We
consider these two situations in the following and also discuss
the conservation of chirality at the interface with a normal
metal.

A. Interface between different Weyl materials

In Figs. 5(a) and 5(b) we show the projection of the Fermi
surface in the [001] direction of four Weyl semimetals, respec-

tively Ag2S and Ag2Se, and TaAs and NbP from our ab initio
calculations (see Appendix B). We consider these interfaces
because of their small lattice mismatch, which should not
lead to strong lattice defects at the junction. The Fermi sur-
faces are colored according to the chirality of the underlying
quasiparticles: red and blue for Weyl cones with positive and
negative chiralities, green for the superposition of Weyl cones
with opposite chiralities, and orange for trivial pockets where
chirality is not defined.

The overlap of these Fermi surfaces shows that in monop-
nictides the chirality of quasiparticles mixes at the interface
and that for silver chalcogenides only quasiparticles with pos-
itive chirality propagate close to the � point. The interface
between TaAs and NbP also demonstrates that the contri-
bution from trivial pockets is usually non-negligible and is
detrimental to well-defined chiraltronics [14,33]. Our ab initio
calculations show that there are no contributions from trivial
pockets in Ag2S and Ag2Se. Thus the interface between these
two materials is a good candidate to observe transport with a
well-defined chirality of Weyl quasiparticles.

B. Interface between different material orientations

The transmission of chirality between two Weyl semimet-
als depends on two geometrical aspects, related to the location
of Weyl nodes in the Brillouin zone and to their relative
isospin textures.

A junction can be made of a single Weyl material but with
different growth direction or magnetic field orientation on
either side of the junction [15]. This can lead to the overlap
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of Fermi surfaces of a certain chirality but not the other. We
illustrate this possibility in Fig. 5(c). The transmission of a
Weyl cone at an interface of angle α between two orientations
of a Weyl material occurs if 	k = 2δk tan(α/2) < kF , i.e.,
| tan(α/2)| < kF /(2δk). This critical angle depends on the
carrier density of the Weyl cone, through the Fermi wave
vector kF . Therefore, selective transmission of chirality can
happen in chiral Weyl semimetals since cones of opposite
chiralities may have different kF [see Fig. 5(c)]. The critical
angle also depends on the distance δk of the Weyl cone to
the �̄ point. Therefore, selective transmission of chirality can
happen when Weyl nodes of a given chirality are far from the
center of the Brillouin zone. For example, this should occur at
the interface between the [111] and [100] orientations of CoSi
where 	k = 9.9 > 1.9 nm−1 = kF [see Fig. 5(d)].

The relative isospin textures of the Weyl cones also affect
the transport of chirality. For example, at the interface between
TaAs and NbP in Fig. 5(b) we find that Weyl cones with
opposite chiralities can overlap and lead to the nonconser-
vation of chirality at the junction. This nonconservation of
chirality is independent of the isospin textures for overlapping
Fermi seas, i.e., for 	k = 0. On the contrary, the contribution
to transport between Weyl cones with the same chiralities
strongly depends on their relative isospin textures. In the case
of anisotropic isospin textures, when velocities are not all
of the same sign, this is something that can even be tuned
geometrically. From Fig. 4(b), we see that the contribution to
transport that conserves chirality can be tuned from 3/2 (at
δφ = 0) to 3/4 (at δφ = π ) of the contribution from channels
that change chirality.

C. Interface between a Weyl material and a metal

The interface between a normal metal, with a quadratic
band dispersion, and a Weyl semimetal should unavoidably
appear in transport experiments where metallic leads are used
to probe the Weyl semimetals samples. Besides the funda-
mental issue of understanding how chirality is transmitted
to a nonchiral medium, the analysis of the metal to Weyl
semimetal interface is crucial to evaluate the contact resis-
tance in transport measurements [44–46].

In Appendix A 3 we model the junction of a metal with a
Weyl semimetal, where we account for the transition from a
scalar to a spinorial wave function at the interface. The current
operators on either side of the interface are also drastically
different, being momentum dependent in the metal and isospin
dependent in the Weyl semimetal. We show that the transmit-
ted current does not depend on the isospin texture of the Weyl
semimetal, but only on the overlap of its Fermi surface with
that of the normal metal. We thus expect that transport across
the interface of a metal with a Weyl semimetal is independent
of chirality. Also, for 	k = 0, the conductance of a junction
between a Weyl semimetal and a normal metal is smaller than
between two normal metals, as a consequence of the imperfect
overlap between the isospin texture in the Weyl semimetal
with that in the normal metal.

IV. CONCLUSION

We have discussed how and when chirality, a feature of
Weyl quasiparticles, can serve as a well-defined quantity in

transport at a junction between two Weyl semimetals. In par-
ticular we have discussed how a junction can polarize the
current to a single chirality and how chirality is conserved
when cones of opposite chiralities overlap. The polarization
of current to a single chirality mostly occurs for materials with
few and well-separated cones [12,13]. We show that this can
occur at the junction between the Weyl semimetals Ag2S and
Ag2Se along their [001] interface or at the interface between
[111] and [100] orientations of CoSi. In general, it is difficult
to transmit only one chirality with high efficiency because
cones are too close to each other or there are too many of them,
a problem we illustrate with the interface between TaAs and
NbP. We show that transport between overlapping Weyl cones
then strongly depends on their respective isospin textures. For
Weyl nodes of opposite chiralities there is always a nonzero
contribution to transport, implying a nonconservation of chi-
rality. However, for Weyl nodes with the same chiralities, the
conductance strongly depends on the two isospin textures.
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APPENDIX A: BOUNDARY CONDITIONS

We derive the boundary conditions of the heterojunction
from the conservation of the probability current. This ap-
proach has been extensively used to describe the scattering
of Dirac electrons with vacuum [47–50], for example in the
theoretical modeling of Fermi arcs in Weyl semimetals [50].
The minimal constraint to model the boundary with vacuum is
that the time evolution be unitary, i.e., that the average energy
E = 〈ψ |Ĥ |ψ〉 of any state ψ is real. This implies

E − E∗ = −i
∮

∂V
dS · j(r) = 0, (A1)

where ∂V is the boundary of the Weyl medium with vacuum
and j = 〈ψ |vσ̂|ψ〉 is the probability current of a single Weyl
cone. In the case of an interface between two materials, this
expression is instead

E − E∗ = −i
∑

n=L,R

∮
∂V

dSn · jn(r) = 0, (A2)

where the index n refers to each medium. In the main text
we use n = L for the medium at z < 0 and n = R for the
medium at z > 0. A solution to this equation is jL = jR, a
quadratic equation between the component ψ1 and ψ2 of the
wave function on each side of the interface,

〈ψL|vz,Lσ̂z|ψL〉 = 〈ψR|vz,Rσ̂z|ψR〉, (A3)

where we suppose that the interface is normal to z. In the
following we discuss the linearization of this boundary con-
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dition, similar to the approach in Ref. [50], for the scattering
from one Weyl cone to another (Sec. A 1), the scattering from
one Weyl cone to N others (Sec. A 2), and the scattering of a
normal electron gas with a Weyl cone (Sec. A 3).

1. Scattering between two Weyl cones

In the case in which we scatter an electron from one Weyl
cone to another, we can relate the wave function on each side
of the interface, ψL for z < 0 and ψR for z > 0, by a linear
transformation

ψL = ĝ · ψR. (A4)

This equation can be interpreted as a change in the reference
frame when electrons scatter from one Weyl cone to another.
This equation and Eq. (A3) imply that the matrix ĝ satisfies

ĝ†σ̂zĝ = rσ̂z, (A5)

where r = vz,R/vz,L, and a solution to this is

ĝ1 = a11̂ + a2(b1σ̂x + b2σ̂y) (A6)

with a1, a2, b1, b2 ∈ R, a2
1 − a2

2 = r and b2
1 + b2

2 = 1. We see
that there are many possible solutions, determined by surface-
related parameters. The parameters (a1, a2) are solutions to a
hyperbola which can be associated to Lorentz boosts in special
relativity, while (b1, b2) are on the circle which is associated to
rotations. Note that in this work we additionally suppose that
ĝ†

1ĝ1 = |r|1̂, i.e., either a1 = 0 or a2 = 0, so we can interpret
the conservation of current semiclassically like |vzL|�†

L�L =
|vzR|�†

R�R. This constraint is based on physical intuition and
allows us to consider only a subset of possible solutions.

The quadratic equation (A5) has a second solution, ĝ2 =
σ̂zĝ1, that leads to the following boundary condition:

σ̂z�L = ĝ1 · �R. (A7)

This equation resembles the boundary condition using ĝ1,

�L = ĝ1 · �R, (A8)

up to the σ̂z matrix applied to the eigenvector �L of ĤL, with
energy E and in-plane wave vector k‖. Instead, we find that
by multiplying ĤL�L = E�L by σ̂z we have that σ̂z�L is an
eigensolution of

σ̂zĤLσ̂z(σ̂z�L ) = E (σ̂z�L ), (A9)

where σ̂zĤLσ̂z = h01̂ − hxσ̂x − hyσ̂y + hzσ̂z when ĤL =
h01̂ + hxσ̂x + hyσ̂y + hzσ̂z. This way σ̂z�L can be interpreted
as an eigenstate of ĤL defined in Eq. (1) with the replacement
(vx, vy, vz )L → (−vx,−vy, vz )L. We can thus easily map the
results for a boundary equation (A4) with ĝ1 to these with ĝ2

up to a change of sign on (vx, vy)L. In the main text we focus
on the continuity equation with ĝ1 [Eq. (A8)] and our main
findings on the transmission of chirality are unchanged, since
the mapping from ĝ1 to ĝ2 does not affect chirality.

This way we see that we can distinguish two regimes de-
pending on the sign of r = vz,R/vz,L:

(i) In the situation where r > 0, i.e., when the normal
component of the spin helicity does not change sign, we can
always use the solution

ĝ1+ = √
r1̂. (A10)

(ii) In the situation where r < 0, i.e., when the normal
component of the spin helicity changes sign, the previous
solution is not valid. Instead, we can use the solutions

ĝ1− =
√

|r|(b1σ̂x + b2σ̂y), (A11)

with b2
1 + b2

2 = 1. In the main text we write (b1, b2) =
(cos(θ ), sin(θ )).

2. Scattering from one to many Weyl cones

In the case in which we scatter an electron from one Weyl
cone to N others, we again relate the wave function on each
side of the interface, φL for z < 0 and φi,R for z > 0, where
i ∈ [1, N] indexes each Weyl cone, by an ensemble of linear
transformations

ψi,R = ĝiψL, (A12)

where we suppose ĝi are invertible. This implies that all the φi

are related to each other by a relation of the form

ψ j,R = M̂ jiψi,R, (A13)

with M̂ ji = ĝ j ĝ
−1
i = mjiÛji with mji a scalar, that represents

the transmission ratio between i and j channels, and Ûji a
unitary transformation. In the case the transmitted states are
eigensolutions of the original Hamiltonian with energy E , we
find that

Ûi j =
1̂ + Ĥj Ĥi

(E−E0, j )(E−E0,i )(
Tr

(
1̂ + Ĥj Ĥi

(E−E0, j )(E−E0,i )

))1/2
, (A14)

where Ĥi, Ĥj are the Hamiltonians of φi,R and φ j,R, re-
spectively. These Hamiltonians satisfy Eq. (1) with different
velocities vi, momentum shifts bi, and energy shift E0,i.

We insert these relations in the current conservation equa-
tion (A3) and find the equations for ĝ1,

σ̂z = K̂1 +
N∑

i=2

|mj1|2Û †
j1K̂1Ûj1, (A15)

K̂1 = ĝ†
1σ̂zĝ1. (A16)

We decompose K̂1 = ∑3
i=1 wiσ̂i, so Eq. (A15) is linear in

(w1,w2,w3), and determine a unique set of coefficients which
we substitute in Eq. (A16) to compute the solution

ĝ1 =

√
wz +

√
w2

x + w2
y + w2

z

√
2

×
⎛
⎝1̂ + i

wz −
√

w2
x + w2

y + w2
z

w2
x + w2

y

(wyσ̂x − wxσ̂y)

⎞
⎠.

(A17)

In this procedure there is a freedom in the choice of the mj1

coefficients in Eq. (A15) and in Fig. 2(d) we consider that
mj1 = 1 if a state can scatter to cone j and zero otherwise.
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3. Scattering from a normal electron gas to a Weyl semimetal

Here we consider the scattering from a nonrelativistic elec-
tron gas, with Hamiltonian ĤNR = (k2

x + k2
y + k2

z )/2m, to a
Weyl semimetal with N Weyl nodes, described by indepen-
dent wave functions φi, i ∈ [1, N]. The current conservation
now reads, instead of Eq. (A3),

〈�| 1

2mi
(
←−
∂ z − −→

∂ z )|�〉 =
N∑

i=1

vz,i〈ψi|σ̂z|ψi〉, (A18)

where the wave functions are evaluated at z = 0. We map this
conservation relation to a linear transformation, writing

ψi =
(

g1i

g2i

)
�, (A19)

where g1i and g2i are unknown coefficients that relate the
scalar wave function in the metal � to the spinor ψi in
the Weyl semimetal. This expression implies a relationship
between the wave function of each Weyl node of the form
ψi = M̂i1ψ1, with M̂i1 = mi1Ûi1 where mi1 is a scalar and Ûi1

a unitary operator defined in Eq. (A14). The conservation of
probability current then reads

1

i
(
←−
∂ z − −→

∂ z ) = g†
1 2m

(
vz,1σ̂z +

N∑
i=2

vz,i|mi1|2Û †
i1σ̂zÛi1

)
︸ ︷︷ ︸

≡λP̂†σ̂zP̂

g1

(A20)

= λ((P̂g1)†
+(P̂g1)+ − (P̂g1)†

−(P̂g1)−), (A21)

where the underbraced operator is decomposed in a difference
of positively defined operators by a diagonalization. These
operators are projectors on the states (P̂g1)†

± ≡ g†
1P± where

P± are the eigenvectors of eigenvalue ±λ for the underbraced
operator. This way, projecting this equation on the basis of
plane waves, we find

(P̂g1)+ = �(kz )

√
|kz|
λ

|k〉〈k|, (A22)

(P̂g1)− = �(−kz )

√
|kz|
λ

|k〉〈k|, (A23)

so the equation for the scattering coefficients is

g1 · (�i + r�r ) = tψt1 (A24)

⇒(P̂g1) · (�i + r�r ) = t P̂ψt1 (A25)

⇒
⎛
⎝ θ

(
k(i)

z

)√∣∣k(i)
z

∣∣/λ
θ
( − k(r)

z

)√∣∣k(r)
z

∣∣/λ r�r

⎞
⎠ = t

(
(P̂ψt1)+
(P̂ψt1)−

)
(A26)

⇒r =
√√√√∣∣k(i)

z

∣∣∣∣k(r)
z

∣∣ (P̂ψt1)−
(P̂ψt1)+

. (A27)

From this expression we compute the reflectance R = |r|2
and deduce the transmittance T = 1 − R. For example, for
the interface with a single Weyl node, P̂ = 1̂ and λ = vz,1 in

FIG. 6. Transmittance T at the Fermi energy, as a function of
in-plane momenta (kx, ky) from a nonrelativistic electron gas to an-
other (first row) and from a nonrelativistic electron gas to a single
(N = 1) Weyl node (second row). In the figures, the positions of the
Fermi surface for z < 0 and z > 0 are respectively b0,L = 0.9 and
b0,R = 1.1.

Eq. (A21), so we obtain

r = β(k)

α(k)
=

√
1 − vzkz,t/(E − b0,R)

1 + vzkz,t/(E − b0,R)
eiφ, (A28)

where α, β, kz,t , and φ are defined in Eqs. (3)–(5) of the main
text. We illustrate the behaviour of r as a function of in-plane
momenta in Fig. 6. Also, in this situation, the operators g1 and
g2 in the matching condition (A19) are

g1 = �(kz )

√
kz

λ
|k〉〈k|, (A29)

g2 = �(−kz )

√
|kz|
λ

|k〉〈k|. (A30)

APPENDIX B: EXTRACTION OF WEYL
POINT PARAMETERS

We identify possible Weyl semimetal candidate materials
starting from the list of compounds reported in Ref. [51].
There, all nonmagnetic compounds reported in the Inorganic
Crystal Structure Database [52] are investigated for the pres-
ence of Weyl points. As the analyzed heterostructures have to
be experimentally grown as thin films, we restrict the selection
to binary compounds because they are more likely to be grown
as pure and ordered films.

We seek to determine several parameters for each Weyl
point: their location in the Brillouin zone, their velocities, their
energetic position, and chirality.

For the calculations, we apply a hierarchy of meth-
ods starting with density-functional theory (DFT) calcu-
lations as implemented in the VASP package [53] using
the generalized-gradient approximation [54] to describe the
exchange-correlation potential. In the next step, we construct
maximally localized Wannier functions (MLWFs) and the
corresponding tight-binding Hamiltonian with the help of the
WANNIER90 [55] package. As the Wannierization process can
be complex to control, we applied an automated procedure,
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FIG. 7. Workflow for the analysis of the Weyl points. The parameters to control the MLWF generation include the orbital projection and
the inner and outer energy window for the disentanglement. The accuracy is calculated by comparing the energy eigenvalues of DFT, EDFT

n ,
and of the Wannier interpolation, EMLW F

n , in a window of 2 eV around the Fermi level.

which varies the necessary parameters until the Hamilto-
nian is accurate enough. Here, accuracy is defined by taking
the energy difference between the DFT and the Wannier
tight-binding band structures expressed as EDFT

n and EMLW F
n ,

respectively. The comparison was done for an energy window
of 2 eV around the Fermi energy. In the last step, we use the
resulting Hamiltonian to find the location of band crossings
with an implementation of the Nelder-Mead algorithm [56].
At each crossing, the Berry curvature in its close vicinity is
investigated for all cardinal directions, where the orientation,

i.e., pointing inwards or outwards, gives the chirality of the
Weyl point. For each identified Weyl point all necessary pa-
rameters are then evaluated. We also investigate the presence
of trivial bands at the Fermi level.

As the exact position and the slopes of the Weyl cones are
very sensitive to the numerical methods, a cross-check is per-
formed using another DFT code, FPLO [57]. Here, we employ
the Hamiltonians from Ref. [51] to evaluate the robustness
of the calculated parameters. The full workflow is shown in
Fig. 7.

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,
S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Science 294, 1488 (2001).

[2] V. Cerletti, W. A. Coish, O. Gywat, and D. Loss,
Nanotechnology 16, R27 (2005).

[3] L. Šmejkal, Y. Mokrousov, B. Yan, and A. H. MacDonald, Nat.
Phys. 14, 242 (2018).
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