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Time-resolved investigation of plasmon mode along interface channels in integer
and fractional quantum Hall regimes
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Quantum Hall (QH) edge channels appear not only along the edge of the electron gas but also along an inter-
face between two QH regions with different filling factors. However, the fundamental transport characteristics
of such interface channels are not well understood, particularly in the high-frequency regime. In this study, we
investigate the interface plasmon mode along the edge of a metal gate electrode with ungated and gated QH
regions in both integer and fractional QH regimes using a time-resolved measurement scheme. The observed
plasmon wave form was delayed and broadened due to the influence of the charge puddles formed around
the channel. The charge velocity and diffusion constant of the plasmon mode were evaluated by analyzing the
wave form using a distributed circuit model. We found that the conductive puddles in the gated region induce
significant dissipation in plasmon transport. For instance, a fractional interface channel with a reasonably fast
velocity was obtained by preparing a fractional state in the ungated region and an integer state in the gated region,
whereas a channel in the swapped configuration was quite dissipative. This reveals a high-quality interface
channel that provides a clean path to transport fractional charges for studying various fractional QH phenomena.
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I. INTRODUCTION

Quantum Hall (QH) edge channels formed along the
edge of a two-dimensional electron gas (2DEG) in a high
magnetic field govern the transport characteristics of the
system [1–3]. While the linear dc conductance can be ex-
plained with a single-particle picture [4,5], transport in the
nonequilibrium and high-frequency regime involves collective
excitations called edge magnetoplasmons (chiral plasmons).
A charge density wave in the plasmon mode propagates
along the channel for a long distance with small damping
[6–14], indicating that the plasmon approach is appropriate
for describing the charge dynamics of the system. Recent
experiments have revealed nontrivial many-body effects, such
as spin-charge separation [15–17] and charge fractionalization
[18–20], which can be explained in terms of Tomonaga-
Luttinger liquids. The coupling of chiral plasmon modes plays
an essential role in these effects. In general, when two QH
regions with different Landau-level filling factors are placed
side-by-side, a chiral one-dimensional (1D) channel is formed
along the interface between them [20–22]. This interface
channel is essential for studying Tomonaga-Luttinger liquids,
as well as hole-conjugate fractional QH states [23,24]. Even
for a single interface channel, a full understanding of charge
dynamics is desirable for transporting fractional charges and
heat in a 1D circuit [20,25–27]. However, the fundamen-
tal transport characteristics of the interface plasmon modes
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are not well understood, particularly in the high-frequency
regime. Unlike edge channels that are confined by a large
external confining potential, the interface channel is supported
solely by the small electrochemical potential difference be-
tween the two QH regions. As the interface potential is gentle,
with negligible drift-velocity contribution, the plasmon veloc-
ity should be dominated by the Coulomb interaction. More
importantly, random impurity potentials in both QH regions
influence the interface mode, which must be considered when
designing a high-quality channel.

In this study, we investigate the interface plasmon mode in
both integer and fractional QH regimes. First, we introduce
a distributed circuit model to describe how chiral plasmon
transport can be influenced by diffusion processes in charge
puddles. Then, a single interface channel is experimentally
defined by preparing two QH states in the gated and ungated
regions of an AlGaAs/GaAs heterostructure. Plasmon trans-
port was investigated by exciting a charge wave packet in the
channel and detecting it with a time-resolved charge detector.
The obtained plasmon wave form is delayed and broadened
during transport, from which the velocity and diffusion con-
stant are evaluated with the model. A significant reduction
in velocity accompanied by broadening of the wave packet
is observed when the QH state under the gate is conductive
even slightly. This can be overcome by placing a slightly
conductive state in the ungated region. Indeed, a fractional
interface channel with a reasonably fast velocity is obtained
with a fractional state in the ungated region and an integer
state in the gated region. Such high-quality interface channels
are desirable for transporting fractional charges.
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FIG. 1. Circuit model for the channel-puddle coupling.
(a) Schematic cross section around the interface channel formed
between two QH states with filling factor νB in the bulk of ungated
region and νG in the gated region. The interface channel and charge
puddles formed under the gate coupled to the gate with a geometric
capacitance CC and Cp, respectively. (b) Schematic illustration of
the puddle array (blue closed curves) present in the gated region
with a width w from the channel and a local conductance σp.
(c) Distributed circuit model describing the coupling of the channel
with the diffusive charge motion in the puddles. (d) Calculated
wave number k′ and decay rate k′′ as a function of frequency ω

using representative parameters: CC = 0.4 nF/m, Cp = 5 nF/m, and
τ = 12.5 ns for (νG, νB) = (1, 2) in our device. Vertical dashed line
marks the condition ωτ = 1.

II. DISTRIBUTED CIRCUIT MODEL
FOR INTERFACE CHANNEL

We consider an interface channel formed in an
AlGaAs/GaAs heterostructure partially covered with
a metal gate biased at an appropriate gate voltage, as
shown in Fig. 1(a) [20,21]. Two QH states are formed
with Landau-level filling factors, namely νB in the bulk
of the ungated region and νG in the gated region. The
interface channel has a conductance of σC = �νe2/h with
�ν = |νB − νG|. In practice, the electrostatic potential of
each QH region is spatially fluctuated by remote impurities or
other factors, and thus charge puddles exist everywhere with
excess or deficit of the filling factors [28]. These conducting
charge puddles provide a microscopic model for dissipative
bulk conduction in the presence of disorders. Although the
bulk of the QH states at integer and fractional fillings can
be insulating with vanishing longitudinal conductivity owing
to the Anderson localization [29], there may be conducting
charge puddles locally coupled to the channel in each QH
region. Although these puddles should not alter the standard
dc conductance as far as the bulk is insulating, they can
influence plasmon transport. We consider conductive puddles
only in the QH region under the gate, as shown in Fig. 1(b),
as these puddles have a large capacitance to the gate. A
significant fraction of charge in the plasmon mode can be
trapped by the puddle capacitors, which makes the plasmon
mode dispersive and dissipative as shown in the following

analysis. Similar conductive puddles may exist in the ungated
QH region but should have only a minor effect on the plasmon
mode owing to their small capacitance to the gate. We assume
that the overall ensemble of the conductive puddles is
characterized by an effective local longitudinal conductivity
σp (� σC) for effective width w.

Such disorder effect can be understood with a distributed
circuit model, as shown in Fig. 1(c), where only an array of
puddles (solid circles) is considered for simplicity [20,30–
34]. The puddles are coupled to the channel with conductance
g⊥ = σp/w and to the neighboring puddles with conductance
g// = σpw. The channel and puddles have capacitances CC

and Cp, respectively, to the ground (or gates). These elements
are defined as distributed elements with proper units for a
unit length. While coupling capacitances may be considered
in parallel to g⊥ and g//, these capacitances can be absorbed
in CC, Cp, and g⊥, and thus neglected, in the long-wavelength
limit. The model describes how the chiral plasmon mode in
a 1D channel is coupled to the diffusive motion in the puddle
array. Using the current conservation law, we obtain a coupled
wave equation:

CC
∂VC

∂t
= −σC

∂VC

∂x
− g⊥(VC − Vp), (1)

Cp
∂Vp

∂t
= g//

∂2Vp

∂x2
+ g⊥(VC − Vp), (2)

for the voltages VC(x, t ) of the channel and Vp(x, t ) of the
puddles. Here, we considered chiral current (σCVC) in the
channel, nonchiral current (g//∂Vp/∂x) in the puddle array,
and scattering current [g⊥(VC − Vp)] between the channel and
the puddles. We find a solution in the form of exp[i(kx − ωt )]
with frequency ω and complex k = k′ + ik′′, where the real
part k′ and the imaginary part k′′ describe the wave num-
ber and decay rate, respectively. We investigate the interface
plasmon mode weakly coupled to the diffusive modes by ne-
glecting the k2 and k3 terms in the secular equation. We focus
on the long-wavelength limit with wavelength λ � w and
the weak-scattering limit with g⊥g// � σ 2

C (i.e., σp � σC). In
these limits, k′ and k′′ are approximately given by

k′ ∼= CC + Cp(1 + ω2τ 2)−1

σC
ω, (3)

k′′ ∼= ω2τCp

σC(1 + ω2τ 2)
, (4)

where τ = Cp/g⊥ is the effective charging time of the pud-
dles. As shown in the dispersion relation in Fig. 1(d), the
dissipation is significant at a higher frequency (ω � 1/τ ), and
thus we expect the plasmon transport to be visible only in the
range of k′′ � k′ (i.e., ωτ � 1). As the actual charging time
is distributed in the ensemble of the puddles, the use of this
model with the effective τ should be restricted to the region of
ωτ � 1. In the low-frequency regime at ωτ � 1, the charge
wave propagates at a constant velocity vC = σC/(CC + Cp)
with a decay length l = σC/ω2τCp. When an initial wave
packet is introduced to the channel, the packet is broadened
during propagation. By neglecting the ω2τ 2 term, the wave
packet will be broadened in a Gaussian form

VC ∝ exp[−(t − x/vC)2/4Dx] (5)
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with a diffusion constant D = τCp/σC. We use vC and D to
characterize the puddles in the system. When a finite ω2τ 2

term is taken into consideration, the mode becomes dispersive
and the wave packet shows asymmetric broadening with a
long tail. The asymmetric broadening can be simulated using
Eqs. (3) and (4) in the frequency domain or by numerically
integrating Eqs. (1) and (2).

It should be noted that the above model can be applied to
the case where the bulk is slightly conductive. Based on the
theory of the edge magnetoplasmon mode with a semiclassical
treatment [35–37], the charge of mode is scattered into the
bulk but still confined near the edge unless the charge reaches
the opposite edge of the sample. This penetration length can
be considered as w in our model. Then, the velocity reduction
and broadening can be understood with the model even for
QH states with nonvanishing longitudinal conductance, like
fractional states in the following experiment.

III. DEFINING INTERFACE CHANNELS

Figure 2(a) shows a schematic view of the device, which
was fabricated from a standard GaAs/AlGaAs heterostructure
with a 2DEG located h = 100 nm below the surface [20].
A perpendicular magnetic field B was applied to prepare a
QH state with a filling factor νB in the bulk. By applying an
appropriate gate voltage Vg to the large metal gate (yellow re-
gion), another QH region with a different filling factor νG was
prepared in the gated region so that the interface channel was
formed along the perimeter of the gate. The electron density
was 1.85 × 1011 cm−2 in the dark and 2.07 × 1011 cm−2 after
light irradiation at low temperature. All measurements were
carried out at ∼50 mK and in a magnetic field up to 12 T.

Low-frequency transport through the interface channel was
investigated using a Corbino-type device with four ohmic
contacts [labeled 	1, 	2, 	3, and 	4 in Fig. 2(a)], which
are attached to the inner edges of the hollowed 2DEG region
[38]. A four-terminal measurement of the interface channel is
made by probing the voltage difference Vxx between 	1 and
	2 under current I3 flowing from 	4 to 	3, as shown in the
inset of Fig. 3(a). Figure 3(a) shows the color-scale plot of
Vxx as a function of the gate voltage Vg and magnetic field B.
The overall patterns can be understood with a variation of νB

in the bulk shown by horizontal lines (black) and νG under
the gate shown by inclined lines (red). Vanishing Vxx, which
appears as white regions, is seen around the intersections of
two lines with different νG and νB (for νG = νB, there is no
interface channel). For example, at (νG, νB) = (1, 2) marked
by the square, the interface channel with �ν = 1 (spin-down
branch of the lowest Landau level) connects the ohmic con-
tacts, while the other channels for the spin-up branch are
isolated from each other, as shown in Fig. 3(c). Transport
through this single interface channel was confirmed by ob-
serving two-terminal conductance G2w between 	1 and 	2

with other ohmic contacts floating. As shown in Fig. 4(c),
G2w shows a clear plateau G2w = e2/h around Vg = −0.13 V
corresponding to (νG, νB) = (1, 2). Bulk scattering was con-
firmed to be negligible in both gated and ungated regions from
the vanishing four-terminal resistance Rxx = Vxx/I3 ∼ 0, as
shown in Fig. 4(d).

The connection between the interface channel and the
ohmic contacts is not straightforward in some cases. For
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FIG. 2. Device and experimental setup for the time-resolved
measurement. (a) Schematic view of the device. An interface channel
is formed around the perimeter of the central gate (yellow region) by
applying a voltage Vg with νG (= 2/3) in the gated region set in the
bulk νB (= 1). The interface channel is separated from the outer edge
by a distance of 
 = 100 μm and can be connected by scattering
with edge channels emanating from ohmic contacts in the Corbino
geometry. (b) Setup for the time-resolved measurement. An initial
charge packet is excited by applying a voltage step to the gate GI. The
charge packet transmitted through the junction Y, interface channel
(L = 420 μm), and junction Y′ can be detected by applying a voltage
pulse to the gate GD.

example, at (νG, νB) = (2/3, 1), the conductance of the in-
terface channel is fractional (�ν = 1/3) and that of the
edge channel emanating from the ohmic contact is integral
(�ν = 1). They are bound to form a composite �ν = 2/3
channel, where �ν = 1 and 1/3 channels are counterpropa-
gating in proximity [23], as illustrated in Fig. 3(b). Therefore,
transport through the interface channel requires tunneling
and equilibration inside the composite channel [39]. Be-
cause the �ν = 2/3 channel in our device (∼300 μm) is
longer than the typical equilibration length (about 10 μm) to
reach the equal electrochemical potential of the two channels
[38,40], the counterpropagating channels must be fully equili-
brated. This was confirmed by observing that the two-terminal
conductance G2w exhibits a plateau at e2/3h, as shown in
Fig. 5(d). The Rxx data in Fig. 5(e) show a minimum at around
(νG, νB) = (2/3, 1). However, the small but finite Rxx that re-
mains even at the minimum influences the plasmon transport,
as shown in plasmon wave forms.

In the case of (νG, νB) = (2/3, 1), it is worth to noting
that the interface channel (�ν = 1/3) is well isolated from
the �ν = 1 channel along the outer edge of the device. This
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FIG. 3. Low-frequency characteristics of the interface channel.
(a) Color plot of Vxx measured as a function of gate voltage Vg and
magnetic field B. The four-terminal measurement setup is shown in
the inset: A source voltage Vs = 30 μV at frequency 37 Hz is applied
between 	4 and 	3, voltage Vxx is measured with 	1 and 	2, and
current I3 at 	3 is monitored to obtain the resistance Rxx = Vxx/I3.
The channel structures at conditions marked with solid symbols are
sketched in (b) and (c). (b) Channel structure at νG = 2/3 and νB =
1, where the interface channel �ν = 1/3 is connected to the integer
channel �ν = 1 through charge scattering. (c) Channel structure at
νG = 1 and νB = 2, where the interface channel �ν = 1 (spin-down
branch of the lowest Landau level) connected the ohmic contacts and
the channels of spin-up branch are isolated. (d) Vg dependence of
two-terminal conductance G measured at νB = 1. (e) Measurement
setup for obtaining G and channel structure for the condition marked
by the solid circle in (d).

can be regarded as an artificial realization of the hierarchical
edge structure without equilibration, for which two-terminal
conductance of 4e2/3h was anticipated [23,39]. To test this
idea, an effective two-terminal conductance measurement was
performed by connecting the inner and outer ohmic contacts
(	1–	′

1, and 	2–	′
2) with all other ohmic contacts floating,

as shown in Fig. 3(e). The conductance shows a clear plateau
at 4e2/3h as a function of Vg, when the fractional QH state
(νG = 2/3) is formed at Vg = −0.08 V, as marked by the red
circle in Fig. 3(d). This also ensures the formation of a single
isolated interface channel (�ν = 1/3) in our device.

IV. PLASMON MEASUREMENT

A. Time-resolved measurement scheme

To evaluate the plasmon transport, we employed a time-
resolved wave form measurement scheme. As shown in
Fig. 2(b) for (νG, νB) = (2/3, 1), the injection gate GI is
prepared with being fully depleted underneath by applying
a sufficiently large negative static voltage (−300 mV). The
addition of a voltage step (VI = 15 mV) to the injection gate
GI further depletes nearby regions, and the depleted electrons

travel as a pulsed charge packet in the edge channel (�ν = 1).
This charge packet propagates as an edge mode along the
perimeter of the hollow before entering the interface channel.
To avoid possible nonlinear effects [10], the induced rf current
is kept at a low level (∼0.1–10 nA) which is comparable to or
smaller than the current (∼1 nA) in the low-frequency Rxx

measurements.
The connection between the edge channel and the interface

channel can be understood by considering the transmission
at the junction (Y junction) of the three channels (�ν = νB,
νG, and |νB − νG|) [20]. One third of the incident charge on
the �ν = 1 channel goes to the �ν = 1/3 channel, while the
remainder goes to the composite �ν = 2/3 channel and is
absorbed in a grounded ohmic contact. After traveling through
the interface channel (�ν = 1/3) of length L = 420 μm, the
charge packet is transferred to another edge channel through
the other junction (Y′).

The resultant charge packet is detected by applying a volt-
age pulse (VD = 20 mV) of width tw = 0.08–260 ns to the
detection gate GD with a controlled time delay td from the
injection voltage step. The wave form of the charge packet
can be obtained from the td dependence of dc current ID at 	2.
Experimental details of this scheme can be found elsewhere
[16,18,20]. Because the edge mode without metal on top has
much faster charge velocity as compared to the interface mode
with a nearby metal [41], we ignore the time-of-flight in
this short ungated edge channel. The time origin of td was
determined from the peak position of a reference trace taken
at zero magnetic field, where the wave packet propagates in
2DEG at much faster velocity (∼107 m/s) [41]. The delay
of the peak position at high field can be used to determine
the charge velocity, which has been well characterized for the
general edge plasmon modes [7,12,14].

As shown in Fig. 4(a), a clear peak with a narrow width of
∼0.45 ns, comparable to the earlier reports [41,42], shows a
reasonably high time resolution obtained with tw = 0.08 ns.
In our previous report, we showed that the charge in the wave
packet was fractionalized at the Y junctions with a quantized
ratio [20]. We focus on the plasmon transport in the interface
channel in this paper. The scheme can be applied to interface
channels of other realizations (νB �= νG > 0) as well as to
edge channels with full depletion under the gate (νB �= νG =
0). This allows direct comparison between the interface and
edge modes.

B. Interface mode in the integer QH regime

We first investigate the plasmon modes in the integer QH
regime. Figure 4(b) shows the charge wave form in the current
ID as a function of delay time td, obtained for various gate
voltage Vg at B = 4.2 T with νB = 2. The large signal at
νG = 0 (full depletion under the gate at Vg < −0.28 V, shown
by the blue traces) is attributed to the propagation in the edge
plasmon mode along the �ν = |νB − νG| = 2 edge channel,
as illustrated in the upper inset. The small but clear signal
at around νG = 1 (Vg ∼ −0.13 V, shown by the red traces)
indicates the propagation through the interface plasmon mode
in the �ν = 1 channel, as shown in the lower inset. The
wave packet passing through the interface channel (νG = 1)
is delayed and slightly broadened as compared to that through
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FIG. 4. Interface plasmon mode in integer QH regime. (a) Refer-
ence wave form measured at B = 0 T. The time origin is determined
by the peak position. (b) Waterfall plot of current ID as a function
of delay time td for various Vg values from 0 V (the bottom trace
at νG

∼= 2) to −0.4 V (the top trace at νG = 0) with step 0.01 V
obtained at B = 4.2 T (νB = 2). These wave forms are detected with
a pulse width tw = 0.15 ns and repetition time trep = 0.15 μs. The
edge channel at νG = 0 and interface channel at νG = 1 are illustrated
in the respective insets. (c)–(g) Vg dependence of conductance G2w

in (c), Rxx in (d), tTOF in (e), tFWHM in (f), and charge normalized by
the value (∼530e) at Vg = −0.35 V in (g). The charge velocity vc

and diffusion constant Dc are shown on the right axes of (e) and (f),
respectively.

the edge channel (νG = 0). At other gate voltages including
Vg ∼ 0 V corresponding to νG = 2 (the lowest trace), very
weak or almost no signal is detected as no well-defined chan-
nels are formed between the injector and the detector.

We extracted the representative time of flight tTOF from the
peak position and the full width at half maximum tFWHM of the
peak, as shown in Figs. 4(e) and 4(f), respectively. These char-
acteristics are compared with the two-terminal conductance
G2w shown in Fig. 4(c) and the longitudinal resistance Rxx in
Fig. 4(d). For the interface mode (�ν = 1 at νG = 1), shown
by red symbols in Figs. 4(e) and 4(f), both tTOF and tFWHM

become minimum at the center of the G2w = e2/h plateau
and the vanishing Rxx (Vg ∼ −0.13 V). Interestingly, both tTOF

and tFWHM increase rapidly when νG deviates only slightly
from 1, despite that no measurable changes are seen in G2w

and Rxx. This is in contrast to other studies of the edge plas-
mon mode, where the velocity and width can properly scale
with the conductivity [6–8]. Based on the model described
in Sec. II, the charge wave form probes the local puddles
that are located under the gate and effectively coupled to the
channel. The charge velocity vc = L/tTOF and the diffusion

constant Dc = t2
FWHM/16(ln 2)L are shown on the right axes

of Figs. 4(e) and 4(f) as a guide, while the values might be
influenced by the asymmetric broadening.

A similar analysis can be made for the edge channel
formed at Vg = −0.30 ∼ −0.28 V, where tTOF and tFWHM

increase rapidly when νG increases only slightly above 0,
where puddles appear under the gate. The data for the edge
mode (�ν = 2) can be quantitatively compared with that for
the interface mode (�ν = 1) by noting that both tTOF and
tFWHM are inversely proportional to the channel conductance
σC (∝ �ν). Namely, the tTOF and tFWHM values increasing with
νG at νG � 1 are close to double those increasing at νG � 0.
In the case of the edge mode, the puddles under the gate can
be completely eliminated by applying sufficiently negative Vg

(< −0.3 V), where tTOF and tFWHM decrease further due to the
reduction of CC and Cp [14]. However, for the interface mode,
the puddles are always present even at integer filling νG = 2,
and electron (hole) puddles develop for νG > 2 (νG < 2).

While we observed significant broadening for the interface
mode, the charge must be confined within the edge as far
as Rxx remains zero. The charge in the wave packet, which
is evaluated by the area of the current peak in Fig. 4(b), is
plotted as a function of Vg in Fig. 4(g), where the vertical
axis is normalized by the value at Vg = −0.35 V (νG = 0). As
compared to the charge for the edge mode (�ν = 2) at νG =
0, the charge for the interface mode (�ν = 1) at νG = 1 is
approximately halved because only one channel is connected
between the �ν = 2 edges along the hollows. This ratio is
not necessarily to be exactly 1/2 and should be determined
by the charge distribution between the two channels along the
hollow [16]. Nevertheless, the ratio close to 1/2 indicates that
the charge remains in the interface mode in the vicinity of
νG = 1 where Rxx ∼ 0. This is the signature of broadening
associated with the local conductive region (the charge pud-
dles). The charge in the charge wave packet decays rapidly
when Rxx becomes finite, but this strong dissipative regime
studied in previous works [6–8] is not within the scope of this
paper.

C. Interface mode in the fractional QH regime

We can apply the model developed in Sec. II to the weak
dissipative regime where the bulk Rxx is finite but small so that
the charge is well confined near the edge. The model suggests
that the puddles significantly influence the interface mode if
the QH state under the gate is not completely insulating, as in
the νG = 2/3 case in our device. Figures 5(a) and 5(b) show
the plasmon wave forms ID(td ) for various Vg (0 � νG � 1)
at B = 8.7 T (νB = 1). As shown in Fig. 5(a), a sharp peak
is resolved when an integer channel (νG = 1) is formed with
full depletion under the gate (νG = 0 at Vg < −0.32 V). No
wave packet signal for fractional channels was detected with
this short tw (= 0.08 ns) and trep (= 32 ns), because the
wave packet was broadened too much. Even in this situation,
clear plasmon transport should appear at lower frequencies
[ω < 1/τ in Eqs. (3) and (4)]. This was confirmed in our
experiment just by increasing the excitation and detection time
to tw = 260 ns and trep = 13 μs (the measurement frequency
ranges from ∼1/trep to ∼1/tw), as shown in Fig. 5(b). With
this board “boxcar” window of tw, the sharp peak for �ν = 1
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FIG. 5. Interface plasmon mode in the fractional QH regime.
(a)–(c) Waterfall plot of current ID as a function of delay time td

for various Vg obtained at B = 8.7 T (νB = 1). The data in (a) with
Vg from −0.28 V to −0.4 V are measured with a short detector
pulse width tw = 0.08 ns and repetition time trep = 32 ns. The data in
(b) with Vg from 0.004 V to −0.3 V are measured with tw = 260 ns
and trep = 13 μs. The edge channel at νG = 0 and interface channel
at νG = 2/3 are illustrated in the respective insets. The deconvoluted
wave form at νG = 0, 1/3, and 2/3 is shown in (c), obtained by
deconvolution of the wave form in (b) with the 260 ns “boxcar”
window. (d)–(h) Vg dependence of conductance G2w in (d), Rxx in (e),
tTOF in (f), tFWHM in (g), and charge normalized by the value (∼8000e)
at Vg = −0.3 V in (h). The charge velocity vc and diffusion constant
Dc are shown on the right axes of (f) and (g), respectively.

is broadened into a rectangular shape as seen in the topmost
trace at Vg = −0.3 V. When the fractional interface channel
(�ν = 1/3) is activated with νG = 2/3 at Vg = −0.092 V, a
clear charge wave packet is observed as shown by the red
traces in Fig. 5(b). Similarly, the wave packet through another
fractional interface channel (�ν = 2/3) activated with νG =
1/3 at Vg = −0.204 V is also resolved (the green traces).
As this measured wave form is slightly influenced by the
wide boxcar window, the actual wave form can be estimated
by taking the deconvolution as shown in Fig. 5(c) for the
representative cases at νG = 0, 1/3, and 2/3. Significant time
delay and broadening are clearly seen for the interface modes.

In the same way as in the integer case, tTOF, tFWHM, and
the charge of the charge packets are plotted in Figs. 5(f),
5(g) and 5(h), respectively. Here, the values estimated from
the deconvoluted wave forms are shown by open symbols.
First the charge normalized by the value at νG = 0 is found
to be 2/3 and 1/3 when the fractional channels �ν = 2/3
and 1/3 are formed, respectively. This means that the charge

is conserved within the interface channel even though Rxx is
finite [20]. This validates that the obtained tTOF and tFWHM can
be analyzed with our model shown in Sec. II. The fractional
interface channels have much slower velocities, ∼1.8 km/s
for the interface �ν = 1/3 channel and ∼4.4 km/s for the
�ν = 2/3 channel, as compared to ∼100 km/s for the �ν =
1 edge channel.

The significantly different velocities can be related to the
local conductivity σp due to the ensemble of puddles intro-
duced in Sec. II. To see this, we made a crude estimate of
σp = C2

p /DσC by assuming Cp � CC, which is justified when
the velocity of the interface plasmons, ∼σC/(Cp + CC), is sig-
nificantly lower than that of the edge plasmons, ∼σC/CC, with
no puddles under the gate. This σp can be compared with dc
conductivity by ignoring the possible frequency dependence.
For this comparison, we use the four-terminal conductance gxx

instead of the conductivity by ignoring the unknown geomet-
rical factor (on the order of 1), where gxx can be obtained as
gxx = Rxx/(R2

xx + R2
xy) ∼= Rxx(νGe2/h)2 for sufficiently small

Rxx (� Rxy = h/νGe2). We find comparable values for σp and
gxx: σp 	 0.021e2/h and gxx 	 0.02e2/h for the �ν = 1/3
channel (νG = 2/3), σp 	 0.007e2/h and gxx 	 0.002e2/h for
the �ν = 2/3 channel (νG = 1/3), and σp 	 0.005e2/h and
gxx � 0.001e2/h (noise level) for the �ν = 1 channel (νG =
1). This supports the validity of the model and suggests that
smaller σp is preferred for small broadening of the wave
packet.

The above analysis should be performed in the low-
frequency limit (ωτ � 1) of our model (Sec. II). This is
related to the choice of the boxcar window (tw). The effec-
tive charging time τ = Cpw/σp is estimated from the above
Cp and σp. Here, w 	 Cph/εGaAs can be estimated from a
parallel-plate capacitance approximation between the puddle
and the gate. By considering the measurable frequency range
of ω = 2π/trep ∼ π/tw, ωτ ranges 0.04 ∼ 1 for the �ν = 1/3
channel (νG = 2/3) and 0.03 ∼ 0.7 for the �ν = 2/3 chan-
nel (νG = 1/3). This indicates that the wave packet becomes
visible by restricting ourselves in the low-frequency regime
(ωτ � 1) with large tw.

The influence of charge puddles can be reduced by increas-
ing the energy gap of the QH state in the gated region. This
can be done by increasing B and simultaneously increasing
the electron density to maintain the same νG. Figure 6(a)
shows several wave forms ID(td ) (solid circles) as well as their
deconvolution (open circles) at fixed νG = 2/3 with different
B and Vg, while the state in the ungated region remains insulat-
ing in the range of 0.98 < νB < 1.16. Under these conditions
denoted by (νG, νB) = (2/3,∼ 1), the wave packet becomes
sharper and less delayed with increasing B.

The slow velocity can also be interpreted with weak
Coulomb interaction screened by the gate for distributed
charges in the puddles. Ultimately, the velocity might be
decreased to the single-particle drift velocity vd = E⊥/B de-
termined by the perpendicular electric field E⊥ and magnetic
field B. While we do not know typical vd values for the
interface channels, the data in Fig. 6(a) do not follow the
1/B dependence. This implies that the slow velocity is still
dominated by the Coulomb interaction and can be understood
with the geometric capacitances in the model.
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D. Normalized velocity

We repeated such measurements under various conditions
(νG, ∼νB). The Rxx from the four-terminal measurement and
vc evaluated from the plasmon measurement are summarized
in Figs. 6(b) and 6(c), respectively. Here, the normalized
velocity vc/�ν is plotted in Fig. 6(c), because the velocity
increases in proportion to �ν of the channel. The verti-
cal axis is translated to the capacitance C = �νe2/hvc, as
shown on the right axis. This capacitance can be understood
as the total capacitance C = CC + Cp based on the puddle
model in Sec. II. The normalized velocity of the edge chan-
nel with νG = 0 is constant as shown by the blue triangles
for (νG, νB) = (0, 3), (0, 2), (0, 1), and (0, 2/3), where no
puddles are present under the gate. In contrast, the interface
channels show smaller normalized velocities, as shown by
the squares for (νG, νB) = (1, 3) and (1, ∼2) in the integer
regime and circles for (νG, νB) = (2/3,∼ 1) and (1/3, ∼2/3)
in the fractional regime. Note that the normalized velocity
for (νG, νB) = (2/3,∼ 1) increases with B. This is consistent
with the gradual reduction of Rxx with increasing B, as shown
by the circles in Fig. 6(b). The steep increase in Rxx seen at
both ends of the (νG, νB) = (2/3,∼ 1) data is attributed to the
backscattering in the ungated region, as νB is deviated greatly
from 1. However, no visible change in the velocity is seen even
when the scattering in the ungated region sets in. This supports
the validity of our model in which the gate capacitance of the
puddles plays an important role in determining the velocity
and broadening of the plasmon.

Among the various conditions for our devices, the frac-
tional interface channel �ν = 1/3 at (νG, νB) = (1, 2/3)
shows reasonably fast plasmon velocity, as shown by the star
in Fig. 6(c). This was measured with positive Vg = 0.215 V to
prepare a νG = 1 QH state under the gate of a similar device,
as described in Ref. [20]. This contrasts with the slow veloci-
ties obtained when νG and νB are swapped, i.e., for (νG, νB) =
(2/3,∼ 1). In other words, placing the highly insulating ν =
1 region under the gate and the poorly insulating ν = 2/3 re-
gion away from the gate significantly reduces the capacitance
of the puddles. As the data for (νG, νB) = (1, 2/3) were taken
at higher B, the larger gap of the 2/3 state (and hence smaller
Rxx) could be partially responsible for the higher velocity. This
should have a minor effect, as in Fig. 6(c), because extrapolat-
ing the vc/�ν data for (νG, νB) = (2/3,∼ 1) to higher B does
not reach the value for (1, 2/3). As the normalized velocity
at (νG, νB) = (1, 2/3) is close to the value obtained with the
integer interface channels as well as general edge channels,
the channel is barely affected by the puddles in the gated
region. This suggests the interface fractional channel at (1,
2/3) has a similar small capacitance C ≈ CC, in stark contrast
to the large C ≈ Cp (� CC) at (2/3, ∼1) that is dominated
by the puddle capacitance. Such clean fractional channels are
highly desirable for transporting fractional charges.

E. Asymmetric wave form

Most of the charge wave forms presented here are
broadened asymmetrically with a longer tail. This can be un-
derstood as retardation due to the puddles. By using an initial
wave packet in a Gaussian form of width τ , we calculated the
final wave form after propagation by numerically integrating

ν ν

Δν

FIG. 6. Velocity of interface plasmon mode. (a) Wave forms
(solid circles) and their deconvolution (open circles) at fixed νG =
2/3 with different B and Vg, where νB changes slightly around 1.
Simulated wave forms using (CC, Cp) values are plotted in solid
lines, where C (= CC + Cp) and g⊥ were obtained from tTOF and
tFWHM, respectively, and CC is obtained from the fitting. (b), (c) B
dependence of resistance Rxx in (b), and normalized charge velocity
vc/�ν for several (νG, νB) conditions in (c). Data points are marked
with circles for fractional interface channel at (νG, νB) = (2/3, ∼ 1),
(1/3, ∼ 2/3), and star at (1, 2/3), quadrangles for integer interface
channels at (νG, νB) = (1, 3) and (1, ∼ 2), triangles for edge chan-
nels at (νG, νB) = (0, 3), (0, 2), (0, 1), and (0, 2/3), and are filled with
white for the device in the dark and light colors for the device after
light irradiation. The velocity obtained from the deconvoluted wave
forms are shown with small solid circles. The channel capacitance C
is shown on the right axis of (c).

Eqs. (1) and (2). This reproduces the asymmetric broadening,
as shown by the solid lines in Fig. 6(a), where CC is adjusted to
fit the curve to the data. Our simple model considers puddles
with representative conductance σp and capacitance Cp. In
reality, more puddles with different parameters are present
around the channel. Some puddles with higher conductance
to the channel can contribute to increasing CC in the model.
This could be the reason why CC increases with decreasing B
in the fitting. Other puddles with lower conductance (longer
retardation) were neglected in our model, which could be the
reason for the remaining deviation in the long tail. Puddles
in the ungated region with small capacitance can be included
in the model for a better understanding. While the model can
be improved by considering the variation of the puddles, the
presented model captures most of the experimental features
including the asymmetric broadening.

It should be emphasized that our model can also be
used to understand the dissipation of the conventional edge
magnetoplasmon mode. The effects of disorder on the edge
magnetoplasmon have been theoretically studied without con-
sidering the effect of the gate metal [37], which helped to
understand the velocity reduction and wave form broadening
observed at noninteger filling [33,43]. Our model reveals the
crucial role of the gate-puddle capacitive coupling on the
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dissipation of the plasmon mode, which explains why these
effects become more pronounced in gated samples [41].

V. CONCLUSIONS

In summary, we have investigated the interface plasmon
mode in both integer and fractional QH regimes using a
time-resolved wave form measurement scheme. The obtained
plasmon wave form is delayed and broadened, which can be
well understood with a distributed circuit model describing
the coupling of the plasmon mode with the diffusion process
in the charge puddles. The mode is influenced more strongly
by the puddles in the gated region than by those in the ungated
region. Indeed, when a fractional state with a small energy
gap is on the gated side, the fractional channel is subject
to significant velocity reduction and broadening. Meanwhile,

a clean fractional channel with a reasonably fast velocity is
realized when placing the fractional state on the ungated side.
Such high-quality interface fractional channels can be further
utilized to transport fractional charges for studying the non-
trivial fractional statistics [44–47] and can be used to explore
the many-body quantum dynamics in the fractional quantum
edge state.
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