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A. M. Grudinina ,1 I. L. Kurbakov ,2 Yu. E. Lozovik,2,3 and N. S. Voronova 1,4,*

1Theoretical Physics Department, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
115409 Moscow, Russia

2Institute for Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow, Russia
3MIEM, National Research University Higher School of Economics, 101000 Moscow, Russia

4Russian Quantum Center, Skolkovo IC, Bolshoy Boulevard 30 Bld. 1, 121205 Moscow, Russia

(Received 14 June 2021; revised 19 August 2021; accepted 23 August 2021; published 8 September 2021)

Microcavity exciton-polaritons, known to exhibit nonequilibrium Bose condensation at high critical tempera-
tures, can also be brought in thermal equilibrium with the surrounding medium and form a quantum degenerate
Bose-Einstein distribution. It happens when their thermalization time in the regime of positive detunings—or,
alternatively, for high-finesse microcavities—becomes shorter than their lifetime. Here we present the self-
consistent finite-temperature Hartree–Fock–Bogoliubov description for such a system of polaritons, universally
addressing the excitation spectrum, momentum-dependent interactions, condensate depletion, and the back-
ground population of dark excitons that contribute to the system’s chemical potential. Employing the derived
expressions, we discuss the implications for the Bogoliubov sound velocity, confirmed by existing experiments,
and define the critical temperatures of (quasi)condensation and the integral particle lifetime dependencies on the
detuning. Large positive detunings are shown to provide conditions for the total lifetime reaching nanosecond
timescales. This allows realization of thermodynamically equilibrium polariton systems with Bose-Einstein
condensate forming at temperatures as high as tens of Kelvin.

DOI: 10.1103/PhysRevB.104.125301

I. INTRODUCTION

Spectra of low-lying collective excitations in weakly in-
teracting Bose gases, essential for describing superfluidity
in quantum fluids, are strongly dependent on correlations
induced in the Bose condensate and the shape of both the
single-particle spectrum and the interaction potential. Ad-
ditionally, in the systems where the Galilean invariance is
broken, like in systems with momentum-dependent mass and
particle interactions, the Landau criterion for superfluidity
is inapplicable and there is no way to define the superfluid
density through the regular calculation of the mass flow
[1,2]. One recent example of such a system is a Bose gas
of exciton-polaritons—half light, half matter two-dimensional
(2D) quasiparticles—whose macroscopic degeneracy is rou-
tinely observed at high critical temperatures nowadays [3–5].

When discussing Bose condensation, the lower branch of
the exciton-polariton energy dispersion becomes of interest.
It has an essentially nonparabolic shape strongly dependent
on the detuning between the cavity photon and the exciton
modes � = ε

ph
0 − Eg (here ε

ph
0 is the cavity photon energy at

normal incidence and Eg the exciton band-gap energy) and
the Rabi splitting between the upper (UP) and lower (LP)
polariton branches. However, the general approach consists
of dividing the LP spectrum into the parabolic photonlike
“condensate” part in the region p ∼ 0, and the high-energy
excitonlike states treated as a “reservoir”, which is needed
to support the existence of this condensate. This approach

*nsvoronova@mephi.ru

captures the dynamics of single-energy polariton condensates,
governed by the driven-dissipative Gross-Pitaevskii equation
(GPE), very well [6–9]. At the same time, such descrip-
tion neglects polaritons with varying p > 0, which feature
the momentum-dependent change of the exciton-photon ratio
that influences the effective mass, lifetime, and the polariton-
polariton interaction. Recently, effort has been taken to derive
the modified version of the dissipative GPE renormalized by
reservoir-bogolon scattering [10], as well as to include the
reservoir-bogolon and bogolon-bogolon scattering in terms of
Boltzmann kinetic equations into description of the polariton
relaxation [11].

In the general case, for polariton gases, the excitation
spectrum is expected to be different from the equilibrium
Bogoliubov dispersion due to the decaying nature of the sys-
tem and the presence of the excitonic reservoir [6,10]. One
theoretical possibility is that such a dissipative spectrum of
excitations becomes complex, with the real part being either
gapped or diffusive in the region of small momenta [12,13],
preventing one from regularly defining the Bogoliubov sound
velocity cs. However, the momentum range where this behav-
ior could be observed shrinks with the growth of the polariton
lifetime, which leads to the requirement of very large con-
densates where such a nonsonic behavior could be resolved.
On the other hand, including the reservoir-bogolon scattering
within the hybrid Bolzmann–Gross–Pitaevskii model [10] al-
lows us to recover linear, though damped, Bogoliubov modes
at low wave vectors, which is supported by the experimental
evidence to date [14–18]. A more detailed study of the Bogoli-
ubov spectrum branch population mechanisms [19] revealed
that the observations deviate from the expected dependencies
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for negative (photonic) detunings, indicating the influence of
nonequilibrium effects, whereas they are consistent with the
equilibrium theory for positive (excitonic) detunings. At the
same time, there is a discrepancy between the expected and
observed sound velocity [15,16,20], not explained by either
the textbook Bogoliubov theory [21] or its dissipative modi-
fications, which is ascribed to the significant influence of the
reservoir and finite temperature effects. It is a call for further
investigations and better understanding of the polariton col-
lective excitation behavior.

The purpose of this paper is therefore to examine the
polariton condensate and its excitations at nonzero tempera-
tures, in the Hartree–Fock–Bogoliubov (HFB) approximation,
treating the noncondensate particles up to the excitonlike
(reservoir) part of the dispersion self-consistently. Notably,
the HFB theory has previously been applied to the coupled
photon-exciton system [22] to describe the onset of the po-
lariton off-diagonal long-range order at low densities. Here,
we consider densities well in the condensed region of the
phase diagram of Ref. [22], deriving the corrections to the
usual Bogoliubov theory due to finite temperatures, full non-
parabolic polariton spectrum, and the momentum-dependent
interactions of the particles. The sound velocity obtained
within our theory is shown to be in good agreement with
the existing experimental data. We address the applicability
of the HFB theory at T �= 0 in the domain of the exciton
interaction strength and the detuning to Rabi splitting ratio,
and suggest an intuitive way to stitch the HFB description
of Bose condensation to the hydrodynamic (HD) description
of superfluid behavior, which is applicable in the regime of
intermediate correlations (i.e., at elevated densities) [23,24].
This allows us to obtain the critical transition temperatures,
both for condensation and quasicondensation, in all ranges of
parameters in consideration. We show that at large positive
detunings that ensure longer particle lifetimes and allow the
system to be described in the assumption of equilibrium [25],
the critical temperature stays high compared to the temper-
atures of the exciton Bose condensation [26]. Furthermore,
we discuss the integral polariton lifetime dependency on the
detuning and the influence of presence of dark excitons.

II. HARTREE–FOCK–BOGOLIUBOV APPROXIMATION

Lower-polariton thermalisation toward equilibrium with
the surrounding medium requires faster relaxation toward
thermal distributions and slower particle decay, which was
experimentally shown to be reached with increasing positive
photon-exciton detunings [25]. The detuning directly controls
the exciton fraction in the polariton,

X 2
p = 1

2

⎛
⎝1 + �p√

(h̄�)2 + �2
p

⎞
⎠, (1)

where �p = � + p2/2mph − p2/2mex, mph = ε
ph
0 ε/c2 and

mex are the photon and exciton effective masses respectively,
c is the velocity of light in vacuum, ε the dielectric constant,
and h̄� denotes the Rabi splitting at zero momentum and �.

The LP and UP particle operators are given by

P̂p = XpQ̂p +
√

1 − X 2
pĈp, Ûp = −

√
1 − X 2

p Q̂p + XpĈp,

respectively, with Q̂p and Ĉp being the annihilation operators
of the exciton and cavity photon. When X 2

p are large, the
LP–phonon and LP–LP scattering rates toward low-energy
states increase [4], allowing lower polaritons to thermal-
ize faster than their lifetime which is governed mainly by
photons:

τLP(p) = τph

1 − X 2
p

. (2)

Keeping that in mind, as well as the drastic increase in mi-
crocavities state of the art assuring photon lifetimes τph of
tens to hundreds of picoseconds, we will build an equilibrium
finite-temperature theory for a uniform exciton-polariton sys-
tem with � � 0, based on the standard bosonic case [21,27].

We consider the polariton system assuming that both the
detuning and the Rabi splitting are small compared to the
exciton band-gap energy: � � Eg, h̄� � Eg, and that the UP
branch at low temperatures is not populated. In this case,

Q̂p = XpP̂p, Ĉp =
√

1 − X 2
p P̂p. (3)

The bare LP spectrum, counted from the bottom of the disper-
sion, reads

εp = E0 + �p

2
− 1

2

√
�2

p + (h̄�)2 + p2

2mex
, (4)

where E0 = [
√

(h̄�)2 + �2 − �]/2. Expression Eq. (4) al-
lows us to derive for p → 0 the known effective polariton
mass dependence on the detuning [4]:

1

mLP
= 1

2mph

(
1 − �√

�2 + (h̄�)2

)
. (5)

An example of the LP dispersion Eq. (4) is shown in Fig. 1 by
the green solid line. Introducing the characteristic momentum
p̃ = √

2mLPE0, one obtains the parabolic dispersions in the
two limiting cases εp ≈ p2/2mLP for p � p̃ (black solid line
in the inset of Fig. 1) and εp ≈ E0 + p2/2mex for p � p̃
(green dotted line). Both the polariton mass mLP and the
depth of the polariton well E0 can be widely tuned. While
for negative and zero detunings polaritons stay photonlike,
positive � yield two essentially different cases. For � � h̄�,
one has E0 � h̄� and the Hopfield coefficient X 2

0 ∼ 1 − X 2
0 ,

providing mLP ∼ mph. On the contrary, for � � h̄� one gets
a shallow polariton well E0 ≈ (h̄�)2/4� � h̄�, and the po-
laritons become excitonlike X 2

0 ≈ 1 − (h̄�)2/4�2 	 1, with
the effective mass mLP � mph.

Since one of our major goals is to account for finite
temperatures, the modifications produced in the Bogoliubov
description (at T = 0) by the full nonparabolic polariton dis-
persion Eq. (4) and momentum-dependent interactions are
discussed in Appendix A. Here, we focus on the case T > 0.
Following the procedure introduced by Griffin [28] for atomic
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FIG. 1. Solid lines: The bare LP dispersion εp (green), single-
particle spectrum εB

p renormalized by interactions at T = 0 (dark
blue) and at T = 20 K (light blue), collective excitations spectrum
Ep at T = 0 (dark red) and at T = 20 K (pink). For single particle
dispersions, dotted lines of the corresponding colors show the asymp-
totic behavior at p � p̃, as given in the text. For the Bogoliubov
spectra, dashed lines of the corresponding colors indicate the linear
law cs p at p → 0. Vertical dotted line shows the light cone boundary
prad = Eg

√
ε/c. Inset: Same for the enlarged region of low momenta,

with additional parabolic asymptotic behaviors p2/2mLP (black solid
line) and p2/2mB (gray solid line) at p � p̃. Small arrows indicate
the trend for the dispersions change with temperature. All spectra are
plotted for the following physical parameters: Eg = 1.6 eV, ε = 13,
mex = 0.22m0, h̄� = 7.2 meV, � = 10 meV, n = 6 × 1010 cm−2,
g = 1.0 μeV μm2.

gases, we start with the LP Hamiltonian

Ĥ =
∫

P̂†(r)[ε(−ih̄∇) − μ]P̂(r)dr

+ 1

2

∫
Q̂†(r)Q̂†(r′)U (r − r′)Q̂(r′)Q̂(r)drdr′

+
∫

ˆ̃Q†(r)Q̂†(r′)Ũ (r − r′)Q̂(r′) ˆ̃Q(r)drdr′, (6)

where ε(−ih̄∇) is given by Eq. (4) with the substitution of
the first-quantized momentum operator, μ is the chemical
potential of the system, and

P̂(r) = 1√
S

∑
p

e
i
h̄ p·rP̂p, Q̂(r) =

∫
X (r − r′)P̂(r′)dr′

(7)
are the lower polariton and the exciton field operators, re-
spectively (S being the quantization area). Here we have
introduced the notation

X (r − r′) = 1

S

∑
p

e
i
h̄ p·(r−r′)Xp,

∫
X (r)dr = X0, (8)

where one can switch to integration 1
S

∑
p → ∫ dp

(2π h̄)2 , since
we define Xp as the positive square root of the right-hand
side of Eq. (1). In Eq. (6), we have additionally taken into
account the interaction of exciton-polaritons with dark exci-
tons, whose field operator is denoted as ˆ̃Q(r). In the general

case, the interaction between the bright and dark excitons
Ũ (r) does not coincide with the bright exciton-exciton inter-
action U (r), since the scattering length as is spin dependent.
We assume that the dark excitons do not convert into bright
excitons [ ˆ̃Q(r), Q̂†(r′)] = 0, and hence do not take part in
the condensation process, while they still contribute to the
chemical potential [29].

Using the Hamiltonian Eq. (6) and the commutation re-
lation [P̂(r), Q̂†(r′)] = X (r − r′), one gets the Heisenberg
equation for the polariton field operator:

ih̄
∂

∂t
P̂(r, t ) = [ε(−ih̄∇) − μ]P̂(r, t )

+
∫

X (r− r′)Q̂†(r′′, t )U (r′ − r′′)Q̂(r′′, t )Q̂(r′, t )dr′dr′′

+
∫

X (r − r′) ˆ̃Q†(r′′, t )Ũ (r′− r′′) ˆ̃Q(r′′, t )Q̂(r′, t )dr′dr′′.

(9)

To rewrite Eq. (9) in the Hartree–Fock approach, we sepa-
rate the condensate in both fields [28,30],

P̂(r, t ) = √
n0 + P̂′(r, t ), Q̂(r, t ) = X0

√
n0 + Q̂′(r, t ),

(10)
where n0 is the LP condensate density,

Q̂′(r, t ) =
∫

X (r − r′)P̂′(r′, t )dr′, (11)

and the average with the Gibbs density matrix 〈P̂′(r, t )〉 =
〈Q̂′(r, t )〉 = 0. Using Eqs. (10) and the self-consistent HFB
approximation

Q̂′†(r′′)Q̂′(r′′)Q̂′(r′) = 〈Q̂′†(r′′)Q̂′(r′′)〉Q̂′(r′)

+ Q̂′(r′′)〈Q̂′†(r′′)Q̂′(r′)〉 + Q̂′†(r′′)〈Q̂′(r′′)Q̂′(r′)〉 (12)

(the time variable is omitted for clarity) brings the second term
in Eq. (9) to the mean-field form

Q̂†(r′′)Q̂(r′′)Q̂(r′)

= X0
√

n0
[
X 2

0 n0 + n′
Q + ρ ′

1Q(r′′, r′) + m′
Q(r′, r′′)

]
+ Q̂′(r′)

(
X 2

0 n0 + n′
Q

)+ Q̂′(r′′)
(
X 2

0 n0 + ρ ′
1Q(r′′, r′)

)
+ Q̂′†(r′′)

(
X 2

0 n0 + m′
Q(r′′, r′)

)
. (13)

The third term in Eq. (9) in the same approximation is

ˆ̃Q†(r′′) ˆ̃Q(r′′)Q̂(r′) = [X0
√

n0 + Q̂′(r′)]ñ. (14)

In Eqs. (13) and (14), the following notations have been
introduced for noncondensate exciton density and one-body
density matrix, the anomalous average, and the density of dark
excitons, respectively:

n′
Q ≡ 〈Q̂′†(r)Q̂′(r)〉 =

∫
X 2

p 〈P̂†
p P̂p〉 dp

(2π h̄)2
, (15)

ρ ′
1Q(r, r′)≡ 〈Q̂′†(r)Q̂′(r′)〉 =

∫
X 2

p e
i
h̄ p·(r′−r)〈P̂†

p P̂p〉 dp
(2π h̄)2

,

m′
Q(r, r′)≡ 〈Q̂′(r)Q̂′(r′)〉 =

∫
X 2

p e
i
h̄ p·(r′−r)〈P̂pP̂−p〉 dp

(2π h̄)2
,

ñ ≡ 〈 ˆ̃Q†(r) ˆ̃Q(r)〉. (16)
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In fact, since we have neglected the spin-flip processes be-
tween the dark and bright excitons, the theory presented below
is also applicable for the case when the density ñ is that
of any background particles (such as electrons, trions, in-
coherent excitons, etc.) that principally do not convert into
polaritons but still interact with their excitonic fraction via
the potential Ũ (r). It is important to note that the back-
ground particles (electrons, in particular) should be of low
density compared to the density of polaritons, so as not
to influence the exciton-exciton interaction. For the case of
doped semiconductors where the electron densities can be
made high, polariton-electron interaction gets enhanced by
light-matter coupling, as shown recently in Ref. [31] for 2D
transition-metal dichalcogenides (TMDs). We consider the
regime where such renormalizations are negligible.

To include ñ in our calculations quantitatively, within the
equilibrium description we assume that this background pop-
ulation is that of excitons of s − 1 spin degrees of freedom,
i.e.,

ñ =
s∑

σ=2

∫
1

e(E0+p2/2mex )/T − 1

dp
(2π h̄)2

. (17)

In particular, for GaAs s = 4, with σ = 1 corresponding to
the Bose-condensed polaritons, σ = 2 to the second bright
branch that does not undergo condensation, and σ = 3, 4
to dark excitons. Estimates show that the branch σ = 2,
despite being coupled to light, is occupied mostly in the
high-momenta excitonic region p > p̃, so their dispersion law
in Eq. (17) is taken coinciding with the exciton dispersion
[32]. The current assumptions [29] work well in the regime
of continuous-wave pumping, allowing us to treat total den-
sity n of polaritons as experimentally controllable quantity
even when there are equilibrium species populating the other
branches σ = 2, 3, . . . , s.

Following Popov [33], we discard the anomalous noncon-
densate term: m′

Q(r, r′) = 0. However, in contrast to Ref. [33],
it is justified not by the smallness of the condensate fraction
n0/n which is large in our case, but by fact that the exciton
pair interaction becomes dressed up to the Beliaev ladder (a
more detailed discussion is provided in Appendix B). Within
the introduced framework, averaging the Heisenberg Eq. (9)
yields the expression for the chemical potential of polaritons:

μ = X0

∫
X (r′)U (r′ − r′′)

[
X 2

0 n0 + n′
Q + ρ ′

1Q(r′′, r′)
]
dr′dr′′

+ X0ñ
∫

X (r′)Ũ (r′ − r′′)dr′dr′′. (18)

In the case of contact interaction for both bright and dark
excitons, U (r) = gδ(r), Ũ (r) = g̃δ(r), the expression (18)
reduces to

μ = gX 2
0

(
X 2

0 n0 + 2n′
Q

)+ g̃X 2
0 ñ. (19)

For the sake of generality, however, we assume for all
derivations, unless stated otherwise, the exciton-exciton pair
interaction to have a general (not delta-functional) shape. This
makes all the formulas applicable to the cases when inter-
action cannot be approximated as contact, e.g., when large
momenta are considered or when one deals with dipolar exci-

tons. In the following, we will denote g = U (0) �= U (p �= 0),
where U (p) is the Fourier image of U (r).

Subtracting from Eq. (9) its averaged version, one gets the
equation for the noncondensed fraction of the polariton field
P̂′(r, t ),

ih̄
∂

∂t
P̂′(r, t ) = [ε(−ih̄∇) − μ]P̂′(r, t )

+
∫

X (r−r′)U (r′−r′′)
[
Q̂′(r′, t )

(
X 2

0 n0 + n′
Q

)
+ Q̂′(r′′, t )

(
X 2

0 n0 + ρ ′
1Q(r′′, r′)

)+ Q̂′†(r′′, t )X 2
0 n0

]
dr′dr′′

+ g̃ñ
∫

X (r − r′)Q̂′(r′, t )dr′, (20)

where Q̂′(r, t ) is given by Eq. (11). After the Fourier trans-
form

P̂′(r) = 1√
S

∑
p �=0

P̂pe
i
h̄ p·r, Q̂′(r) = 1√

S

∑
p �=0

XpP̂pe
i
h̄ p·r,

Eq. (20) takes a simple form,

ih̄
∂

∂t
P̂p(t ) = (

εB
p + μp

)
P̂p(t ) + μpP̂†

−p(t ), (21)

with the renormalized single-particle spectrum

εB
p = εp + (

X 2
p − X 2

0

)[
g
(
X 2

0 n0 + n′
Q

)+ g̃ñ
]

+
∫

X 2
p′
[
X 2

pU (p − p′) − X 2
0 U (p′)

]〈P̂†
p′ P̂p′ 〉 dp′

(2π h̄)2

(22)

and

μp = U (p)X 2
0 X 2

p n0. (23)

The superscript B in Eq. (22) and below stands for “Bogoli-
ubov”, denoting that the renormalizations are derived within
the HFB approximation (12). The appearance of the spectrum
εB

p in the Heisenberg Eq. (21) for the LP field operator instead
of the bare spectrum εp is due to the fact that polariton inter-
action contains an extra dependence on momentum compared
to the exciton interaction: ULP(p) = X 2

0 X 2
pU (p). Correspond-

ingly, both the depth of the polariton well and the effective
mass get renormalized:

εB
p ≈

{
p2/2mB, p � p̃
E0 + μ(1 − X 2

0 )/X 2
0 + p2/2mex, p � p̃,

(24)

1

mB
= 1

mLP

(
1 + 2μ√

�2 + (h̄�)2

)
. (25)

This renormalization is present both at zero and finite T . It
should be noted that, while in the second line of Eq. (24) the
chemical potential μ is given by Eq. (18), in Eq. (25) it should
be taken in the shape (19), as U (p) ≈ U (0) for p � p̃. The
example of the spectrum εB

p is plotted in Fig. 1 by the dark
blue (for T = 0) and light blue (for T = 20 K) solid lines.
One can see that, while for p → 0 the dispersions εp, εB(T =0)

p

(given by (A4)) and εB
p differ negligibly, for higher momenta

p � p̃, the difference starts to play a role. The ratio of the
renormalized particle effective mass mB to mLP is less than
unity and it is nonmonotonous with respect to �, displaying
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FIG. 2. (a) Change of the renormalized particle effective mass
relative to the lower polariton mass mB/mLP for T = 0 (solid lines)
and T = 10 K (dashed lines), depending on the energy detuning,
for three values of the interaction strength g = 1 (green), 2.5 (blue),
and 6 μeV μm2 (red lines) and the total density n = 3 × 1010 cm−2.
(b) Absolute value of mB depending on the detuning, for T = 0
(solid) and T = 10 K (dashed lines), for two values of total polariton
density as marked, for g = 2.5 μeV μm2. For both (a) and (b), the
dotted lines of the corresponding colors show the same dependencies
when the density ñ of dark excitons is included in consideration, with
g̃ = g. Other parameters as in Fig. 1.

a pronounced minimum for larger interactions, as shown in
Fig. 2(a). However, since mLP is itself detuning dependent
[see Eq. (5)], the dependence of mB on � is regular, with
lower slopes for higher temperatures and larger densities [see
Fig. 2(b)].

From Eq. (21), using the Bogoliubov transformation

P̂p(t ) = upα̂p(t ) − vpα̂
†
−p(t ), P̂†

p (t ) = upα̂
†
p(t ) − vpα̂−p(t )

(26)
with u2

p − v2
p = 1 and

α̂p(t ) = α̂pe− i
h̄ Ept , α̂

†
−p(t ) = α̂

†
−pe

i
h̄ Ept ,

one gets the spectrum of elementary excitations of the polari-
ton Bose gas in HFB approximation,

Ep =
√

εB
p

(
εB

p + 2μp
)
, (27)

and the Bogoliubov coefficients

u2
p, v

2
p = (Ep ± εB

p )2

4εB
p Ep

= 1

2

(√
1 + μ2

p

E2
p

± 1
) = εB

p + μp ± Ep

2Ep
.

(28)

The main general results of our consideration so far are the
analytical expressions for chemical potential (18), renormal-
ized particle spectrum (22), and the spectrum of elementary
excitations (27). In all expressions, the influence of finite tem-
perature is implicitly included via the noncondensate exciton
density n′

Q and the background dark density ñ. Calculating the
occupation number

np = 〈P̂†
p P̂p〉 = v2

p + 2v2
p

eEp/T − 1
+ 1

eEp/T − 1
, (29)

where the temperature T is expressed in energy units, one gets
the following set of integral equations [see Eqs. (15)]:⎧⎪⎨

⎪⎩
n0 +

∫
np

dp
(2π h̄)2

= n

n′
Q −

∫
X 2

p np
dp

(2π h̄)2
= 0.

(30)

Solving Eq. (30) together with Eq. (29) allows us to find
the polariton condensate and noncondensate densities n0 and
n′ = ∫

npdp/(2π h̄)2, and obtain εB
p , mB, and Ep according

to Eq. (27) quantitatively, for each value of the detuning �

and injected polariton density n at different temperatures.
The exemplary results of such calculations are shown in the
above Figs. 1 and 2 for � = 10 meV (at the Rabi splitting
h̄� = 7.2 meV). In particular, one can see in Fig. 1 that the
spectrum of collective excitations, shown by red solid lines,
at finite T shifts considerably not only in the region of large
momenta (like εB

p compared to εp) but also at p � p̃. Change
of the slope of the linear part of the dispersion (red dashed
lines) results in the change of the Bogoliubov sound velocity
(see below in more details). Finally, solving the Eq. (30) at
different T and n allows us to obtain the critical temperature
of Bose condensation TC (defined as the temperature at which
n0 → 0) for a finite polariton system and its dependence on
the detuning.

III. RESULTS AND DISCUSSION

Prior to addressing the critical temperature of transi-
tion to the Bose-condensed state and the applicability of
the developed description, we focus on the influence of fi-
nite temperature on the collective excitations spectrum and
its dependence on the polariton density and detuning. For
calculations presented below, we have used the exciton inter-
action in the shape of the Lennard–Jones potential U (r) =
h̄2/(mexx2

0 )[(x0/r)12 − (x0/r)6] with x0 = 14.14 nm for the
case T = 0. For finite T , for simplicity of calculations using
the implicit scheme involving Eqs. (29) and (30), we used
the contact potential U (r) = gδ(r) with different interaction
constants g (from 1 to 6 μeV μm2 [34]). It is important to
note, however, that even within the simplified description, the
choice of the interaction constant g for each value of n is
an open question, especially for the systems allowing high
densities, such as TMDs [35] or organic polariton condensates
[36]. Furthermore, for gases of dipolaritons [37] where exci-
tons interact as dipoles, even in the case of weak interactions
and low densities the full treatment with the inclusion of U (p)
would be essential, since the dipole-dipole interaction is not
short-ranged.

A. The Bogoliubov spectrum and sound velocity

Calculating the asymptotic value of the momentum-energy
dispersion Eq. (27) at large momenta p � p̃ for T > 0 [us-
ing Eq. (24)] and T = 0 [using Eq. (A4)], one sees that the
high-momentum tail of Ep can get shifted either up or down
with the temperature increase, depending on the detuning,
Rabi splitting, and polariton density. In particular, in the
case n′/(2n′

Q + ñ) < (1 − X 2
0 )/X 2

0 (2 − X 2
0 ), which happens at

near-zero detunings or at large contributions of ñ, the tail of
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FIG. 3. (a) The spectrum of collective excitations Eq. (27) at
h̄� = 7.2 meV for T = 0 (dashed), 10 K (dark solid), and 20 K
(light solid lines, where applicable), for energy detunings � = 0
(black), 10 meV (red, blue), and 30 meV (green), for the total polari-
ton densities n = 2 × 1010 cm−2 and n = 6 × 1010 cm−2 as marked;
g = 2.5 μeV μm2. Inset: Close-up on the region p ∼ 0, only the
lines for � = 0 and 30 meV are shown for clarity. (b), (c) Low-
momenta region of the spectrum Ep for h̄� = 15.8 meV, for � = 0
(b), and � = 10 meV (c) for total densities as marked. The dashed
lines represent the dispersions for T = 0. In (b), thin black lines for
T = 10 K and coinciding colored thick lines for T = 20 K. In (c),
solid lines for the temperatures as marked.

the dispersion goes up with T . This is shown in Fig. 3(a) (for
h̄� = 7.2 meV) at � = 0: for both presented values of n, the
dispersions at T = 20 K (solid gray lines) go higher at large
p than those for T = 0 (dashed black lines). However, with
the increase of � this inequality does not hold any longer and
all dispersions shift down for higher T [see Fig. 1 and colored
lines in Fig. 3(a)]. Critical � at which this change happens
depends on h̄� and n, as those implicitly enter the inequality
above.

Analysis of the low-momenta region of Ep is not as
straightforward. Looking at the asymptotics of the spectrum
Eq. (27) at p � p̃, one gets the regular Bogoliubov lineariza-
tion Ep(p → 0) = cs p with

cs =
√

μ − X 2
0 (2gn′

Q + g̃ñ)

mB
. (31)

It is important to note that the numerator in Eq. (31) dif-
fers from the chemical potential μ (similarly to the result
of Ref. [10]), and the denominator contains the renormalized
effective mass mB given by Eq. (25) instead of mLP, due to the
presence of finite-temperature contributions n′

Q and ñ. Thus,

FIG. 4. (a) The sound velocity cs according to Eq. (31) versus
temperature T for � = 0 (black dotted lines), 10 meV ≈ 0.6h̄�

(green solid lines), and 30 meV ≈ 1.9h̄� (red dashed lines), for
values of the total polariton density n from 1 to 6 × 1010 cm−2 as
marked. For this panel, h̄� = 15.8 meV, ñ = 0. (b) cs dependent on
the detuning � at T = 10 K, for different polariton densities (as
marked), without (dashed) and with the dark excitons ñ taken into
account (red solid lines), assuming g̃ = g. Here, h̄� = 7.2 meV. For
both panels, g = 2.5 μeV μm2. The yellow stars indicate the value
of the standard Bogoliubov sound velocity cBog

s = √
gnX 4

0 /mLP for
the corresponding densities, calculated at � = 0. In (b), the yellow
dotted lines show cBog

s (�) for n = 1–6 × 1010 cm−2.

we analytically recover the deviation of the sound veloc-
ity from the standard Bogoliubov definition cBog

s = √
μ/mLP,

which is regularly observed in experiments and is usually at-
tributed to dissipative nature of polaritons [15,16,20]. Indeed,
even with the simplifying assumptions of very low tempera-
ture T → 0 that would result in μ ≈ gn0X 4

0 , one gets from

Eq. (31) the ratio cs/cBog
s ≈

√
1 + 2μ/

√
(h̄�)2 + �2. Com-

paring it to existing experiments [15,16], which both report
cs extracted from the slope of the dispersion to be higher than
cBog

s calculated from the measured blueshift, with the param-
eters given in Ref. [15] one gets cs = 1.138cBog

s , and with the
parameters of Ref. [16] cs = 1.265cBog

s . While the number for
cBog

s is not given in Ref. [15], our result is in close agreement
with the numbers reported in Ref. [16] (cs = 1.95 μm/ps vs
cBog

s = 1.45 μm/ps). The increase of the sound velocity com-
pared to the value at T = 0 is seen in Fig. 3(b) (� = 0) and
in Fig. 3(c) (� ≈ 0.6h̄�) for T = 10 K (dark blue line), both
for the total density n = 2 × 1010 cm−2. Considering higher
temperatures [see Fig. 3(c), light blue line], higher �/h̄�

[Fig. 3(a)], or higher densities [Fig. 3(b), n = 6 × 1010 cm−2]
results in an inverse effect of lowering cs with respect to cBog

s ,
which has also been observed in experiment [20].

To better analyze this change of the slope and hence the
sound velocity, in Fig. 4 we plot cs against T and � for various
values of the density n. As clearly seen in Fig. 4(a), at low
temperatures and not too high detunings, velocity given by
Eq. (31) is higher than cBog

s calculated for the same values of
gn (indicated by the yellow marks), whereas at the increase
of T the sound velocity is lowered until it drops to zero when
the temperature approaches TC for given n and � (see below).
At higher detunings (the red dashed lines for � ∼ 2h̄�), cs is
considerably lower than cBog

s for all values of n. Interestingly,
there is a peak observed in the dependence of cs on � in the re-
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gion of small detunings: all lines for � = 10 meV in Fig. 4(a)
at low temperatures go higher than those for � = 0. The same
peak is clearly seen in Fig. 4(b), where cs is plotted against
� at T = 10 K. Additionally, Fig. 4(b) shows the change
of the sound velocity when the density of dark excitons is
accounted for according to Eq. (17). One sees that for a given
set of (n,�, T ), the sound velocity increases when the dark
population is considered. However, since ñ also contributes
to the chemical potential, with respect to measured blueshift
cs appears effectively decreased. The complication of treating
this case analytically is due to the dependence of n′

Q, ñ on both
T and the injected density of polaritons n, which makes the
functional dependence of cs on μ rather sophisticated. Such
analysis, as well as the consideration of out-of-equilibrium
background particles, lies out of the scope of the current paper.

B. Integral polariton lifetime

Calculation of the occupation number Eq. (29) allows us to
find the mean integral lifetime of polaritons in the system at
the temperature T ,

1

τ
= 1

n + ñ2

[
n0

τLP(0)
+
∫ 〈P†

p Pp〉
τLP(p)

dp
(2π h̄)2

+ ñ2

τex

]
, (32)

with τLP(p) given by Eq. (2), ñ2 being the occupation of the
second exciton branch [see Eq. (17)] which is also coupled to
light [32], and the integration performed up to the edge of the
exciton radiative zone, i.e., up to prad = Eg

√
ε/c. In Eq. (2),

we take τph = 10 ps to be the same for all momenta, while
this may not always hold as the quality factor of microcavities
drops with the increase of the photon angle of incidence with
respect to the cavity normal. At the same time, with the
increase of p at large positive detunings, τLP(p) calculated
using Eq. (2) quickly reaches the exciton lifetime τex (ranging
from 0.5 to 1 ns, see, e.g., Ref. [38]), so the integrand in the
second term of Eq. (32) should be cut off at the momentum
corresponding to τLP(p∗) = τex. From p∗ to prad, τLP is taken
constant and equal to τex. For large detunings, this cutoff
appears at low momenta, so the assumption τph ≈ const is
valid.

The results of calculations according to Eq. (32) are shown
in Fig. 5 for T = 0, 10, and 20 K, depending on �. The slight
deviation of the lines for the two densities at T = 0 is the
result of using the Lennard-Jones potential as the exciton-
exciton interaction. If contact interaction with a fixed g is used,
the curves at T = 0 for all n coincide. For T > 0, increasing
temperature results in rapid growth of the lifetime with �:
a larger noncondensate fraction is longer lived compared to
the condensate particles, hence τ becomes larger. The integral
particle lifetime is a quantity of interest because the conden-
sate and noncondensate fractions are mutually transforming
into each other, and while the condensate lifetime can be short,
the total lifetime of the system is much larger, and it is exactly
the quantity that has to be compared with the relaxation time
when discussing thermal equilibrium. One can see that for
moderate and large densities (2 × 1010 cm−2 and higher), τ

reaches nanoseconds, which is much larger than the expected
relaxation time [25]. This supports correctness of our original
assumption of equilibrium at increased positive �, justifying
the developed theoretical approach. For n � 1 × 1010 cm−2

FIG. 5. Integral polariton lifetime τ according to Eq. (32) de-
pendent on the detuning, for T = 0 (dashed), T = 10 K (solid),
T = 20 K (dotted lines), for the densities n = 1010 (yellow), 2 × 1010

(black), 3 × 1010 (gray), 4 × 1010 (green), 6 × 1010 (blue), 8 × 1010

(red), 9 × 1010 (magenta), and 1.1 × 1011 cm−2 (purple). For T = 0,
the lines for all densities almost coincide, so here we show the de-
pendencies for 2 × 1010 and 8 × 1010 cm−2 only. For T > 0 the rapid
increase of the integral lifetime is due to the fact that with the growth
of �, the critical temperature TC is approached and the condensate
fraction drops (at different � for different n). Since for smaller
densities TC is reached earlier, a different number of lines is shown
for 10 K and 20 K. In this figure, h̄� = 7.2 meV, g = 2.5 μeV μm2,
τph = 10 ps, τex = 0.5 ns.

and for small or zero detunings, the theory is applicable for
high-Q microcavities which ensure larger τph.

C. Critical temperature of condensation

The theory developed in Sec. II allows us to self-
consistently define the critical temperature of Bose-Einstein
condensation (BEC) in a finite polariton system of the size
L. For that, as in previous subsections, we solve Eq. (30)
together with Eqs. (27)–(29) for each temperature, defining
this way the dependence of the condensate density n0 on T
for every value of the total density n and the detuning �

that we treat as external parameters. The critical temperature
of transition is then found by extrapolating the dependence
n0(T ) → 0. Such calculations were performed for multiple
values of h̄� and g in consideration. In Fig. 6, we show two
cases of resulting dependencies of TC on � for each density
n (solid lines). Since the particles’ effective mass increases
with � [see Fig. 2(b)], the critical temperature drops from
several tens of K at zero detuning to below 10–20 K (20–40 K)
for small (large) Rabi splittings as � exceeds 2h̄�. In this
regime, polaritons become excitonlike as their exciton fraction
X 2

0 grows up to almost unity. These TC stay high compared to
the temperatures of exciton condensation (∼0.1 K [26]), since
the polariton mass still stays orders of magnitude lower than
mex due to the maintained strong coupling to photons.

For these calculations, we assumed the system size L =
100 μm and cut the integration in Eq. (30) from below at
2π h̄/L. As the system size is increased, the Bogoliubov
description starts to fail in accordance with the Hohenberg–
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FIG. 6. Critical temperature of Bose condensation TC (solid
lines) and quasicondensation TQC (dashed lines) for different values
of the total polariton density n = 1, 2, 4, 6, 8 × 1010 cm−2 (bottom
to top). (a) h̄� = 7.2 meV, g = 2.5 μeV μm2. For � below 3h̄�, TC

coincides with TQC for all considered values of n. Inset: Solid lines
with closed circles show TC calculated with L = 100 μm (same as
in the main panel), diamonds for a larger system size L = 104 μm,
dashed lines (open circles) show TQC as in the main panel, for n = 1,
4, 8 × 1010 cm−2. (b) h̄� = 15.8 meV, g = 6 μeV μm2. Even for
this case of increased interactions, the dependencies coincide for n up
to 3 × 1010 cm−2. Thin dotted lines of respective colors show TC , TQC

calculated with the background dark population ñ taken into account
in the assumption of thermal equilibrium, coinciding with the main
lines for large delta and deviating considerably for � < 2h̄� and
large n.

Mermin–Wagner theorem [21]. Due to this reason, the HFB
theory estimate of the condensate density n0 (and hence TC)
at the increased L starts to be incorrect. The inset of Fig. 6(a)
shows the comparison of calculations made with L = 100 μm
and the 100 times larger size L = 104 μm: in the latter case,
TC drops (at different � for different n). Calculated in the
HFB theory, n0 going down indicates the disappearance of the
true BEC in the system. In this case, one needs to switch to
the description in terms of the superfluid density ns instead
of n0, since the quasicondensate is still present even when
the BEC is not. In Appendix C, we show the mathematical
way of stitching the HFB one-body density matrix ρ1(r) ≡
〈P̂†(r)P̂(0)〉 obtained within the theory described in Sec. II,
with the hydrodynamic ρHD

1 (r) used to describe the superfluid
transition [23]. This allows us to switch from finding the

critical temperature TC of BEC to defining the critical temper-
ature TQC of quasicondensation (as the temperature at which
the local superfluidity and quasicondensate disappear). Using
this stitching and considering the Bogoliubov excitations with
the spectrum Eq. (27) as noninteracting nonquasicondensate
particles, one finds TQC as the temperature at which the quasi-
condensate density

nqc = n − 1

S

∑
p �=0

α̂†
pα̂p = n −

∫
1

eEp/T − 1

dp
(2π h̄)2

(33)

goes to zero: nqc(T ) → 0. Effectively, when finding TQC,
Eq. (33) replaces the first equation in Eq. (30), whereas the po-
lariton occupation number np in the second line of Eq. (30) is
replaced by the Bose distribution of the excitations α̂†

pα̂p. The
dependencies of TQC on � for different densities are plotted
in Fig. 6 as dashed lines. One sees that at high densities n and
large detunings, TQC is higher than TC for the same parameters,
as it should be, and the deviation is larger when the system
size is increased [see the inset of Fig. 6(a)]. However, it is
also evident that for not too large detunings (� � 3h̄�), the
HFB description works very well for all considered densities.

To finalize the analysis, we address the influence of the
dark exciton population that we have added to our consid-
eration according to Eq. (17), assuming g̃ = g. The resulting
TC(QC) dependencies on � are shown in Fig. 6 as dotted lines
for each polariton density n. One sees that in the case of
Fig. 6(a) (weaker interactions, g = 2.5 μeV μm2) ñ has an in-
fluence on the critical temperature only in the region of small
detunings and for large total densities, whereas for large �,
the tails of the dotted curves both for TC and TQC fully coincide
with those calculated taking ñ = 0. In the region of near-zero
detunings, the background particles shift the critical temper-
ature to higher values. This rise of TC corresponds to the
lowering of the renormalized effective mass mB with respect
to mLP, which is shown in Fig. 2(a) by dotted lines. When
considering the case of increased interaction [see Fig. 6(b)
for g = 6 μeV μm2 and the red dotted line in Fig. 2(a)], the
situation is the same for small densities n ∼ 1–2 × 1010 cm−2,
whereas for large densities n � 4 × 1010 cm−2 the devia-
tion at low detunings is very large. However, for detunings
� > 2h̄� their influence diminishes similarly to the case of
Fig. 6(a).

IV. APPLICABILITY

Validity of the developed HFB description is limited by
two factors. The first one is the lifetimes should large enough
to assume equilibrium, as was addressed in Sec. III B. The
second condition is that even with the stitching to the HD
description, one needs to make sure that the condensate de-
pletion of the polariton gas at T = 0 is small: ν ′

T =0 � 1,
where ν ′ = n′/n is calculated in the Bogoliubov approach
(see Appendix A). The HD description is expected to work
fairly well up to ν ′

T =0 ∼ 0.5. Depending on the interac-
tion strength and the detuning, this condition is violated
at different total densities n. Using Eq. (A7), we plot an
applicability diagram in terms of the dimensionless exci-
ton interaction constant gmex/2π h̄2 and the dimensionless
detuning �/h̄�, for different h̄� and n (see Fig. 7). The

125301-8



FINITE-TEMPERATURE HARTREE-FOCK-BOGOLIUBOV … PHYSICAL REVIEW B 104, 125301 (2021)

FIG. 7. Diagram of applicability of the Hartree–Fock–
Bogoliubov description in the domain of dimensionless detuning
and exciton interaction strength (here mex = 0.22m0). Solid lines
indicate the boundary ν ′

T =0 ∼ 0.1 for the densities as marked, with
the dark thin lines corresponding to h̄� = 7.2 meV and lighter
thick lines to h̄� = 15.8 meV. Dashed lines represent the boundary
defined by a weaker condition ν ′

T =0 ∼ 0.2 for h̄� = 7.2 meV.
The stars mark the studied parameters combinations. Red markers
indicate the parameters at which the hydrodynamic description (TQC)
noticeably differs from the HFB description (TC).

diagram shows that the theory developed in this paper works
very well for the large range of densities, interactions, and
detunings (the green-shaded area of the diagram shows the
parameters at which the pure HFB description is applicable,
while the red-shaded area indicates the region where the
stitching with hydrodynamics is required). It is also worth
noting that for higher Rabi splittings, the theory works better.
We indicate in Fig. 7 the parameter combinations that were
addressed within this paper, and the white color of those mark-
ers show that the HFB description has proved to be working
well (i.e., ν ′

T =0 ∼ 0.1), whereas the red color is chosen for the
parameters where we had to replace the true condensate n0

with the quasicondensate density nqc as described above.

V. CONCLUSIONS

In this paper, we have derived the finite-temperature
corrections and modifications produced by the momentum-
dependent interactions within the HFB theory applied to a
system of exciton-polaritons at positive detunings. The de-
veloped theory yields renormalizations of the bare particle
spectrum and the particle effective mass, both at T = 0 and
T > 0, resulting in the shifts of the chemical potential and
the spectrum of collective excitations of the polariton system.
Notably, the modifications that we obtain within the equilib-
rium theory are shown to produce the deviations of the sound
velocity from the standard Bogoliubov value that are routinely
observed in exciton-polariton experiments and which were
previously attributed to effects of dissipation. To correctly
address systems of an increased size, we provide the stitching
with the hydrodynamics approach employed to describe the

superfluid transition. We show that for large detunings, the
integral lifetime of polaritons grows up to the nanosecond
scale, even for microcavities where the photon lifetimes are
not very high (∼10 ps), whereas the critical temperature of
transition to the macroscopically coherent state in thermal
equilibrium still stays as high as 10–20 K, dependent on the
density. This suggests such systems with a shallow polariton
well (at large positive detunings), where polaritons become
extremely excitonlike yet staying strongly coupled to pho-
tons, to be natural candidates for experimental observation
of the long-living thermally equilibrium polariton systems
with BEC. Finally, the treatment of the background particles
(e.g., dark and incoherent excitons which affect the system by
interacting with the polariton’s excitonic fraction) is included,
with the assumption of thermal equilibrium with the semicon-
ductor lattice. We leave the treatment of the nonequilibrium
background particles to future work.
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APPENDIX A: POLARITON MODIFICATION
OF THE BOGOLIUBOV THEORY AT T = 0

For completeness of the analysis, here we present the
Bogoliubov theory [39,40] for Bose-condensed polaritons at
T = 0, when the condensate density n0 is close to the total
density n. Starting from the second-quantized Hamiltonian
of the polariton system in momentum basis, Ĥ = Ĥ0 + ÛLP,
where the first term describes the ideal gas of lower polari-
tons Ĥ0 = ∑

p εpP̂†
p P̂p, and the interaction is defined by the

exciton-exciton pair interaction

ÛLP = 1

2S

∑
p1+p2=p3+p4

U (p1 − p3)Q̂†
p1

Q̂†
p2

Q̂p3 Q̂p4 , (A1)

we separate the condensate fraction in the exciton annihila-
tion operator, Q̂p = δp0X0

√
n0 + (1 − δp0)XpP̂p. As long as

the condensate depletion is small compared to the condensate
density n − n0 � n0, the condensate contribution is domi-
nant: Q̂p �=0 = X0

√
n0 O[(n − n0)/n0] � Q̂0 = X0

√
n0. Keep-

ing only the first nonvanishing (quadratic) terms with respect
to P̂p in Eq. (A1), one gets

ÛLP = S

2
gn2

0X 4
0 + n0

2

∑
p �=0

X 2
0 X 2

p

{
[g + U (p)](P̂†

p P̂p + P̂†
−pP̂−p)

+U (p)P̂pP̂−p + U (p)P̂†
p P̂†

−p

}
. (A2)

As we choose to fix the total density n, the substitution n0 =
n − 1

2S

∑
p �=0

(P̂†
p P̂p + P̂†

−pP̂−p) yields for the Hamiltonian of the
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system

Ĥ =
∑

p

εB(T =0)
p P̂†

p P̂p + n

2

∑
p �=0

X 2
0 X 2

pU (p)(P̂†
p P̂p

+ P̂†
−pP̂−p + P̂pP̂−p + P̂†

p P̂†
−p), (A3)

where the null-particle (constant) terms are omitted, and

εB(T =0)
p = εp + gnX 2

0

(
X 2

p − X 2
0

)
≈
{

p2/2m(T =0)
B , p � p̃

E0 + gnX 2
0

(
1 − X 2

0

)+ p2/2mex, p � p̃
(A4)

is the renormalized particle spectrum within the polariton
Bogoliubov theory, with

1

m(T =0)
B

= 1

mLP

(
1 + 2gnX 4

0√
�2 + (h̄�)2

)
. (A5)

Diagonalizing the Hamiltonian Eq. (A3) by the standard Bo-
goliubov transformation, one gets the spectrum of the shape
Eq. (27) and the Bogoliubov coefficients Eq. (28), with the re-
placements εB

p → εB(T =0)
p and μp → U (p)nX 2

0 X 2
p [compared

to Eq. (23), here the condensate density n0 is replaced with the
total density n]. Thus, even at T = 0, the excitation spectrum
contains an extra momentum dependence compared to the
regularly used Bogoliubov dispersion. The diagonalized form
of the polariton Hamiltonian Eq. (A3) allows us to find the
occupation number of polaritons in the Bogoliubov approxi-
mation at T = 0,

np = v2
p, (A6)

and the corresponding condensate depletion:

ν ′
T =0 ≡ n − n0

n
= 1

nS

∑
p �=0

v2
p

= 1

2n

∫ ⎛
⎝
√√√√1 + μ2

p

(εB(T =0)
p + μp)2 − μ2

p

− 1

⎞
⎠ dp

(2π h̄)2
.

(A7)

The obtained expression Eq. (A7) contains the full renormal-
ized polariton spectrum Eq. (A4), thus taking into account the
states corresponding to the high-energy reservoir, and the shift
of the polariton effective mass and the chemical potential due
to the dependence of interactions on momentum. It is worth
noting that the existence of the characteristic momentum p̃
allows us to approximately split the noncondensate fraction
into the polariton and exciton constituents, ν ′

T =0 = ν ′
LP + ν ′

ex,
with

ν ′
LP ≈

∫ p̃

0

[√√√√1 +
(
gnX 4

0

)2

(
p2/2mB + gnX 4

0

)2 − (
gnX 4

0

)2

− 1

]
pd p

4π h̄2n
(A8)

being the expression regularly used in the literature as the
polariton condensate depletion (however, with mLP instead of

m(T =0)
B ), and

ν ′
ex ≈

∫ ∞

p̃→0

{√
1 + μ2

ex[
E0 + μex

(
2 − X 2

0

)+ p2/2mex
]2 − μ2

ex

− 1

}
pd p

4π h̄2n
, (A9)

corresponding to the excitonlike part of the polariton spectrum
(here we introduced the notation μex = gnX 2

0 ).

APPENDIX B: NONCONDENSATE
ANOMALOUS AVERAGE

In the Beliaev formalism [30] that we use, the pair inter-
action is substituted by a ladder diagram shown in Fig. 8(a)
[41,42]. It is important to note that since the Beliaev ladder
contains directed arrows pointing up, the incoming lines are
always at the bottom and the outgoing lines are always at
the upper side of the ladder. Here we present the diagrams
corresponding to the terms on the right-hand side of Eq. (13)
in the HFB approach for the case T > 0. In particular, the
condensate normal and anomalous average terms, both equal
to X 2

0 n0, correspond to Figs. 8(b) and 8(c), respectively. The
diagrams corresponding to the noncondensate diagonal and
off-diagonal densities n′

Q and ρ ′
1Q(r, r′) which are given in

the two top lines in Eqs. (15) are shown in the Figs. 8(d) and
8(e). Finally, the noncondensate anomalous average m′

Q(r, r′),
given by the third line in Eqs. (15), corresponds to the diagram
in the Fig. 8(f). It is clear from direct diagrammatic calcu-
lations, that the noncondensate anomalous average Fig. 8(f)
is already partly included in the condensate anomalous term
Fig. 8(c), which is shown in more detail in Fig. 8(g) (see
the part enclosed in the dotted rectangle). Therefore, to avoid
double counting, the dotted rectangle Fig. 8(g) should be
subtracted from the diagram Fig. 8(f). The remaining after
subtraction parts of Fig. 8(f) have a higher degree of smallness
compared to all the other diagrams in Figs. 8(b)–8(e) and
their omission does not produce an error. Therefore, one can
discard the term corresponding to Fig. 8(f) in the equations:
m′

Q(r, r′) = 0.

FIG. 8. (a) Graphic representation of the pair interaction as a
vertical ladder diagram. Diagrams: (b), (c) normal and anomalous
condensate averages; (d), noncondensate exciton density n′

Q; (e) non-
condensate one-body density matrix ρ ′

1Q(r, r′); (f) noncondensate
anomalous average m′

Q(r, r′). (g) A more detailed drawing of the
diagram (c). Crosses show one of possible cuts of the diagram, after
which the part in the dotted rectangle is partly contained in the
anomalous Green’s function in (f).
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APPENDIX C: STITCHING WITH THE
HYDRODYNAMIC DESCRIPTION

As described in the main text, to substitute the BEC density
n0 with the quasicondensate density nqc, one needs to perform
the stitching of the HFB description with the HD description.
The noncondensate occupation number np calculated with the
HFB approach is given by Eq. (29), while in HD it is given by
the Bose–Einstein distribution n(qc)

p = 1/[exp(Ep/T ) − 1], in
the fair assumption |nqc − ns| � ns (ns being the superfluid
density). The quantum HD approach, where the one-body
density matrix was obtained in the long-wavelength limit, i.e.,
at large distances r ∼ L, was developed in Refs. [23,24] to de-
scribe superfluidity and the Berezinskii–Kosterlitz–Thouless
crossover in a finite system of 2D excitons. For polaritons with
the dispersion Eq. (22), assuming for simplicity that there are
no vortices in the system, the expression obtained in Ref. [23]
can be rewritten as

ρHD
1 (r)

n
∼ exp

[
−1

νsN

∑
p �=0

κpEp

4εB
p

(
1− cos

p · r
h̄

)(
1+ 2

e
Ep
T −1

)]
,

(C1)

where νs = ns/n is the superfluid fraction, N = nS is the total
number of particles, and the spectrum of excitations Ep is
given by Eq. (27) with ns instead of n0. The ultraviolet cutoff
is chosen in such a way that κp = 1 at p → 0 and κp = 0 at
p → ∞.

The one-body density matrix for the polariton field in HFB
approximation [using Eq. (10)]

ρ1(r) ≡ 〈P̂†(r)P̂(0)〉 = n − 1

S

∑
p �=0

np
(
1 − e− i

h̄ p·r), (C2)

with np = v2
p + (2v2

p + 1)/(eEp/T − 1), after some algebra can
be brought to the form

ρ1(r)

n
= 1

N

∑
p �=0

cos(p · r/h̄)

eEp/T − 1

+ νqc − 1

N

∑
p �=0

(
Ep − εB

p

)2

4EpεB
p

(
1 − cos

p · r
h̄

)

×
(

1 + 2

eEp/T − 1

)
, (C3)

with the quasicondensate fraction

νqc = nqc

n
= 1 − 1

N

∑
p �=0

1

eEp/T − 1
. (C4)

The first term in Eq. (C3) represents the amplitude of the
algebraic order (as long as the quasicondensate is present in
the system). The rest of Eq. (C3) can be consistently stitched
to ρHD

1 (r) given by Eq. (C1), making use of the following
transformations.

In Eq. (C1),
(i) the short-distance cutoff is taken in the shape

κp =
(

1 − εB
p

Ep

)2

;

(ii) the proportionality coefficient in front of the exponent
is taken equal to νqc.

In Eq. (C3),
(iii) μp = gn0X 2

0 X 2
p is replaced by gnsX 2

0 X 2
p ;

(iv) νqc − 1

N

∑
p �=0

· · · = νqc(1 − 1

νqcN

∑
p �=0

· · · + . . . ) is re-

placed by νqc exp[− 1

νqcN

∑
p �=0

. . . ];

(v) If the vortex renormalizations inside exp[. . . ] are re-
quired, one needs to replace ns with the superfluid density
renormalized by vortex pairs ñs, according to Kosterlitz [43].
To account for free vortices, the whole expression is multi-
plied by exp(−r/ξ+), where ξ+ is the distance between free
vortices [23].

With these transformations, one gets the coinciding expres-
sions except the first term in Eq. (C3). The stitched one-body
density matrix, assuming νqc ≈ νs, has the form

ρ1(r)

n
= 1

N

∑
p �=0

cos(p · r/h̄)

eEp/T − 1

+ νqc exp

[
−1

νqcN

∑
p �=0

(Ep − εB
p )2

4EpεB
p

(
1 − cos

p · r
h̄

)

×
(

1 + 2

e
Ep
T − 1

)]
. (C5)

The stitched occupation number np is then obtained by making
the Fourier transform of Eq. (C5).

[1] J. Keeling, Response functions and superfluid density in a
weakly interacting Bose gas with nonquadratic dispersion,
Phys. Rev. B 74, 155325 (2006).

[2] A. Semenov and Yu. Lozovik, On the superfluid properties of a
polaritonic system, Europhys. Lett. 78, 67005 (2007).

[3] A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy,
Microcavities, 2nd ed. (Oxford University Press, Oxford, 2017).

[4] H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose-
Einstein condensation, Rev. Mod. Phys. 82, 1489 (2010).

[5] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[6] M. Wouters and I. Carusotto, Excitations in a Nonequilibrium
Bose-Einstein Condensate of Exciton Polaritons, Phys. Rev.
Lett. 99, 140402 (2007).

[7] J. Keeling and N. G. Berloff, Spontaneous Rotating Vortex
Lattices in a Pumped Decaying Condensate, Phys. Rev. Lett.
100, 250401 (2008).

[8] F. Manni, K. G. Lagoudakis, T. C. H. Liew, R. André, and B.
Deveaud-Plédran, Spontaneous Pattern Formation in a Polariton
Condensate, Phys. Rev. Lett. 107, 106401 (2011).

[9] H. Haug, T. D. Doan, and D. B. Tran Thoai, Quantum kinetic
derivation of the nonequilibrium Gross-Pitaevskii equation for

125301-11

https://doi.org/10.1103/PhysRevB.74.155325
https://doi.org/10.1209/0295-5075/78/67005
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/PhysRevLett.99.140402
https://doi.org/10.1103/PhysRevLett.100.250401
https://doi.org/10.1103/PhysRevLett.107.106401


A. M. GRUDININA et al. PHYSICAL REVIEW B 104, 125301 (2021)

nonresonant excitation of microcavity polaritons, Phys. Rev. B
89, 155302 (2014).

[10] D. D. Solnyshkov, H. Terças, K. Dini, and G. Malpuech, Hybrid
Boltzmann-Gross-Pitaevskii theory of Bose-Einstein condensa-
tion and superfluidity in open driven-dissipative systems, Phys.
Rev. A 89, 033626 (2014).

[11] T. D. Doan, D. B. Tran Thoai, and H. Haug, Kinetics and
luminescence of the excitations of a nonequilibrium polariton
condensate, Phys. Rev. B 102, 165126 (2020).

[12] T. Byrnes, T. Horikiri, N. Ishida, M. Fraser, and Y. Yamamoto,
The negative Bogoliubov dispersion in exciton-polariton con-
densates, Phys. Rev. B 85, 075130 (2012).

[13] L. A. Smirnov, D. A. Smirnova, E. A. Ostrovskaya, and Yu. S.
Kivshar, Dynamics and stability of dark solitons in exciton-
polariton condensates, Phys. Rev. B 89, 235310 (2014).

[14] S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada,
T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A.
Forchel, and Y. Yamamoto, Observation of Bogoliubov excita-
tions in exciton-polariton condensates, Nat. Phys. 4, 700 (2008).

[15] V. Kohnle, Y. Léger, M. Wouters, M. Richard, M. T. Portella-
Oberli, and B. Deveaud-Plédran, From Single Particle to
Superfluid Excitations in a Dissipative Polariton Gas, Phys.
Rev. Lett. 106, 255302 (2011).

[16] M. Pieczarka, M. Syperek, Ł. Dusanowski, J. Misiewicz, F.
Langer, A. Forchel, M. Kamp, C. Schneider, S. Höfling, A.
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