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Phonon-assisted excitonic absorption in diamond
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The phonon-assisted optical transitions of excitons in intrinsic diamond have been investigated theoretically
and experimentally. Excellent agreement is indicated between absorption spectra measured and calculated based
on the phonon coupling strengths from first-principles calculations using just a single adjustable parameter.
Temperature shift and broadening are incorporated via a pseudo-Voigt function analysis developed for the
derivative of the experimental absorption spectra. The absorption coefficients of excitons in discrete and
continuum states are separated and contributions from different phonon modes are discussed, which enable
theoretical derivation of the exceptionally high phonon-assisted radiative rate of excitons in diamond among
indirect-gap semiconductors. This study expands the applicability of the second-order perturbation theory
involving electron-phonon interactions in materials important for future photonics and power electronics.
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I. INTRODUCTION

Optical transitions in indirect band-gap materials are typ-
ically considered insignificant because the effect is weak
due to second-order processes involving the electron-phonon
interactions. Nevertheless, such processes in silicon and ger-
manium have garnered significant attention owing to the
expectations for spin orientation using multivalley band struc-
tures [1,2], room temperature spin transport [3], and switching
between direct/indirect luminescence using the two energy
gaps closely located in germanium [4]. The first-principles
calculation of photoabsorption in indirect band-gap materi-
als is challenging, as the intricate process requires taking
a double sum over the reciprocal space and a much higher
computational cost than for the direct band-gap materials
[5]. The recent advent in computer technology enabled first-
principles calculations of electron-phonon interactions in the
electron-phonon Wannier framework [5,6] and nonpertur-
bative approaches using frozen-phonon displacements [7].
Examples of theoretical studies that yielded remarkable find-
ings also include Refs. [8–10].

Among the group IV family of covalent-bonding classical
semiconductors, diamond is an attractive material for future
high-power high-speed electronics owing to its extraordinarily
high values of thermal conductivity, breakdown voltage, and
mobility [11–13]. Furthermore, diamond is a promising ma-
terial for photonics as it exhibits single photon emission from
nitrogen-vacancy centers [14,15] and deep ultraviolet emis-
sion across the intrinsic band gap, which is suitable for virus
sterilization [16]. The electron-phonon renormalization of the
direct and indirect band gaps of diamond was theoretically in-
vestigated in Refs. [10,17–19] and Refs. [10,19], respectively.
This temperature-dependent effect is often neglected in ab
initio calculations but sizable in materials composed of light
atoms, such as diamond [10]. The electron-phonon interaction
strengths were recently calculated over the reciprocal space
of diamond [20]. Meanwhile, experimental reports regarding
the photoabsorption of diamond are limited, whereas classical

studies on cleaved diamond with a thickness ranging from
5 to 250 μm by Clark et al. have been primarily cited [21].

In this study, we investigate the phonon-assisted optical
transitions of excitons in intrinsic diamond both theoretically
and experimentally. Excellent agreement was obtained be-
tween the absorption spectra calculated based on the phonon
coupling strengths from first-principles calculations [20] and
the experimental results. To incorporate temperature shift and
broadening into the calculations, we developed a pseudo-
Voigt function analysis of the derivative of the experimental
absorption spectra. Consequently, the absorption coefficient,
which is expressed as the sum of contributions from fine-
structure states of excitons and four phonon modes, was
derived together with an empirical expression beneficial for
applications. We theoretically determined the radiative life-
time of excitons through the phonon-assisted recombination
to be 1.5 μs, which is consistent with the experimental deriva-
tion via independent measurements reported in Ref. [22] and
indicates an approximately 103 higher radiative rate than in
silicon [23].

After describing the experimental procedure in Sec. II,
we provide a detailed calculation method of indirect optical
transitions in Sec. III. We present the experimental data based
on comparison with theory and derive the radiative rate of the
indirect excitons in Sec. IV. The conclusions are presented
in Sec. V.

II. EXPERIMENT

Intrinsic single-crystal diamond grown by chemical vapor
deposition (purchased from Element Six, Ltd. and named
samples A, B, and C) was used in the experiment. The thick-
nesses of samples A, B, and C, qualified by the supplier, were
0.5, 0.3, and 0.05 mm, respectively, with ±10% accuracy.
We measured the thickness of samples A and B by observing
the cross section using a microscope (Keyence, VHX-6000),
while the direct observation of the cross section of sample C
was difficult. We measured the interference fringes of infrared
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FIG. 1. (a) Schematic of energy bands and possible transition routes of indirect absorption in diamond. Solid arrows correspond to
electron-photon interactions, Hep; dashed arrows correspond to electron-lattice interactions, H j

el. (b) Excitonic fine structure in derivative
absorption spectrum measured in sample B at 6 K. Lower curve shows higher-resolution spectrum showing different positions of LA4 and TO1
components. Labels j� imply that structure is due to phonon mode j ( j = TA, LA, TO, LA) and excitonic fine structure EX� (� = 1, 2, 3, 4).
Inset shows comparison with luminescence spectrum (shown in blue) measured at the same temperature.

light at 2400–3200 cm−1 in samples B and C using a Fourier-
transform infrared spectrometer (Bruker, Vertex 80v), and
extracted the refractive index using the measured thickness of
sample B. The accurate thickness of sample C was inferred by
analyzing the interference fringes using the same refractive in-
dex value. Thus, the thickness values for samples A, B, and C,
used for the absorption coefficient analysis, were determined
to be 532, 318, and 52.8 μm with ±1% accuracy.

A deuterium lamp was used as the light source for the
absorption measurements. The light intensity was sufficiently
low so that no exciton complexes, such as polyexcitons and
electron-hole droplets [22], were created. The transmitted in-
tensity of the light through the sample was measured using a
Peltier-cooled charge-coupled device camera at the back of
a monochromator with 550-mm focal length. A diffraction
grating of 2400 grooves/mm was used to achieve a spectral
resolution of ∼0.5 meV at a wavelength of 236 nm. When a
higher spectral resolution was necessitated, a monochromator
with 1500-mm focal length was used with a 2400-grooves/mm
grating. The sample was cooled using a closed-cycle helium-
gas cryostat from 300 to 6 K.

The absorption spectra were calculated by taking a log-
arithm of the transmission spectra, which were obtained as
the ratio of the spectra with and without the sample in the
optical path, and then divided by the sample thickness. Such
a spectrum includes a slight offset absorption caused by the
reflection loss at the sample surfaces. We corrected this effect
by subtracting a straight baseline determined for the transpar-
ent energy region (5.15–5.45 eV) for the spectrum obtained at
the lowest temperature. We estimated that the possible error
in the baseline is ±0.8 cm−1 by comparing spectra obtained
from several samples of different thicknesses and at different
temperatures.

III. THEORY

A. Transition routes and deformation potentials

The band structure relevant to the optical transitions in
diamond is schematically shown in Fig. 1(a). We referred

to the linear muffin-tin potential k · p calculations reported
by Willatzen et al. [24]. The lowest conduction band has a
symmetry of �15 in Bouckaert-Smoluchowski-Wigner (BSW)
notation (�−

4 in Koster’s notation) at the center of the Brillouin
zone, originating from the p-type orbital. This band ordering
is similar to the case of silicon but different from that of
germanium, in which the lowest conduction band originates
from the atomic s orbital. The conduction band minimum in
diamond is located at 74% of the X point, where the band splits
into �1 (lower) and �5 (higher) bands. The second lowest
conduction band has a �2′ (�−

2 ) symmetry at the center of
the Brillouin zone. The highest valence band comprises heavy,
light, and spilt-off hole bands with �25′ (�+

5 ) symmetry at the
center of the Brillouin zone. It splits into �5 (higher) and
�4 (lower) bands at the reciprocal point of the conduction
band minimum. The energy of the second valence band of
symmetry �1 (�+

1 ) at the center of the Brillouin zone increases
as it approaches to the X point, and the symmetry of the band
at the reciprocal point of the conduction band minimum is �1.

The direct band gap of diamond is 7.3 eV while the indirect
band gap is 5.5 eV. Owing to the conservation of energy and
momentum during the transitions, the absorption of a photon
in the range 5.2–6.0 eV (well below the direct band gap) re-
quires the creation or annihilation of at least a single phonon.
We considered four routes (W, S, Q, and U) as depicted in
Fig. 1(a), because transition routes involving a more remote
band do not contribute much to the transition rate because of
the large denominator in the second-order perturbation Hamil-
tonian. The names of the routes follow those conventionally
used for silicon [25]. The basic theory describing the indirect
optical absorption processes can be found in textbooks [26].

The probability of the transition from an initial state |i〉 to
final state | f 〉 via an intermediate state |m〉 (with energies of
Ei, E f , and Em, respectively) is expressed as

w
j
i f = 2π

h̄

∣∣∣∣∣
∑

m

(
S j

CB,m + S j
VB,m

)∣∣∣∣∣
2

δ(Ei − E f ), (1)

125204-2



PHONON-ASSISTED EXCITONIC ABSORPTION IN … PHYSICAL REVIEW B 104, 125204 (2021)

where S j
CB,m and S j

VB,m are the generalized optical matrix
elements expressed as

S j
CB,m = 〈 f |H j

el|m〉〈m|Hep|i〉
Ei − Em

(2)

and

S j
VB,m = 〈 f |Hep|m〉〈m|H j

el|i〉
Em − E f

. (3)

Here, H j
el represents the electron-lattice (phonon) interaction

involving a phonon of mode j [ j = transverse acoustic (TA),
longitudinal acoustic (LA), transverse optic (TO), and longitu-
dinal optic (LO)], whereas Hep represents the electron-photon
interaction. S j

CB,m corresponds to the conduction band scat-
tering of the electrons. We label the two major routes as W
and S routes, and they are schematized in Fig. 1(a). S j

VB,m
corresponds to the valence band scattering of holes with Q
and U routes.

Based on the notation in Refs. [5,7], we define the general-
ized optical matrix elements of each transition as

S j
r (h̄ω) = Prgj

r

Er − h̄ω
, (4)

where r indicates the transition route, h̄ω is the photon en-
ergy, Pr is the momentum matrix element, gj

r is the electron
phonon interaction matrix element [20], and Er is the en-
ergy difference between the conduction and valence bands in
each route corresponding to the denominators in Eqs. (2) and
(3), respectively. By considering the possible scattering chan-
nels using group theory [27], we found that STA

W , SLA
W , STO

W ,
STA

Q , SLA
Q , STO

Q , SLO
Q , SLO

S , STA
U , STO

U , and SLO
U have nonzero

values.
In Eq. (B4) of Ref. [9], the momentum matrix element Pr

is defined by

m0

mt
= 1 + P2

r

m0

[
1

Er
+ 1

Er + �r

]
(5)

in the case of valence band scattering with spin-orbit energy
splitting �r . Therefore, we calculated Pr based on Eq. (5)
for Q and U routes. Here, m0 represents the electron mass at
rest, and mt = 0.280m0 is the transverse effective mass of the
electron, which is significantly smaller than the longitudinal
effective mass of the electron ml = 1.56m0, reflecting the
anisotropic conduction band [29]. For the W and S routes,
we used the electron-photon interaction matrix element from
Ref. [24]. The values of Er , Pr , and �r are summarized in
Table I.

The strength of the electron-phonon interaction is de-
scribed by the deformation potential, D j

r (k, q). The intravalley
deformation potential D j

r (k, q) from wave vector state k to
k + q is related to gj

r in Eq. (4) by

gj
r (k, q) =

√
h̄

4�
j
qM

D j
r (k, q), (6)

where �
j
q (=� j ) is the phonon frequency, and M is the mass

of a carbon atom. The electron-phonon interaction matrix
elements in diamond, for every momentum transfer allowed

TABLE I. Electronic and band-structure parameters for diamond
used for calculation of absorption spectra.

Route (r) W S Q U

Er (eV) 7.3a 15.3a 11.7a 14.5a

P2
r /m0 (eV) 13.6a 7.9a 15.6b 15.6b

�r (meV) 6c 6c 0 0

aExtracted from Ref. [24]. PS and PW are P and Q parameters in
Ref. [24], respectively.
bCalculated using Eq. (5).
cReference [30].

for the phonon creation, were recently calculated [20]. Table II
summarizes the values of gj

r from the center of the Brillouin
zone to the position of the conduction band minimum. We
approximate that phonon frequencies and deformation po-
tentials are wave vector independent around this point. For
convenience of comparison with previous simulation studies
for diamond [31,32], the values of D j

r are listed in Table II.

B. Phonon energies

Before calculating the absorption coefficients, we present
a method to precisely determine the phonon energies h̄� j .
Photoluminescence (PL) is a reverse process of absorption,
that occurs at a photon energy shifted by twice the phonon
energy from the corresponding phonon-assisted absorption.
The inset of Fig. 1(b) shows a comparison of the PL spectrum
and the derivative of the absorption spectrum of diamond
measured at 6 K. The excitation wavelength for the PL was
225 nm (5.51 eV), which is resonant at the absorption of
excitons assisted by TA phonon creation. As presented in
Ref. [27], excitons exhibit a fine structure as a combined ef-
fect of the spin-orbit interaction, electron-hole exchange, and
mass-anisotropy splitting. These effects are the result of the
nonspherical part of the excitonic Hamiltonian formulated by
Altarelli and Lipari [33,34], and the four fine-structure states
are denoted as EX� (� = 1, 2, 3, 4). The lines appearing in the
spectra are assigned based on the phonon mode ( j = TA, LA,
TO, LO) plus index � representing the EX� state. Because
EX3 and EX4 lie much higher than EX1 compared with the
thermal energy of 6 K, they are barely observed in the PL
spectrum. In the derivative absorption, structures LA1–LA3
and structures TO1–TO3 can be identified in addition to struc-
tures TA1–TA4, which were previously reported in Ref. [27].

TABLE II. Phonon energies (h̄� j) extracted from analysis of
absorption and photoluminescence spectra measured at 6 K, electron-
phonon interaction matrix elements (gj

r) [20], and corresponding
deformation potentials (D j

r ).

Phonon mode ( j) TA LA TO LO

h̄� j (meV) 87.8 127 141 162

gj
W,S (meV) 70 170 250 0.8

D j
W,S (1010 eV/m) 2.2 6.5 10 0.034

gj
Q,U (meV) 38 200 200 290

D j
Q,U (1010 eV/m) 1.2 7.6 8.0 12
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It is noteworthy that the absorption processes of LA1 and LA2
are optically prohibited and appear only weakly in absorption.
The lower curve shows the derivative absorption measured at
a higher spectral resolution of 0.35 meV, which shows clear
splitting between the structures LA4 and TO1. The signal was
accumulated for 8 h and the drift of the center wavelength of
the monochromator due to the change in the air temperature
was corrected. This observation and newly clarified positions
of LA1 and LA2 in the derivative absorption resolved the
ambiguity in assigning the LA phonon structure, as reported
in Ref. [35].

We evaluated the phonon energies by comparing the ab-
sorption and PL edges obtained via spectral fitting [see the
horizontal arrows in the inset of Fig. 1(b)]. The PL spectrum
was fitted using the function

L(h̄ω) ∝ √
h̄ω + h̄� j − E� exp

(
− h̄ω + h̄� j − E�

kBTeff

)
, (7)

which was convolved with a Gaussian function representing
the spectral resolution of 0.5 meV, where Teff is an adjustable
parameter representing the effective temperature. For deriva-
tive absorption, we used an approximate expression assuming
a constant denominator in Eq. (4), i.e.,

A′(h̄ω) ∝ 1/
√

h̄ω − h̄� j − E�, (8)

which was convolved with a Gaussian function to represent
the spectral resolution. A comparison of the PL and absorption
edges at E� ± h̄� j for a common � yields the phonon energy.
The extracted values of h̄� j are listed in Table II. These
energies determined by us were more precise than those in
Ref. [21]. Additionally, using the E� values and binding ener-
gies (Eb1,b2,b3,b4 = 93.8, 90.3, 87.4, 80.2 meV) of the excitons
in the EX� state [27,36], we determined the indirect energy
gap, Eind = E� + Eb� = 5.4979 eV at 6 K.

C. Discrete and continuum absorption

We calculated the absorption coefficient of diamond in-
cluding the excitonic effect. Here, we present the analytical
forms of the absorption spectra based on a recent model devel-
oped in Ref. [28], which avoids the divergence problem near
the direct band gap when phonon-assisted optical absorption
is treated within standard second-order perturbation theory.
We note that this shortcoming is not present when nonper-
turbative approaches are employed [7].

We assume discrete exciton levels with a principal quantum
number n, forming an energy structure analogous to hydrogen
series, E�,n = E� + (1 − 1/n2)Eb�. The coefficients for the
phonon creation and annihilation processes are expressed as
[see Eq. (43) of Ref. [9] and Eq. (48) of Ref. [28]]:

α±(h̄ω)

=
∑

j,�

{
(6/4)×8

√
2e2

3πρm0cnop

(
1

h̄� j

)(
1

h̄ω

)(
4� jM

h̄

)(
F�(h̄ω)

4πε0m0

)

×
(

f j + 1

2
± 1

2

)
RF M3/2

�h

a3
�

∑
n

√
h̄ω ∓ h̄� j − E�,n

n3

}
, (9)

where the degeneracies of six valleys are considered instead
of four valleys for germanium and

∑
h in Ref. [9] has been

replaced by
∑

�. Here, ρ = 3.51×103 kg m−3 is the density
of diamond, c is the speed of light, nop = 2.69 is the refrac-
tive index of diamond, and f j = [exp(h̄� j/kBT ) − 1]−1 is the
phonon occupation number. M�h = m� + mh is the excitonic
translational mass in the spherical exciton model [9], where
m� = 3mlmt/(2ml + mt ) = 0.385m0 is the electron effective
mass at the conduction band minimum and mh = 3/(1/mlh +
1/mhh + 1/mso) = 0.375m0 is the hole effective mass with
mhh = 0.667m0 (heavy hole), mlh = 0.260m0 (light hole), and
mso = 0.375m0 (split-off hole) [29]. Inclusion of the parame-
ter RF in Eq. (9), set as the only adjustable parameter in our
calculations, is to effectively account for the correction to the
excitonic translational mass by the nonspherical part of the
excitonic Hamiltonian reflecting anisotropy of the conduction
valleys and mixing between valence bands [9] (see the Ap-
pendix). a� = e2/(8πεstEb�) 	 1.3 nm is the Bohr radius of
the excitons with the static dielectric constant εst = 5.7ε0. The
sum over n was taken up to n = 10 considering the conver-
gence of 1/n3.

The coupling coefficients F�(h̄ω) for each exciton state can
be calculated using the matrix elements S j

r (h̄ω) as follows:

F1(h̄ω) = 0,

F2(h̄ω) = A + C,

F3(h̄ω) = B + D + E ,

F4(h̄ω) = (A + B + C + D + E )/2, (10)

where

ATA(TO) = 8/3
∣∣STA(TO)

W + STA(TO)
Q

∣∣2
,

BTA(TO) = 8/3
∣∣STA(TO)

W + STA(TO)
U

∣∣2
,

CLO = 4/3
∣∣SLO

S + SLO
U

∣∣2
, (11)

DLO = 8/3
∣∣SLO

S + SLO
Q

∣∣2
,

ELA = 8/3
∣∣SLA

W − SLA
Q

∣∣2
,

as derived in Ref. [27] using slightly different notations:
WTA(TO) =2STA(TO)

W , QTA(TO) =2STA(TO)
Q ,UTA(TO) =

√
2STA(TO)

U ,

SLO = √
3SLO

S ,ULO =SLO
U , QLO = 2SLO

Q ,WLA = √
2SLA

W , and
QLA = −2SLA

Q [37].
In addition to the discrete exciton states, we included the

absorption due to excitons in the continuum states. According
to Eqs. (29) and (55) of Ref. [28], the continuum absorption
is expressed as

α±
cont (h̄ω)

=
∑

j

{
(6/4)e2

3π h̄2moρcnop

(
1

h̄� j

)(
1

h̄ω

)(
4� jM

h̄

)

×
(∑

� F�(h̄ω)m3/2
h�

4πε0m0

)(
f j + 1

2
± 1

2

)
mtm

1/2
l T ±

j (h̄ω)

}
(12)

and

T ±
j (h̄ω) =

(
8

π

)∫ h̄ω−Eind∓h̄� j

0
dx

π
√

R′
y exp(π

√
R′

y/x )

sinh(π
√

R′
y/x )

×√
h̄ω − Eind ∓ h̄� j − x, (13)
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FIG. 2. (a) Calculated absorption coefficients of diamond at 7 K.
Dashed lines show components originating from different phonon
modes. Bracket indicates positions of excitonic fine structure. (b) Ab-
sorption spectra measured in sample C at various temperatures.

where T ±
j (h̄ω)×(h̄ω − Eind ± h̄� j )2 is the excitonic en-

hancement factor and R′
y = 86.0 meV is the average of

binding energies Eb� of optically allowed states (� = 2–4)
[34,36]. The degeneracy factor of 6/4 in Eq. (12) originates
from the valley degeneracy of 6 (compared to 4 in germa-
nium) and the split-off hole band is included in the sum∑

�. The hole effective masses, mh1 = mh2 = 0.667m0 (heavy
hole), mh3 = 0.260m0 (light hole), and mh4 = 0.375m0 (split-
off hole), were taken from Ref. [29].

IV. RESULTS AND DISCUSSION

A. Excitonic absorption at low temperature

By substituting F�(h̄ω) and the other parameters explained
in the previous section into Eq. (9), the absorption spectrum of
the excitons was calculated using RF = 5.0 chosen as detailed
in Fig. 4(b). The results for T = 7 K are shown in Fig. 2(a),
whereas the experimental data are shown in Fig. 2(b). The

)b()a(

(c)

FIG. 3. (a) Derivative of absorption spectra around TA phonon-
assisted transition of excitons in sample A at various temperatures.
Dashed lines show fitting functions using convolution of Eq. (8) by
Eq. (14). (b) Temperature dependence of extracted energy positions
of exciton fine structure. Left axis shows directly measured positions,
which is the sum of exciton and phonon energies, whereas right
axis shows exciton energies E1, E2, E3, and E4. Points for E1 (open
circles) are estimated by shifting E2 by 3.6 meV, which is the separa-
tion determined at the lowest temperature. Lines are fitting functions
shown in Eq. (17). (c) Temperature dependence of �L extracted from
pseudo-Voigt fitting. Data points from two different slit settings in
monochromator are shown.

overall spectral shape and absolute value of the coefficients
were consistent between the calculation and experiment. The
calculations revealed that the coefficients of the respective
phonon modes appeared in the ratio of TA:LA:TO:LO=
0.07:0.06:1:0.06. This is consistent with the TO lines appear-
ing approximately ten times stronger than other phonon lines
in the PL spectrum as well as the ratio of the bound excitons in
boron-doped diamond (TA:TO:LO = 0.09:1:0.08) [38]. The
strongest coupling of excitons with TO phonon modes was
confirmed, implying the dominance of the W route of electron
scattering in the exciton-phonon interaction. This is in contrast
with the case of germanium (silicon), in which coupling with
the LA (LO/TO) phonon is dominant at cryogenic tempera-
tures.

The experimental results at various temperatures are shown
in Fig. 2(b). The temperature effect is minor and difficult to
clarify in this energy range. More details are discussed in the
next subsection.

B. Temperature shift and broadening

Figure 3(a) shows a plot of the derivatives of the absorption
spectra of TA-phonon assisted transitions of excitons at vari-
ous temperatures. The energy shift and broadening effect with
temperature were clearly observed, although not considered in
the calculation for Fig. 2(a).
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The absorption spectra broadened with increasing tem-
perature. This is considered to be due to the homogeneous
width increasing with the enhanced phonon scattering rate. To
separate this homogeneous width (Lorentzian) and the width
originating from the instrumental function of the monochro-
mator (Gaussian), spectral fitting was performed using a
pseudo-Voigt function as a convolution function. The pseudo-
Voigt function is expressed as follows:

fpV(x) = (1 − η) fG(x, �G) + η fL(x, �L), (14)

where fG(x, �G) and fL(x, �L) are normalized Gaussian and
Lorentzian functions with the full width at half the maximum
of �G and �L, respectively. Here, η is a parameter that deter-
mines the ratio of the Lorentzian and Gaussian functions and
is approximated as [39]

η = 1.366 03

(
�L

�

)
− 0.477 19

(
�L

�

)2

+ 0.111 16

(
�L

�

)3

,

(15)

where

� = (
�5

G + 2.692 69�4
G�L + 2.428 43�3

G�2
L

+ 4.471 63�2
G�3

L + 0.078 42�G�4
L + �5

L

)1/5
. (16)

By fitting the derivative of the absorption spectra shown
in Fig. 3(a) using the convolution of Eq. (8) with Eq. (14),
we obtained the energy positions of each structure. The fit-
ting functions are shown by dashed lines, which indicated
good agreement with the derivative of the measured spec-
tra. Figure 3(b) shows the temperature dependence of each
energy position. These excitonic energies are expressed as
E� = Eind − Eb� when using the indirect band-gap energy Eind

and the excitonic binding energies, Eb�. Eind shifts with tem-
perature with a Bose-Einstein type variation, as follows [40]:

Eind(T ) = Eind(0) − aθ

exp(θ/T ) − 1
, (17)

where Eind(0) is the zero-temperature value, and a and θ are
parameters. The measured energy values were well repro-
duced by assuming temperature-independent binding energies
Eb�, Eind(0) = 5.4979 eV, a = 0.13 meV/K, and θ = 724 K.
The best-fit functions, obtained after a global fitting assuming
common temperature dependencies for E2, E3, E4, are shown
as solid lines. This plot shows that the analysis of the absorp-
tion spectra is more suitable for revealing the excitonic fine
structure over a wider temperature range, as EX3 and EX4
do not exist in the PL spectra at low temperatures [27]. The
extracted temperature dependence using Eq. (17) agrees with
that derived by the first-principles calculations presented in
Ref. [19] (a = 0.35 meV/K and θ = 1333 K) or Ref. [10]
(a = 0.44 meV/K and θ = 1539 K) within 2- or 5-meV dif-
ference, respectively, below 300 K.

Figure 3(c) shows the temperature dependence of �L

extracted from the pseudo-Voigt function fits. The instru-
mental width at the monochromator was ∼0.6 meV with the
50-μm slit, thereby limiting the apparent width below 60 K.
We reduced the monochromator slit to 6 μm and resolved
the �L values to below 0.45 meV at lower temperatures. In

general, the temperature dependence of a homogeneous width
is expressed as

�L(T ) = �(0) + dacT + dop

exp(θph/T ) − 1
. (18)

The first term represents a constant, and the second (third)
term represents broadening due to acoustic (optical) phonon
scattering. Because acoustic phonon scattering is dominant
in the low-temperature region, fitting was performed to the
second term of Eq. (18). Consequently, we obtained �(0) =
0.34 meV and dac = 4.8 μeV/K. The latter value is relatively
large compared with the values reported for III–V and II–VI
compound semiconductors, for which a coefficient smaller
than 1 μeV/K was primarily reported [41].

C. Continuum absorption

The upper panel of Fig. 4(a) shows the measured absorp-
tion spectra (without differentiation) at various temperatures
in an expanded energy range. The lower panel shows the
calculated spectra by including the temperature-dependent
energy shift and broadening. The agreement between the data
and calculation improved significantly by this precise analy-
sis. In addition, we examined the absorption due to unbound
excitons in the continuum states, assisted by the creation or
annihilation of a phonon, by calculating Eq. (12). Continuum
absorption begins to appear with the annihilation of the TA
phonon at 5.410 eV, whose contribution was found to be very
small as shown by the dashed lines (red for 296 K and blue
for 7 K) in the lower panel of Fig. 4(a).

Figure 4(b) shows the calculated and measured spectra
until a high photon energy of 6.0 eV. In addition to the TA
phonon-assisted continuum absorption, continuum absorption
with TO-phonon creation began at 5.639 eV (at 7 K) with
a higher amplitude. The parameter RF = 5.0 has been in-
cluded in the discrete exciton component, αex, calculated
using Eq. (9). Here, one can see that the value of RF is
determined without ambiguity, as there is no overlap between
the discrete and continuum absorption below 5.63 eV, and
each component has obviously different frequency depen-
dence. It is noteworthy that the discrete excitonic absorption
(indicated by the dotted lines) deviated slightly from the
square-root frequency dependence at high energies owing to
the frequency-dependent denominators included in the coeffi-
cients S j

r . The continuum absorption (dashed line) was similar
to the classical expression [42] (h̄ω)3/2.

For the separation between the absorption coefficients of
the discrete exciton and continuum origins, we attempted fit-
ting using two components, as follows:

αsum(h̄ω) =
∑

n=1,2

Aex

n3

√
h̄ω − E ex −

(
1 − 1

n2

)
R′

y

+ Acont (h̄ω − E cont )
3/2, (19)

where Aex and E ex are the effective amplitude and posi-
tion of the excitonic absorption, respectively, averaging the
phonon modes and excitonic fine structure; Acont and E cont

represent the dominant TO structure of the continuum ab-
sorption. The dash-dotted line is the best-fit function for
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FIG. 4. (a) Measured (upper panel) and calculated (lower panel) spectra in region of TA-phonon-assisted absorption at various tem-
peratures. Calculations shown by full lines included temperature dependence of indirect band-gap energy Eind(T ) and broadening �L (T ).
Continuum absorption is shown by dashed lines (blue for 7 K and red for 296 K), which were not included in full lines. (b) Absorption spectra
in wider spectral range. Dotted lines: Absorption due to discrete excitons. Dashed lines: Absorption due to continuum states. Full lines: Sum
of two components for 7 and 296 K. Circles: Absorption coefficient measured at room temperature [21]. Dash-dotted line with shading: Fit
function by Eq. (19).

296 K with Aex = (3474 ± 7) cm−1 eV−1/2, E ex = (5.5424 ±
0.0002) eV, Acont = (1.342 ± 0.003)×104 cm−1 eV−3/2, and
E cont = (5.6319 ± 0.0007) eV. For simplicity, the sum over
n was taken only for n = 1 and 2. This empirical expression
almost overlaps with the αsum represented by the red full
line and the experimental absorption spectrum from Ref. [21]
represented by the circles. The contribution of the continuum
absorption was found to reach 50% of the discrete excitonic
absorption at 6.0 eV. As indicated by arrows in Figure, E ex 	
E2 + h̄�TO was confirmed, showing that the absorption edge
is dominated by the coupling between the TO phonon and the
EX2 state.

D. Rate of phonon-assisted radiative recombination

To date, few attempts were made to determine the radia-
tive rate of the TO-phonon-assisted luminescence of excitons
in intrinsic diamond, which dominates the spectrum in the
deep ultraviolet region. In Ref. [43], the absorption spec-
trum and photoluminescence decay were measured at 83 K.
The number of incoming photons was estimated based on
the absorption coefficient. The number of emitted photons
was counted via calibration with the photon counts of the
dye laser light to account for the detection sensitivity. The
ratio of these two quantities yielded the quantum efficiency.
Subsequently, the measured decay time was divided by this
efficiency, resulting in a radiative lifetime of 2.3 μs. Because
of electron-hole-droplet formation at this temperature, a few
counts might have been overlooked [22]. This can cause an
underestimation of the quantum efficiency and hence, an over-
estimation of the radiative lifetime. Being consistent with this

interpretation, we recently reported a slightly shorter radiative
lifetime of excitons (1.4–1.8 μs) [22] based on an analysis
of the measured temperature dependence of exciton lifetime
considering the diffusion effect. Herein, we propose to deter-
mine the radiative rate based on the absorption derived above,
using the principle of detailed balance as proposed by van
Roosbroeck and Shockley [44]. Namely, we consider the rate
of the phonon-assisted luminescence process using a detailed
balance with the inverse process [45].

The rate of photon absorption for exciton creation with the
assistance of phonon annihilation is expressed as

c

nop
ρp(h̄ω) fp(h̄ω)a j (ε) f j (h̄� j )[1 + fx(E� + ε)], (20)

where ρp(h̄ω) = n3
opω

2/(h̄π2c3) is the photon density of
states, ε = h̄ω + h̄� j − E� is the exciton kinetic energy,
a j (ε) f j (h̄� j ) = α−

j (h̄ω) is the absorption coefficient, and f is
the occupation number (with the subscript p for photon, j for
phonon, and x for exciton). Because of the large phonon en-
ergies in diamond and the low occupation numbers ( f j 
 1),
this absorption process appears extremely weak. The ampli-
tude a j (ε) can be evaluated based on the absorption coefficient
α+

j (h̄ω) = a j (ε)[1 + f j (h̄� j )] for phonon creation, which ap-
pears at an energy shifted by +2h̄� j [45,46]. Meanwhile, the
rate of exciton luminescence with the assistance of phonon
creation is expressed as

γ j (h̄ω)gx(ε) fx(E� + ε)[1 + f j (h̄� j )][1 + fp(h̄ω)]. (21)
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These two rates should balance, and the luminescence rate is
expressed as

γ j (h̄ω) = c

nop

ρp(h̄ω)a j (ε)

gx(ε)

×1 + fx(E� + ε)

fx(E� + ε)

f j (h̄� j )

1 + f j (h̄� j )

fp(h̄ω)

1 + fp(h̄ω)
, (22)

which can be simplified to

γ j (h̄ω) = n2
op(h̄ω)2

π2c2h̄3

a j (ε)

gx(ε)
. (23)

Using the expression for the density of states of the
exciton, gx(ε) = g0RF

4π2 h̄3 (2M�h)3/2√ε and a j (ε) 	 α+
j (h̄ω) =

Aj
√

ε, yields

γ j (h̄ω) 	
√

2
n2

op

c2

(h̄ω)2

g0RF M3/2
�h

Aj, (24)

where g0 = 6×(1 + 2 + 3) = 36 includes degeneracies of the
valleys and optically allowed exciton states, i.e., nondegen-
erate EX2, doubly degenerate EX3, and triply degenerate
EX4 [27]. Substituting Aj = Aex = 3474 cm−1 eV−1/2 from
Eq. (19) and h̄ω = 5.27 eV (at the peak of the TO-phonon
assisted luminescence of the highest intensity) yields γex =
6.8×105 s−1 and γ −1

ex = 1.5 μs. The extracted value matches
the radiative lifetime determined using the extended surface
recombination model [22] on the temperature dependent exci-
ton lifetime.

It would be worthwhile comparing the obtained value with
the radiative lifetime in silicon from a general perspective.
Similar to the case of bound excitons [47], the factor (h̄ω)2

in Eq. (23) enhances the radiative recombination in diamond
compared to silicon. Furthermore, the electron-phonon cou-
pling strengths in diamond are approximately three to five
times stronger than in silicon [8,20] and they are squared in
Eq. (9). This further promotes the radiative recombination
of phonon-assisted recombination in diamond. These factors
may explain the 103-fold difference between the microsecond
radiative lifetime in diamond and a millisecond one known
for silicon [23]. Because the phonon-assisted exciton lumi-
nescence dominates the ultraviolet emission of high-quality
intrinsic diamond, this relatively high radiative rate makes
diamond much better suited for optoelectronics applications
than other indirect band-gap materials of low radiative rates.

V. CONCLUSIONS

We investigated the phonon-assisted optical transitions
of excitons in intrinsic diamond both theoretically and
experimentally. Excellent agreement with experiments was in-
dicated for the absorption spectra of excitons calculated using
the phonon coupling strengths derived from first-principles
calculations using just a single adjustable parameter to in-
clude the nonspherical correction to the exciton translational
mass. We successfully reproduced the temperature depen-
dence by including shift and broadening via the pseudo-Voigt
function analysis developed for the derivative of the exper-
imental spectra. Our calculation enabled the separation of
multiple processes overlapped in the experimental spectra,

such as absorption to discrete and continuum exciton states
and absorption involving different phonon modes. This led
to theoretical derivation of the radiative recombination rate
of excitons in diamond, discovered to be consistent with our
experimental value [22] and much higher than in silicon.

This study strengthens the understanding of the optical
processes in diamond quantitatively, instead of qualitatively,
based on first principles. The empirical expression in Eq. (19)
is simple and should particularly benefit researchers in vari-
ous area of diamond research, including device applications
[48]. From a theoretical perspective, our findings widen the
generality of the second-order perturbation theory regarding
electron-phonon interactions in materials important for opto-
electronics and power electronics, whose detailed discussions
have been limited to spintronics materials, such as silicon,
germanium, and related alloys hitherto.
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APPENDIX: SPHERICAL APPROXIMATION

The electron kinetic energy term of an excitonic Hamilto-
nian is described as

He = h̄2

(
k2

x

2mx
+ k2

y

2my
+ k2

z

2mz

)
. (A1)

For an electron in an anisotropic conduction band minimum
described with effective masses mx = my = mt and mz = ml,
the Hamiltonian can be separated into spherically and non-
spherically symmetric parts [33]. The former is expressed
with an effective mass of msph,e = (2/mt + 1/ml )/3, and
msph,e = 0.385m0 for diamond. The Hamiltonian for a hole
is written as

Hh = h̄2

(
k2

x + k2
y + k2

z

2mi

)
, (A2)

with i = hh, lh, and so, respectively for the heavy-hole, light-
hole and split-off bands, which are assumed to be isotropic.
The three hole bands mix each other by the nonspherical
part of the Hamiltonian, and treated with an average effective
mass of msph,h = 3/(1/mhh + 1/mlh + 1/mso), which yields
msph,h = 0.375m0 for diamond. These relations indicate that
a lighter mass contributes more to the energy and has a larger
weight in the average spherical masses. In the main text, msph,e

and msph,h were referred to as m� and mh, respectively. The
translational effective mass in the spherical approximation
was given by M�h = m� + mh = 0.760m0.

Meanwhile, the density of states contains the factor
(mxmymz )1/2 = mt

√
ml, and hence mdos,e = (m2

t ml )1/3 is con-
ventionally defined for an anisotropic electron. Similarly,
mdos,h = (m3/2

hh /3 + m3/2
hh /3 + m3/2

so /3)2/3 is used for an aver-
age density of states for a sphericalized hole band. Both of
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mdos,e = 0.496m0 and mdos,h = 0.450m0 are obviously heavier
than msph,e and msph,h in diamond. To correct the underesti-
mate of the joint density of states for excitons when using
the sphericalized effective masses, the enhancement param-
eter RF was introduced in Ref. [9]. We extend the definition
to include the split-off hole band for diamond and obtained
RF = (mdos,emdos,h )3/2/(msph,emsph,h )3/2 ∼ 2.

The above correction takes account of the electron
anisotropy with holes approximated by isotropic bands. The
exciton translational masses with anisotropic hole bands were
discussed by Kane in the limit of a large spin-orbit energy
splitting [49]. The limit is not exactly valid for diamond,

but we estimated a translational exciton mass of M ∼ 3M�h

(M3/2 ∼ 5M3/2
�h ) along the [001] direction when neglecting the

split-off band. Furthermore, the small spin-orbit interaction
in diamond induces mixing between the split-off and other
hole bands, whose effects were not incorporated in the above
and previous calculations for silicon and germanium of large
spin-orbit energy splitting. The perturbative k · p Hamiltonian
for anisotropic hole bands [50,51] predicts enhancement of
the hole masses with increasing wave vector, particularly for
[110] and equivalent directions. Although a quantitative esti-
mate of this effect is out of the scope of this paper, we consider
that RF larger than 2 is reasonable.
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