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Topological pump and bulk-edge-correspondence in an extended Bose-Hubbard model
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An extended Bose-Hubbard model (EBHM) with three- and four-body constraints can be feasible in cold
atoms in an optical lattice. A rich phase structure including various symmetry-protected topological (SPT) phases
is obtained numerically with suitable parameter settings and particle filling. The SPT phase is characterized by
the Berry phase as a local topological order parameter and the structure of the entanglement spectrum (ES). Based
on the presence of various topological phases, separated by gapless phase boundaries, the EBHM exhibits various
bosonic topological pumps, which are constructed by connecting the different SPT phases without gap closing.
The bulk topological pumps exhibit the plateau transitions characterized by many-body Chern numbers. For the
system with boundary, the center of mass (CoM) under grand canonical ensemble elucidates the contributions of
multiple edge states and reveals the topology of the system. We demonstrate that the interacting bosonic pumps

obey the bulk-edge correspondence.
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I. INTRODUCTION

The gapped symmetry protected topological (SPT) phase
[1-3] is now a hot topic in the condensed matter physics. The
topological insulators (TI) are one of the typical examples.
The gap is protected by some symmetries that do not vanish
for small but finite perturbation as far as the symmetries are
preserved. The SPT phase is robust. This is the topological
protection. Also, SPT phase is characterized by the presence
of edge states. The bulk-edge correspondence clearly char-
acterizes the appearance of the SPT phase [4] that is also
stable for interaction as far as the symmetries are preserved.
The SPT phases in the fermionic or spin models such as
Haldane S = 1 chain have been extensively studied. However,
the concrete example of the bosonic SPT phase in interacting
bosonic lattice models are rare although the bosonic SPT is
predicted by the group cohomology [5]. The demonstration
of the SPT phases is essential. So far, in the extended Bose
Hubbard model (EBHM) [6-8], the Haldane insulator (HI) as
an analog of the S = 1 Haldane phase of the quantum spin
chain is investigated [9-18]. Note that such a HI phase can
be realized in fermionic gas trapped in a ladder optical lattice
system [19].

Also, the study of charge [20] or spin [21] pump based
on the topological phases get focused [22—-32]. Recent experi-
mental development of photonic crystals and cold atoms have
realized topological charge pumps [33-36] and demonstrated
its stability for perturbations [37]. On the theoretical side, a
bosonic topological pump based on the HI phase has been
confirmed from the bulk perspective [22,23] and the presence
of topological charge pumps in some bosonic systems have
been reported [24,26-30]. Furthermore, the bulk-edge corre-
spondence of the topological pump has been discussed [25].

In this work, we discuss topological phenomena in the
EBHM by introducing the dimerization and the local Hilbert
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space constraints and found various SPT phases. Also, since
the EBHM has a high degree of freedom due to the local
particle number constraint, richer and more complex phases
are expected compared with quantum spins or fermions. In
particular, we have demonstrated the dimerization of the hop-
ping gives various SPT phases in the EBHM. The appearance
of SPT phases strongly depends on the local Hilbert space
constraints and mean particle density. These SPT phases are
analog of the valence-bond-solid (VBS) states in the spin
S > 1 chains [38—40]. Compared to the spin S > 1 chains,
the EBHM is simple in its algebraic structure. It implies the
SPT of the EBHM is fundamental and more universal. We
generalize the VBS picture for the SPT of the EBHM. It does
not correspond to that of the quantum spin in various aspects.

In this work, we first investigate nontrivial topological
phases of the EBHM. We numerically found the SPT phases
in the EBHM under a suitable parameter set. The numerically
obtained SPT phases are analyzed by considering trial wave
functions that describe the generalized VBS. The numerically
obtained SPT phases can be characterized by the Berry phase
as local topological order parameter [41—43]. The Berry phase
indicates that the numerically obtained SPT states are adia-
batically connected with the generalized VBS, which cannot
be decomposed into the smaller elements under the bond
centered inversion symmetry.

Furthermore, we directly construct the topological pump
by extending the parameter space since the global U (1) sym-
metry that guarantees charge conservation is only a key factor
for its construction. Based on the various SPT phases, by
connecting the SPT phases with a symmetry-breaking term
[22,23,31], we find the plateau transitions of the bulk topolog-
ical pump.

We further treat the open boundary case of the topological
pump in detail. In the system with open boundary, depending
on the particle filling and the dimerization parameter, the

©2021 American Physical Society
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EBHM exhibits multiple edge states. Their energies are not
fixed by the symmetry. These edge states play an essential role
in the behavior of the center of mass (CoM) in the topologi-
cal pump. In particular, we calculate the CoM for the grand
canonical ensemble. It captures the contribution of edge states
to the CoM for the presence of the multiple edge states. From
the detailed study of the CoM, we confirm that the bosonic
topological pumps obey the bulk-edge correspondence that is
analogous to the fermion/spin systems [25] in the EBHM.

The rest of the paper is organized as follows. In Sec. II,
we describe the model and its basic properties. In Sec. III,
the presence of various topological phases is clarified. We
introduce a generalized VBS states, which can describe fea-
tures of the topological phase in the bulk and then confirm
that numerically obtained states possess the features of the
generalized VBS states. In Sec. IV, the topological charge
pumps in the EBHM are numerically demonstrated with or
without edges. Sec. V is devoted to the conclusion.

II. MODEL

Let us consider an extended Bose Hubbard model
(EBHM), the Hamiltonian given by

L—1
HEBH = Z I:]jb;bjurl + H.c.

j=0

U _2 B _
+E(nj - +Vin; —n)njp—n)|, ()

where b;ﬂ is a boson annihilation (creation) operator, 7; is a

boson number operator n; = bj.b j, the hopping dimerization
is introduced by J; = J; for j € even, J; = J, for j € odd,
il is a mean density per site, U are an onsite interaction, V;
is a site dependent nearest-neighbor (NN) interaction, and
L is the system size, which is set to be an even number.
The Hamiltonian Hggy is experimentally feasible in the cold
atom optical lattice system [6]. The hopping dimerization J;
is created by introducing an optical superlattice. The onsite
U and NN interactions can be independently controllable:
The onsite U is s-wave scattering, which can be controlled
by using Feshbach resonance technique, and also V; may
be tuned by employing a dipole-dipole interaction [7,8]. We
further introduce a generic N-body interaction

L—1 N
U => W[ - @-n )
j=0 =1

If Vy is very large (Vy > U, V;,J; (=0)), the local bosonic
Hilbert space is truncated, that is, the allowed local boson
number bases are restricted to |0), |1),...,|N — 1). Espe-
cially, Vlfx 3 with Vy—3 — 00, so called three body constraint,
is feasible in real experiments in controlling U via Feshbach
resonance technique [44]. This three-body constraint implies
(b;)3 = 0. In what follows, we consider the three- and four-
body constraint [(b7)* = 0] separately.

For the translational invariant case, Jy =J, and V; =V,
the global phase diagram of the Hamiltonian Hggy has been
studied extensively [9—12,16], where the Haldane insulator
(HI) appears in the regime where U and V compete with

mean density one. This HI is a SPT phase grotected by the
bond centered inversion symmetry, b(J ( D It is robust
against a perturbation as long as the inversmn symmetry is not
broken [10].

The EBHM defined in Eq. (1) has a subtle difference from
the general spin-S (N = 2§ + 1) chain. Depending on the
N-body constraint and the mean density, the EBHM is related
to the dimerized spin-S chain, which has a rich topological
phase diagram [32,38—40]. When the local Hilbert space of
boson number is truncated as |0), , [n) (n = 28), the boson
operator is naively related to the spin-S operator as S;(H ~

by') and S5 ~ n; — 7. Under this assumption, if the uniform
hoppings and NN interactions are considered and the local
boson occupation is truncated up to |2), the HI phase can be
regarded as analogous of the VBS state (Haldane phase) in the
antiferromagnetic S = 1 spin chain [9]. However, the EBHM
does not exactly correspond to the spin-S model such as the
spin-S XXZ model since the inversion symmetry in the spin
space, S; — 2§ — §7 is absent for the boson counterpart.

III. TOPOLOGICAL PHASES OF THE BULK

In the general spin-S chain, the dimerization leads to an
interesting ground state phase diagram [38,40] including vari-
ous SPT phases, which are captured by VBS pictures [39,40].
By the mapping between the EBHM and the generic spin-S
chain, we expect that the introduction of the dimerization for
the hopping and NN interaction in the EBHM leads to rich
phase diagram, especially, various SPT phases regarded as an
extension of the Haldane insulator phase.

The feature of the HI phase of the EBHM is captured by a
short-range entanglement. This is analogous to the VBS state
in the S = 1 spin chain [10] and higher S extension as well
[39,40]. In this section, we propose a generalized VBS as
a representative state of various SPT phases in the EBHM.
These states can be regarded as an “irreducible cluster state,”
which cannot be decomposed into the smaller elements under
the bond centered inversion symmetries which protect the
topological phases.

Furthermore, we employ the Berry phase to character-
ize various SPT phases numerically obtained in the EBHM.
The quantized Berry phase has been used for characterizing
various SPT phases in many quantum many-body systems
[40—43,45-49]. The key observation is that Berry phase indi-
cates that the ground state is adiabatically connected with the
“irreducible cluster state.” We numerically calculate the Berry
phase of the numerically obtained state and compare with that
of the generalized VBS.

A. Generalized VBS state

In the EBHM with 7 = 1 and three-body constraint, the
VBS of the HI phase was proposed by Berg et al. [10] as

W) = H(b +b5,,)00), 3)

where C is a normalization constant. This state |}I'H1) is made
up of the boson of the “bonding state,” (b} + b;+| )/ /2 and
can be regarded as the irreducible cluster state under the
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bond centered inversion symmetry for the 77 = 1 case. The
state |Wy;) captures the typical properties of the SPT phase
[10,17,50] such as the entanglement spectrum, which has been
extensively studied and confirmed [12]. The bonding state
corresponds to spin 1/2 singlet in the VBS state [42].

Here, as for the EBHM with dimerization, we propose a
generalized VBS

(L-1)/2

Cl_[(b

where p + g = 271. The bonding state resides on each link, the
numbers of which are p and ¢ for J; and J, links. This state
|WwP-1) is short-range entangled (the entanglement properties
are investigated in Appendix B). The states |W”9) can be a
typical SPT state appeared in the EBHM of Eq. (1) if the
local boson Hilbert space is truncated up to |27). This |W?7)
is also analog of the VBS states in the generic spin-S chains,
which has been extensively studied before [39,40,51-54]. The
state |\W7?) has the characteristic properties (the presence of
the edge states by cutting the system and the quantized Berry
phase as shown later.) In the next subsection, we shall numer-
ically demonstrate the ground states share the properties with
|WP-4). In what follows, we focus on the integer or half-integer
fillingn = k/2 (k = 1,2, ...) to investigate the VBS-like SPT
state.

\yray By (Bhy1 +B5,.5)110), (4)

B. Berry phase characterization

As for the higher-integer spin-S systems and its fermionic
analog [40,42,45,46], the Berry phase has been employed for
the detection of the various SPT states as a local topological
order parameter. Especially the exact analytical calculation of
the Berry phase for the generic VBS states has been given
[39].

The Z, Berry phase is given by introducing a local twist
[42], Jo(e®bibr—y + e by 1), (¢ € S',0 € (7w;7]), as

iy =/ Ap(6)do, 4)
St

where Ay(0) = (G(0)|09G(0)) and |G(F)) is the (unique
gapped) ground state of Hggy(@). If the system is bond cen-
tered symmetric and its ground state is gapped unique, the
Berry phase y is quantized by O or w. The value of y does
not change as long as the gap is open. The Berry phase for the
VBS state [W79) is y = g (mod 27), corresponding to the
number of the bonding state (b} , + b}})/+/2 under mod 27
(see Appendix B).

Then, if a gapped ground state is deformed into the VBS
state | WP-7) without gap closing, the ground state has the same
value of the Berry phase. In the next subsection, we numeri-
cally demonstrate that some unique gapped ground states have
the same Berry phase as that of the VBS state |W?9).

C. Numerical demonstration of the various SPT phases

In what follows, let us focus on bulk properties. For the
EBHM, we numerically calculate the Berry phase and to
further characterize the SPTs, ES and entanglement entropy
(EE). We compare them to the properties of the VBS state
WP ).
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FIG. 1. Berry phase y: (a) 1 = 1, three-body constraint, (b) i1 =
2/3, four-body constraint. For (a) and (b) data, the system sizes are
L =10 and L = 8. (c) Six lowest ESs for J, link, labeled by ES1 ~
ES6. The system is setin U = 0.5 and 7 = 1. (d) Six lowest ESs for
J» link, labeled by ES1 ~ ES6. The system is set in U = 0.2 and
i = 3/2. (e) EE for J, link. The system is setin U = 0.5 and 7z = 1.
(f) EE for J, link. The system is set in U = 0.2 and 77 = 3/2. In ES
and EE calculations by iDMRG, the system size is L = 32.

Let us first discuss the case, 7 = 1 and adapt three-body
constraint, where the local boson Hilbert space is limited to
|0}, |1), and |2). We also set the parameters of the EBHM as
Ji =Jsing, J, =Jcos¢, V; =V, and the NN interaction is
uniform. We setJ =V = 1[55] and restrict U = 0, 0.5 and 1
for i = 1 [57]. The previous studies [32,40] give insight that
in such a parameter setting, various SPTs with different num-
bers of the bonding state appear depending on the ratio J1/J2.
Generally, the onsite U works in the direction of destroying
the SPT phases and decreasing entanglement of the system.
Varying the dimerization parameter ¢ between 0 and 7 /2, we
calculate the Berry phase y by the exact diagonalization [56],
ES and EE by the infinite-system density matrix renormaliza-
tion group (iDMRG) algorithm by the TeNPy package [58].
In the iDMRG algorithm, the ES and EE are obtained directly
from Schmidt values for a link in the matrix product state, A,
(¢ =1,2,..., Np, where Np is a bond dimension. The ES are
given by —21In A, and the EE is given by — >, A2 In 2.

Figure 1(a) is the Berry phase y. The results indicate the
topological phase transitions by varying the dimerization ¢. In
Fig. 1(a) the gap remains open except for the transition points.
We find the three SPT phases labeled as SPT1, SPT2 (HI),
and SPT3. These phases have the same Berry phase as that of
[wo2) w1y and |W*°). We also observed the stability of
the SPT phase for different U’s.
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We further calculate the ES by cutting the J, link. The
structure of the ES identifies whether the gapped ground state
is trivial or nontrivial that corresponds to the appearance of
edge states.

In Fig. 1(c), we plot the six lowest ESs as changing ¢ with
U = 0.5. There are three regimes: For 0 < ¢ < /8, the low-
est three ESs are nearly threefold degenerate, for 7 /8 < ¢ <
37 /8, the two lowest ES are degenerate, which is consistent
with the previous results [12], and for 37 /8 < ¢ < /2, the
lowest ES is isolated. These low-lying structures are qualita-
tively consistent with the structure of the ES obtained by the
VBS states, [W>°) and |W!!) (see Appendix A). Also, from
the obtained ES the entanglement entropy (EE) by cutting the
Jy or J, links are shown in Fig. 1(e). The two peaks of the
EE indicate the topological phase transitions. The numerical
results of y and the ES indicate the obtained states in the
EBHM have the same properties as that of the VBS Eq. (Al).

We next consider the denser case 7 = 3/2 with the four-
body constraint, where the local boson Hilbert space is
truncated up to |3). Here, we set a modulated NN interaction:
Vieodd = J1, Vjeeven = Jo, the other parameter forms are the
same as i = 1 case. Here, we restrict the case with U = 0,
0.2, and 0.5 [59].

The Berry phase y is shown in Fig. 1(b). There are four
SPT phases, where we label them as SPT1, SPT2, SPT3,
and SPT4. These phases have the same Berry phases as that
of (W3, |wh2) |wh2) and |W30). We also observed the
stability of the SPT phase for different U’s. It is noted that
the transition between SPT2 and SPT3 occurs at ¢ = /4,
the translational point (J; = J,), this is expected by the Lieb-
Schultz-Mattis type argument for half-integer spin-S systems
with translational symmetry [40]. It indicates that at ¢ = 7 /4,
the ground state of 7 = 3/2 is gapless while that of 7 =1
is gapped. Figure 1(d) is the six lowest ESs as changing ¢
with U = 0.2. There are four regimes: For 0 < ¢ < /8, the
two pairs of the twofold degenerate ESs appear, for /8 <
¢ < /4, single lowest ES and the twofold degenerate next
lowest ES appear, for 7 /4 < ¢ < 37/8, the lowest two ES
are twofold degenerate, and for 37 /8 < ¢ < 7 /2, the lowest
ES is isolated. These low-lying structures are similar to the
structure of the ES expected by the VBS states, |W*°) and
w21y (see Appendix A). Also, as shown in Fig. 1(f), the
behavior of EEs obtained by cutting the J; or J, links supports
the presence of the phase transitions. The EEs exhibit peaks at
the transition point. In particular, though capturing the phase
transition around ¢ = 7 by the ES is subtle, the EE shows
a weak bend [the red arrow in Fig. 1(f)] where the differen-
tiation seems to be discontinuous. This behavior implies the
topological phase transition.

Summarizing the behavior of y and ESs, each numerically
obtained state for the cases 7 = 1 and 3/2 is consistent to
the VBS |WP7). It suggests the ground states (numerically
obtained) in the EBHM can be adiabatically connected to the
VBS |wP9).

In addition, we calculated the # = 3/2 case with uniform
V; =V, which is a suitable setting in real experiments, as
shown in Appendix C. There, the Berry phase y also indicates
similar phase structure to Fig. 1(b), which implies that there
are various SPT phases for the uniform V. As for the structure
of the low-lying ES, the deviation from the structure of the ES

in the VBS states |W?9) is larger than that of the modulated
V; case. However, the clustering feature of the low-lying ESs
remains.

IV. TOPOLOGICAL CHARGE PUMP

Based on the presence of the various SPT phases, one can
extend parameter space by introducing symmetry breaking
terms protecting the SPTs, whereas the global U (1) symmetry
remains respected. Then, one can set a path connecting differ-
ent SPT phases without closing the gap [22,31,32].

As the simplest symmetry breaking term, we introduce a
staggered potential

L-1

Va= Y (=1)A@t)n;, (6)

=0

where A(r) is set in later. V; breaks the bond centered
inversion symmetry. For the Hamiltonian Hggy + V;, one
sets the time dependent pump path, ¢ — ¢(t) = ¢; + Pull —
cos(2mt/T)]/2 and A(t) = Agsing(t), where ¢, T, and A
are time, the period of the pump, and the strength of the
staggered potential, respectively. The parameters ¢; and ¢,
determine which two SPTs are connected. For a suitable
choice of the parameters, the pump path wraps the gapless
transition points of the SPT phase, where the ground state of
Hgpy + V,; with periodic boundary on the pump path remains
to be unique and gapped [22,31,32]. For t = 0 and 7' /2, the
symmetry is recovered where the SPT phases are defined. In
what follows, Ay = —1.

A. Bulk pump

We numerically demonstrate the presence of topolog-
ical charge pumps in the bulk. We consider the time-
and #-dependent Hamiltonian H(0,t) 4+ V,(t) with twisted
boundary condition, where the time dependence is imple-
mented in ¢. The bulk topological pump is characterized by
the many-body Chern number [60]

Cy=—— [ B(9,t)dodt, 7

V=0T ) (0, 1)dodt (N

where B(0,t) = 95(W(0,1)|0,|¥(0,t)) —
0 (W(O,1)09|W(O, 1)), |¥(@O,t)) is a unique ground

state of the Hamiltonian Hgpu(@,t) + Vy(t) and T? =
[—m, ) x [0, T). Cy corresponds to the total pumped charge
per one pump cycle [25,31,32,61].

For 71 = 1 case with three-body constraint, we calculated
Cy [62] as varying ¢, for ¢; =0 and U =0, 0.5, and 1
as shown in Fig. 2(a). Cy is quantized and quantum phase
transitions characterized by Cy appear, which are the plateau
transitions of the topological pump. The transition of the
pump occurs when the path is passing through the transition
points of the SPT characterized by the Berry phases y. This
implies that the transition point of the SPT is a topological
obstruction in the A(#)-¢ parameter space, which induces the
quantization of Cy.

As for the case n = 3/2 with four-body constraint, the
plots of Cy for ¢; =0 and U =0, 0.2, and 0.5 are shown
in Fig. 2(b). Similar quantum plateau transitions appear with
several plateaus of Cy reflecting the existence of the SPT
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FIG. 2. (a) Chern number Cy of the bulk pumping as increasing
¢ with ¢; = 0. We imposed 7 = 1, three-body constraint. (b) 7 =
3/2 case with ¢; = 0. The four-body constraint is imposed. The
system size is L = 10 for (a) and L = 8 for (b).

phases. Summarizing the results of 7 = 1 and 3/2 cases, the
EBHM exhibits various topological charge pumps in the bulk.
In addition, for the 7 = 3/2 case, a uniform V case is also
treated in Appendix C. The same plateau transitions appear.

There is a relation between Cy and the Berry phases of
the two connected SPTs as pointed out in the previous work
[32]: If the pump path connecting the two SPTs with the
Berry phase y; and y;, then the Chern number Cy is related
as y» — y1 = wCy, mod 2. Our obtained results of Cy in
Fig. 2 are consistent with the relation. We also comment that
since the EBHM is less symmetric than spin system such as
Ref. [32], the ES structure shown in Figs. 1(c) and 1(d) are
more complex than that of spin system. However, the Berry
phase is protected by inversion symmetry. This protection is
inherited to the Chern number Cy.

B. Open boundary case and bulk-edge correspondence

Next let us discuss the systems with open boundary
condition. To characterize the topological pump with open
boundary, we calculate the CoM given by

L-1

1
P(r) = ZZ(j—jo)(‘I’(t)lnjl‘l’(t)), ®)

j=0

where jo = (L —1)/2 and |W(¢)) is a ground state of the
system at time . The graph of P(¢) during pumping is given
by pairwise continuous parts with discontinuities (jumps). The
jump of P(¢) is defined by AP(t;) = P(¢t;, —0) — P(t; + 0),
where #; is a time at the discontinuities. In the smooth part,
we can define the time derivative of P(t), d,P(¢), which cor-
responds to the bulk current at . Sum of the integral over
the continuous part, ), f;’*' 9, P(t)dt gives the total pumped
charge denoted by Q,, which corresponds to Cy, O, = Cy
[25]. On the other hand, AP(#;) is induced by the creation or
annihilation of the left or right edge states. Due to the period-
icity of P(t), P(t) = P(t + T), there is a relation between the
total sum of jump AP(#;) and Cy [25]

Cv+ Y AP(t)=0. )

This is the bulk-edge correspondence of the topological pump.
In the following, we shall calculate the behavior of the CoM in
detail and verify the validity of Eq. (9) in the EBHM. To this
end, we employed the finite density matrix renormalization
algorithm by using TeNPy [58].

In the following, we focus on the grand canonical en-
semble, that is, we assume that the system touches particle
reservoir. We add the chemical potential term denoted by
H,=—-n Zf;(; n; to the system as Hggy + V4 + H,. Dur-
ing pumping, the energy and total particle number of the
system vary. The ground state is a minimum energy state of
the Hgpy + Vi + H.p. To determine the total particle number
during the pumping, we plot the spectral flow of the excita-
tion energy, AE(N) = Eo(N) — Eo(N — 1), where Ey(N) is
the ground state energy of Hggy + V; with N particles. We
calculate the total energies of the system with N and N — 1
particles. These are given by Eg(N) — uN and Eo(N — 1) —
W(N — 1). Here, the number of particles can be determined
by which energy is lower: If the particle number N, satisfies
AE(N,;) < u < AE(N, — 1), the N, particle system becomes
the ground state.

As the first typical case, we focus on the case, 7 = 1 with
¢; = m /24 and ¢,,, = Sm /24, where the pump path starts from
the SPT1 phase and then passing through the SPT2(HI) phase
att = T /2. This path has Cy = 1 in the bulk. For this pump,
several AE(N) around N = iiL = L are plotted in Fig. 3(a).
Att =0 and T/2, some AE’s almost cross but in the finite-
size system, the overlap of exponentially localized edge states
induces small energy splitting. This small gap is generated by
the effective interaction between the left and right edge states,
that scales exp [—L/&] (& is the correlation length). Hence, for
L — oo, the gap closes [63,64]. In the periodic system, such
low energy states do not exist. Noting that, generally, symme-
tries fix the energy of edge states as shown in Refs. [31,42],
where particle-hole symmetry fixes edge states to zero energy.
However, due to the absence of the particle-hole symmetry in
the EBHM, the energies of edge states are not strictly fixed in
the HI phase [10,17].

We here set © = —0.633 [65]. The energy lines AE(L)
and AE(L — 1) cross w line at r ~ 0.15 and 6.1, the closeup
data are shown in Figs. 3(b) and 3(c), where the number of
particles of the ground state changes. Selecting the suitable
particle number determined by the data of AE(N)’s, we plot
the spectral flow of the CoM in Figs. 3(d)-3(f). During the
pump, the particle number changes between N = L — 2 and L
where the CoM jumps. The whole plot of the CoM is shown in
Fig. 3(d), where the CoM jumps at¢ ~ 0.15, & and 6.1, where
the particle number changes by one.

These jumps are induced by the creation or annihilation
of the left or right edge states. We further calculate the CoM
around ¢ = 0.15 and 6.1. The closeup data of the CoM are
shown in Figs. 3(e) and 3(f). We find that clear two jumps
appear and each jumps take approximately AP ~ £0.5 (the
sigh depends on the creation or annihilation of left or right
edge states [25]). This indicates that there are two edge states
on both edges and their edge states induce the jump of CoM by
the creation or annihilation. In the presence of these multiple
edge states, it is crucial to consider such a grand canonical en-
semble to include the contribution of edge states to the CoM.
These observations of the jumps of the CoM are consistent
with the discussion by Ref. [25]. Such a contribution of the
edge states is not captured by the calculation of the CoM with
fixed particle number. (See Appendix D, where around ¢ ~ 0
the two edge states exchange from right to left almost at the
same time. However, it is difficult to observe each contribution
of two edge states.)
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FIG. 3. (a) Excitation energies AE(N) during pumping. The
closeup data of AE(N) around r = 0.15 and 6.1 are shown in (b) and
(c). (d) Whole behavior of the CoM with u = —0.633. Six jumps
occur at t ~ 0.15 7 and 6.1. The inset shows the connected data
of the CoM obtained by eliminating the jump. The closeup data of
A(N) around ¢ = 0.15 and 6.1 are shown in (e) and (f). Each jump
takes |AP| ~ 0.5 except for the sigh. The system size is L = 64. We
set U = 0.5 and ¢; = 7 /24 and ¢, = 57 /24.

In the whole behavior of the CoM in Fig. 3(d), if we
connect the smooth parts as shown in the inset in Fig. 3(d),
then we see Qp, ~ 1. Also, the total sum of AP for one
pump cycle. We conclude — Zli AP(t;) ~ 1. It quantizes as
— Zt,- AP(t;)) = 1 for L — oo. In conclusion, we confirmed
the bulk-edge correspondence of the topological pump of
Eq. (9) in the EBHM.

As the second typical case, we consider the case, 1 = 3/2
with ¢; = 7 /3 and ¢,, = /8, where starting with the SPT3
phase, the path crosses the SPT4 phase att = T /2, where the
pump has Cy = 1 in the bulk since the path goes around the

—e— AE(3L/2-1)
(a) e AE(3LR)
1] —e— AE(3LI2+1)
—o— AE(3L /2+2)

(d)

®

6.1

(1)

FIG. 4. (a) Excitation energies AE(N) during the pumping. The
closeup data of AE(N)’s around ¢t = 0.1 and 6.2 are shown in (b) and
(c). (d) Whole behavior of the CoM with = —0.776. Two jumps
occur at t ~ 0.1 and 6.2. The inset shows the connected data of the
CoM obtained by eliminating the jump. The closeup data of AE(N)’s
around r = 0.1 and 6.2 are shown in (e) and (f). Each jumps of the
CoM takes AP ~ —0.5. The system size is L = 48. We set U =0
and ¢; = /3 and ¢, = /8.

single gapless phase transition point. The same calculations
as the case, n =1 are carried out. For this pump, the sev-
eral AE(N) around N = L are plotted in Fig. 4(a). We set
u = —0.776. Here, the energy line AE (L) crosses the u line
atr ~ 0.1 and 6.2, the closeup data are shown in Figs. 4(b) and
4(c). Here, note that AE(3L/2+ 1) and AE(3L/2) almost
cross at ¢ = 0 but a small finite gap appears since the overlap
of exponentially localized edge states induces small energy
splitting.
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Selecting the suitable particle number determined by the
data of AE(N), we plot the spectral flow of the CoM in
Figs. 4(d)—4(f). The whole plot of the CoM is shown in
Fig. 4(d), where the CoM jumps twice at  ~ 0.2 and 6.2.
The inset in Fig. 4(d) shows the connected data of the CoM.
This behavior indicates Q;, ~ 1. The closeup data of the CoM
around ¢ = 0.1 and 6.2 are shown in Figs. 4(e) and 4(f),
each jumps of the CoM take approximately AP ~ —0.5 to
give — >, AP(t;) ~ 1. It quantizes as — ) AP(4;) = 1 for
L — oo. Therefore, we also confirmed the bulk-edge corre-
spondence of Eq. (9). The behavior of the CoM for i1 = 3/2
with fixed particle number is also shown in Appendix D,
where around ¢ = O the edge states exchange from right to
left almost at the same time, but each contribution of the edge
state to the jump cannot be captured.

Finally, we comment on the experimental observation of
the CoM behavior with open boundaries demonstrated in this
subsection in cold atoms. It is difficult to capture the behavior
of a genuine dynamical CoM behavior since the bulk gap
closes due to the presence of the in-gap states and strictly
adiabatic dynamics is prohibited. However, some stroboscopic
(snapshot) observations of edge states through the snapshot of
boson density can be feasible by employing state-of-the-art
experimental techniques such as DMD box-trap potential and
quantum-gas microscope [66].

V. CONCLUSION

In this work, we demonstrated that the interplay of the hop-
ping dimerization, NN repulsive interactions, mean density,
and the truncation of the local boson Hilbert space induces
various SPT phases and topological charge pumps. The var-
ious SPT phases in the EBHM are analogous to the various
VBS states emerged in the generic spin-S dimerized spin
model. We proposed the generalized VBS states in the bosonic
system to capture the properties of the SPT of the EBHM. To
characterize the SPT phases in the bulk, we employed the Z,
Berry phase. The calculation gives phase boundaries even for
a small finite-size system. Also, we investigated the low-lying
structure of ESs and observed that the degenerate structure
also characterizes the bulk SPT phases. In our numerical cal-
culations, the structure of ESs is consistent with that expected
by the VBS states |W#”9). These numerically obtained ground
states in the EBHM can be adiabatically connected to the VBS
states. We expect that the competition between U and V is
essential for the various SPTs founded in this work, even if
the local Hilbert space constraint is relaxed, the SPT phase
appears under the competitive parameter settings of U and V,
which has been indicated in Refs. [13,16,23].

Furthermore, based on the presence of various bulk SPT
phases, we have realized various topological charge pumps
in the EBHM. The plateau transitions of the bulk topological
pump appear. We next focus on the topological pump in the
system with open boundary condition by employing DMRG.
In particular, the CoM is investigated in detail for the grand
canonical ensemble. In this situation, the contributions of each
edge state to the jump of the CoM are separately captured. We
numerically confirm that these bosonic pumps obey the bulk-
edge correspondence. We finally comment that the EBHM in
this work is feasible in a real experimental system such as cold

atoms with dipole-dipole interactions [7] and also drawing the
detailed global phase diagram and quantifying the detailed
dependence of the truncation of the local Hilbert space will
be interesting topics as future work.
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APPENDIX A: ENTANGLEMENT SPECTRUM
FOR THE GENERALIZED VBS STATES

Motivated by the dimerized spin-S chain [40] and previous
works [10,50], we expect that the essential properties of SPT
phases of the EBHM can be captured by the generalized states

L/2-1

0 =€ [T Gyt b Gy +Ba 100, AD

where p 4+ g = 2 (71 is mean particle density) and C is a nor-
malized constant. Here we can write down the MPS form for
some simple (p, g) cases. From the MPS form we can extract
the structure of the low-lying ESs and the EE for the state
|WP-4). These properties of the ESs and EE can be compared
to those of the ESs and EEs in the SPT states obtained by the
numerical simulations.

1. 7 = 1 and three-body constraint case
First example is the dimerized case J; = 1 and J, = 0. The
SPT phase can be captured by
L/2-1

=Cu [ B, +bh)10),
m=0

|@0) (A2)

where C, is a normalization constant.

Since the system is in the dimerized limit, we focus on the
two site, where the dimers reside. For the two site system,
by employing the singular value decomposition, the state is
transformed into the two site MPS form

7@1 +5,,)10) =

where

> T4 ATE] i), (A3)
J1,72=0,1,2

g =1[0,0,—1], T'¥=1[0,-1,0], T5=I[1,0,0], (A4)

(120 0 0
Ap=|0 1/¥2 0| T§=|-1],
|0 0 1/2 0
[0 1
r‘“=101|, r¥=1of. (A5)
-1 0

The matrix A determines the ES and EE when the double
dimers are cut. The three ESs of A are nearly threefold and
the EE is given by % In2. From the two site MPS form, the
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VBS state with (p, g) =

L/2—1
v = K [

m=0

(2, 0) is also written by

Z TI‘[FA Arim+]]|j2mj2m+l>:|~

J1,J2=0,1,2
(A6)
We next consider the (p, g) = (1, 1) case, which is the
VBS state for the Haldane insulator (HI),

L—1

Wty =cn [ [, + bl )00).
m=0

(AT)

where C; is a normalization constant. For the state |W!'!), we
find the following MPS representation

L1
lwhh) = cyf Tr[HA”“}jm--jL_n, (A8)
je=0.12  Le=0
where CM is a normalization constant and
Lo 1 111 0 0 0
o_ 1_ 2 _
= lo o =l =l o
(A9)

It should be noted that the matrices A%l are different from
those of the VBS for the S = 1 AKLT model. By considering
three site HI with the periodic boundary condition, we can
easily confirm that the MPS form surely represents the state
jwhh),

whh=v2 >

Josj1,72=0,1,2

Tr[A AT AR]| joj1 )

= %(bg +b))(b] + BY)(bY + B)I0).  (A10)
Surely, the above MPS with periodic boundary case repro-
duces the three site periodic system of |¥!1),

For an infinite system size, the MPS of the HI state of
Eq. (A8) can be transformed into the canonical form [67]. It is
possible by imposing a suitable gauge matrix transformation
AUl — xAUIX=1[51,68]. We can find the unitary matrix M.
The canonical infinite MPS of the state |[W!!) is written by

(whly = Z [ ATV gy, (ALD)
je=0.1,2
where
vz oo o _ |0 1
[ e
iz gl 0] pei g0 0] go V2
o 17 1 0fp 1—1—«/5.
(A12)

This MPS representation is surely the canonical form because
the transfer matrix of the MPS satisfies the following canoni-
cal condition [68],

Z‘S wTih =80 D p Ty = duw

B.6'

(A13)

where Tﬁ“b‘)f/ is the transfer matrix,
Tﬁaﬁﬂl — Z[ F[j]]* [A F['i]]a’,ﬂ’

Z [CYIAT; [TV Al . (A14)
J

The canonical form gives an insight about the qualitative char-
acter of the entanglement structure in the system. Especially,
the form of A gives the ES. The ES is twofold degenerate for
each link and the EE is given by In 2.

2. i = 3/2 and four-body constraint case
We start with focusing on the (p, g) = (3, 0) case. As for
the dimer limit, J; = 1 and J, = 0 for 7 = 3/2, we can easily
write down the SPT phase, which is the dimerized case J; = 1
and J, = 0. The SPT phase can be captured by

(w30 = ¢ ]_[ b+

m=—00

bS,,.1)10). (A15)

As the case (p, ¢) = (2, 0), we focus on the two site, where
the bonding states reside. The two site state is transformed into
the two site MPS form [67]

fuﬂ +b5010)= > Te[CLATE ). (Al6)
J1,J2=0,1,2,3
where
F3=[0707_110]9 FA:[O,O,O,_]],
4 =[-1,0,0,0], T4 =1[0,-1,0,0], (Al7)
[V2/4 0 0 0
A_| O V&4 0 O | s_|0
“1 0 0 J6/4 0 |” 0T (0]
0 0 0 2/4 -1
r o 0 —1
0 -1 0
=4 =y 5=, (A18)
L 0 0 0

From the matrix A, when the triple bonding states are cut, the
low-lying ESs exhibit two sets of twofold degenerate, and the
EE is given by 3In2 — 3 In3.

The structure of the low-lying ES for the (p,q) = (2, 1)
state can be expected from the structure of the low-lying ESs
of (p, ¢) = (2,0) and (1,1) cases. The state |¥>!') has double
bonding states and single one at J; and J, links. Hence, if
we cut the even link of the state |U>!), the ES is the same
structure of the (p, g) = (2, 0) case, the three low-lying ESs
are nearly threefold. On the other hand, if we cut the J, link
of the state |¥2'!), the ES is the same structure of the (p, ¢) =
(1, 1) case, the two low-lying ESs are degenerate. Hence, we
expect that the EEs are given by 3 5In2 and In 2 for the J; and
J> links.
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FIG. 5. (a) Berry phase y for 7 = 3/2 and four-body constraint. (b) Six lowest ESs for J, link, labeled by EE1 ~ EE6. for U = 0.5.
(c) EE of J; and J, links for U = 0.5. In ES and EE calculations by iDMRG, the system size is L = 48. (d) Chern number Cy as increasing ¢,

with ¢; = 0.

APPENDIX B: BERRY PHASE CHARACTERIZATION
FOR SPT PHASE

We shall show that the generalized VBS state has the
quantized Berry phase if one introduces a twist, which can
be introduced by attaching the phase to a hopping term, in
principle. We start with the HI state. The HI state described
by Eq. (A7) under the twist 6 for the link between j = L — 1
and jj can be expressed by

L-2
W 0) = Cnby_, +€”b) [ ], +b],,.10). (B1)

m=0

For the state |U'!"1(9)), the Berry phase is given by

2
iy:/ do (w1 0)3, W' 6)). (B2)
0

Here, we take a gauge fixed form, [W!1(0)) = e7/2|dy(9))
and the Berry phase are given by

2
iy =im +/ d6 (Pui(6)|99 | Pri(6)). (B3)
0

By following the procedure of Ref. [39] the state |®y(6)) is
written as follows

0 0
| Pmi(0)) = cos 5|¢1)+isin5|<b2), (B4)

L-2
|©1) = Cra(b}_, + b)) [ [®}, + b],.)I0),

m=0
L-2
il il

D) = Cui(by_, — by) [ [, + b],,.)10).

m=0

(B5)

(B6)

Here, the integrant of the second term of the right hand side in
Eq. (B3)is

(PHi(0)]9 | Pr1(6)) = 0, B7)

where we used (®;|P,) = 0. Hence, the HI state is character-
ized by y = .

Also, the same calculation can be applied to the general
case of p and g. The Berry phases for J; and J; links are given
by y = pmr (mod 27) and g (mod 27).

APPENDIX C: SPT PHASES FOR THE UNIFORM V CASE
WITH 72 = 3/2 AND FOUR-BODY CONSTRAINT

In this Appendix, we show the numerical calculation for
i1 = 3/2 with uniform V and four-body constraint. The nearly

uniform V is feasible for a real experimental system such as
dipolar lattice gases trapped in the optical lattice [7].

The form of the parameter is the same as the 7 = 1 case in
Figs. 1(a), 1(c), and 1(e). The Berry phase y is calculated in
Fig. 5(a) for some values of U. We found four SPT phases.
Figure 5(b) is the six-lowest ESs as changing ¢ with U = 0.5.
As a whole, the structure of ES gives subtle information about
the degeneracy of the ES. Moreover, in Fig. 5(c), the behavior
of EEs for the J; and J, links shows no clear peaks. Hence,
in the uniform V case, the Berry phase characterization gives
useful information about the bulk phases and their transitions.

Even for the uniform V, we found the topological charge
pump and the plateau transitions if we set the same pump
parameterization as that in the main text. The result for
Ap = —1and V = 1 is shown in Fig. 5(d).

APPENDIX D: BEHAVIOR OF CENTER OF MASS
WITH FIXED PARTICLE NUMBER

We show the CoM behavior of the topological pumps with
the fixed particle number case. We fixed the total particle
number with N = iiL. The CoM of the pumps for the 1 = 1
case with ¢, = 5w /24 are plotted in Fig. 6(a). We observe
a single jump at t = 0, 7/2. This is different from that in
the conventional topological pump in the Rice-Mele model
[30,31]. These jumps AP(t;) at t =0, T/2 are caused by
the creation and annihilation of the left and right edge states
at the same time. The sign of AP(#;) and its amplitude are
different. Even in the fixed particle number case, the total sum
of the CoM jump is expected to correspond to Cy. Certainly,
the numerical result in Fig. 6(a) indicates Zz,» AP(t;) ~ 1 for
some values of U.

2 4 2 4
() ¢ (1)

FIG. 6. The CoM behavior with fixed particle number: (a) 7 = 1,
¢; = 1w /24, ¢, = S /24 and the three-body constraint. (b) 7 = 3/2,
¢; =1 /3, ¢, = 7 /8 and the four-body constraint. We set L = 64
and 48 for (a) and (b).
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Such a CoM behavior is also observed in a topological
pump for the 7 = 3/2 case with ¢; = 7 /24 and ¢, = S /24,
as shown in Fig. 6(b). The CoM jump around ¢ ~ O is not
sharp due to the particle number fluctuations, though roughly

we observe Zz,- AP(t;) ~ 1. Hence, to observe each contri-
bution of the edge states to the CoM and the bulk edge
correspondence of the topological pump the grand canonical
calculation shown in Figs. 3 and 4 is more reasonable.
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