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The multipolar Kondo problem, wherein the quantum impurity carries higher-rank multipolar moments, has
seen recent theoretical and experimental interest due to proposals of novel non-Fermi liquid states and the
availability of a variety of material platforms. The multipolar nature of local moments, in conjunction with
constraining crystal field symmetries, leads to a vast array of possible interactions and resulting non-Fermi liquid
ground states. Previous works on Kondo physics have typically focused on impurities that have two degenerate
internal states. In this work, inspired by recent experiments on the tetragonal material YbRu2Ge2, which has been
shown to exhibit a local moment with a quasi-fourfold degenerate ground state, we consider the Kondo effect for
such a quasi-quartet multipolar impurity. In the tetragonal crystal field environment, the local moment supports
dipolar, quadrupolar, and octupolar moments, which interact with conduction electrons in entangled spin and
orbital states. Using renormalization group analysis, we uncover a number of emergent quantum ground states
characterized by nontrivial fixed points. It is shown that these previously unidentified fixed points are described
by truncated SU(4) Kondo models, where only some of the SU(4) generators (representing the impurity degrees
of freedom) are coupled to conduction electrons. Such novel nontrivial fixed points are unique to the quasi-quartet
multipolar impurity, reinforcing the idea that an unexplored rich diversity of phenomena may be produced by
multipolar quantum impurity systems.

DOI: 10.1103/PhysRevB.104.125144

I. INTRODUCTION

Quantum impurity systems serve as important building
blocks for understanding electron correlation effects in com-
plex quantum materials and their theoretical models. For
example, dynamical mean-field theory utilizes various quan-
tum impurity systems as the mean-field frameworks to capture
the local, but time-dependent, correlation effects [1,2]. In
mesoscopic physics, a quantum dot is often modeled as a
quantum impurity which interacts with electrons in the leads
of the device [3–5]. The multichannel Kondo effect, wherein
multiple channels of conduction electrons interact with a local
moment, leads to intriguing non-Fermi liquids [6–15], offer-
ing the opportunity to study the interplay between non-Fermi
liquids, broken symmetry states, and superconductivity in
generalized lattice models of heavy fermion systems [16–29].
In the vast majority of examples, however, the quantum impu-
rity is often modeled as a dipolar impurity characterized by a
spin or a pseudospin 1

2 quantum number.
It has been recognized for some time that some local

moments in f -electron systems carry higher-rank multipolar
moments such as quadrupolar or octupolar moments [30–33].
In many of these systems, various non-Fermi liquid phenom-
ena are observed [34–36]. While some aspects of multipolar
local moments in a metallic host have been explored in the
past, recent theoretical efforts have focused on developing a
deeper understanding of the interaction of conduction elec-
trons (equipped with both spin and orbital degrees of freedom)
scattering off higher-rank multipolar moments [37–39]. These
unusual moments, arising due to crystalline electric field ef-
fects and strong spin-orbit coupling, transform in nontrivial

ways under lattice group operations, and the abundance of
possible moments, accompanied by a wealth of multiorbital
electrons, leads to a plethora of possible interactions and
nontrivial ground states. Intriguingly, such systems have been
shown to give rise to a range of exotic non-Fermi liquid
behaviors. Common to all of these examples, however, is the
fact that the local moment can access two internal states, for
instance, its spin-up and spin-down states in the case of the
ordinary dipolar Kondo problem, or between (superpositions
of) two higher total angular momentum states in certain non-
Kramers doublet impurity systems. A relatively unexplored
ingredient of diversity in quantum impurity problems is the
presence of a quartet of quasi-degenerate states for the lo-
calized f -electrons [40–42]. The enhanced multiplicity of
the localized states permits the development of many more
multipolar moments than those appearing from (Kramers
or non-Kramers) doublets. Constrained by the anisotropic
crystalline electric field environment, these systems are a de-
parture from the conventional quantum impurity problems,
and the diverse landscape of higher-rank quantum impurities
subject to a crystalline field remains largely unexplored.

In this work, we consider a single quantum impurity
with four quasi-degenerate crystal field levels in tetrag-
onal systems. The quasi-quartet impurity hosts dipolar,
quadrupolar, and octupolar moments, and we consider its
symmetry-allowed interactions with conduction electrons be-
longing to the Eu irreducible representation of the local D4h

tetragonal symmetry. This physical setting is partly motivated
by recent experimental studies on YbRu2Ge2 [41,43,44]. We
classify the multipolar moments of the impurity according
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to irreducible representations of D4h, and consider simplified
models containing only the multipolar moments belonging to
some closed sets of these irreps. Applying renormalization
group techniques, we identify possible ground states, and an-
alyze the low-energy thermodynamic and transport behaviors,
such as specific heat and electrical resistivity. Specifically,
when we consider multipolar moments in the A1g and B1g

irreps, or the A1g and B2g irreps, we find a nontrivial fixed point
characterized by a truncated SU(4) Kondo model, where only
three generators of SU(4), representing the impurity degrees
of freedom, are coupled to two channels of conduction elec-
trons. When we consider multipolar moments from all of A1g,
A2g, B1g, and B2g irreps together, we obtain a different fixed
point, characterized by a more complicated truncated SU(4)
Kondo model, with six generators of SU(4) coupling to con-
duction electrons. These emergent fixed points are not known
to be related to any known multichannel Kondo models. In
particular, the physical nature of the latter fixed point model
intimates at the rearrangement of the multipolar moments into
unusual emergent combinations, which results in different
kinds of conduction electrons scattering with different local
moment states. This work provides an illustrative example of
the importance of the entangled spin and orbital nature of the
conduction electrons due to the coupling to the multipolar
impurity with multiple multipolar moments, and the novel
ground states that result from such correlations.

The remainder of this paper is organized as follows.
In Sec. II, we explain the multipolar nature of the quasi-
quartet ground state of the local moment and the conduction
electrons which it scatters. In Sec. III, we introduce the
symmetry-permitted multipolar Kondo Hamiltonians describ-
ing scattering of Eu-symmetry conduction electrons off of
various choices of multipolar moments, namely moments
belonging to the A1g, A2g, B1g, and B2g irreducible representa-
tions of D4h. In Sec. IV, we describe the low-energy behaviors
of our models at renormalization group fixed points, calculate
their scaling dimensions, and interpret the resulting fixed point
models. In Sec. V, we explain the consequences of our work
and discuss interesting future directions of exploration.

II. MICROSCOPIC MODELS

A. Quasi-quartet local moment

When a local moment is immersed in a crystalline electric
field (CEF), the shapes of the electronic wave functions are
restricted and can be classified according to the irreducible
representations of the local point group. In the case of a Yb3+
ion, a spin J = 7/2 ground state is formed in the absence of a
crystal field by Hund’s rules [40]. When this ion is subjected
to a local tetragonal CEF, the eight degenerate states split
into four Kramers doublets. In this work, we consider the
case where the two lowest-lying Kramers doublets feature a
quasi-degeneracy. Such a scenario is exemplified by the com-
pound YbRu2Ge2 [44]; the origin of this quasi-degeneracy in
YbRu2Ge2 is still unclear. It may be due either to a small
splitting of a cubic �8 quartet due to a tetragonal CEF pertur-
bation, or an accidental degeneracy. In this specific material,
the splitting between the two lowest doublets is T0 = 10.2 K,
and the next excitation is separated by a further 360 K. At

TABLE I. The Stevens operators describing the identity (O),
dipolar (J), quadrupolar (Q), and octupolar (T ) moments are listed.
We define the “Abstract” notation to denote the microscopic opera-
tors which act on an arbitrary |J, Jz〉 state. The abstract operators have
their explicit form given in the “Expression” column. In the “Pro-
jected” column, we present the notation for the Stevens operators
after having been calculated in the quasi-quartet basis. The symmetry
character according to the irreducible representations of D4h is listed
in the “Irrep” column. The overline notation denotes symmetrization
AB := 1

2 (AB + BA).

Projected Abstract Expression (action on |J, Jz〉) Irrep

S0 O0 1 A1g

S1 Jy Jy Eg

S2 Jz Jz A2g

S3 Jx Jx Eg

S4 Q2− −
√

3
5

1
24i (J2

+ − J2
−) B2g

S5 Q1− 1
2
√

15i
Jz(J+ − J−) Eg

S6 Q0 − 1
6 (3J2

z − J2) A1g

S7 Q1+ 1
2
√

15
Jz(J+ + J−) Eg

S8 Q2+ −
√

3
5

1
24 (J2

+ + J2
−) B1g

S9 T3− 1
60i (J3

+ − J3
−) Eg

S10 T2− −
√

3
5

1
12i Jz(J2+ − J2−) B1g

S11 T1− 1
20

√
3i

(5J2
z − J2 − 1/2)(J+ − J−) Eg

S12 T0
1
15 (5J3

z − (3J2 − 1)Jz ) A2g

S13 T1+ 1
20

√
3
(5J2

z − J2 − 1/2)(J+ + J−) Eg

S14 T2+ −
√

3
5

1
12 Jz(J2+ + J2−) B2g

S15 T3+ 1
60 (J3

+ + J3
−) Eg

energy scales less than 360 K but not far below T0, the four
states can be taken to be equally thermally populated, and are
all able to participate in Kondo scattering events; our analysis
therefore applies in the range 10.2 � T < 360 K. Indeed,
measurements of the magnetic entropy reveal a plateau of the
magnetic entropy at kB log 4 [40], indicating a quasi-quartet
degeneracy of the f -electron levels and validating our the-
oretical setup. The quasi-quartet of states consists of linear
combinations of |J, Jz〉 states from the J = 7/2 multiplet:

∣∣�(1)
6

〉
± = a

∣∣∣∣7

2
,
±7

2

〉
+ b

∣∣∣∣7

2
,
∓1

2

〉
, (1)

∣∣�(1)
7

〉
± = c

∣∣∣∣7

2
,
±5

2

〉
+ d

∣∣∣∣7

2
,
∓3

2

〉
, (2)

where, for YbRu2Ge2, the experimentally determined values
(from polarization resolved Raman scattering spectroscopy)
are a = −0.772, b = 0.636, c = 0.508, and d = 0.861 [44].
This quasi-quartet supports 16 multipolar moments: 1 trivial
identity, 3 dipoles, 5 quadrupoles, and 7 octopoles. The large
number of states presents a very rich structure and allows for
a plethora of possible couplings. The supported multipolar
moments (in terms of Stevens operators) are presented in
Table I.
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In a basis spanned by the four quasi-quartet states, these
Stevens operators can be expressed in terms of the traceless
SU(4) Gell-Mann generators and the identity operator. The
explicit forms of the operators with respect to the particular
basis given in Eqs. (B1)–(B4) are enumerated in Eqs. (B5)–
(B20). All multipole operators are linearly independent in this
basis, despite some sharing the exact same symmetry. The
fact that there are 16 multipolar moment 4 × 4 matrices is
to be contrasted with an ordinary SU(2) spin-3/2 moment,
which, despite acting on a space spanned by four states (Jz =
− 3

2 ,− 1
2 , 1

2 , 3
2 ) possesses only three generators.

The multipolar operators in the quasi-quartet basis depend
on a, b, c, d in a highly convoluted form. To simplify the
situation while capturing the essential low-energy behavior,
we examine the case of a = c = 0 and b = d = 1 for the rest
of this work. As can be seen in Appendix B, the physics is
preserved with this choice because the multipolar operators
are all linearly independent (and nonzero) even for this sim-
pler choice of wave function coefficients.

B. Conduction electrons

Conduction electrons in tetragonal systems can always
be classified according to irreducible representations of D4h.
However, only when the electrons have a wave vector in the
close vicinity of a high-symmetry point of the Brillouin zone,
can we associate the basis states of irreducible representa-
tions with the degenerate energy levels of the conduction
electrons. Recent ARPES studies indicated a small pocket
in the Fermi surface about the Z point of the first Brillouin
zone in YbRu2Ge2 [43]. This high-symmetry point leads to
our consideration of two degenerate Bloch orbitals with Eu

symmetry; these two orbitals are labeled by {x, y} and have the
same density of states. The conduction electrons are able to
transition between these two (symmetry-enforced) degenerate
orbitals, as well as flip their spin, via interaction with the
multipolar moments.

III. MULTIPOLAR KONDO MODELS

We construct symmetry-allowed Hamiltonians that de-
scribe the scattering of conduction electrons with x or y
symmetry off of the multipolar impurity. Although the phys-
ical origin of the Kondo Hamiltonians is an Anderson model
containing valence fluctuations from the Yb3+ local moment
to a virtual Yb2+ state, we construct the low-energy Kondo
models purely from symmetry grounds, which yields the same
result as a Schrieffer-Wolff transformation on the correspond-
ing high energy Anderson model [37]. Because the impurity
has 16 moments, we consider only certain subsets of mul-
tipolar operators to simplify the situation. Not every subset
choice of pseudospin operators is allowable however; the set
of operators must form a closed algebra dictated by symmetry.
We use products of irreducible representations (see Table III)
to find candidate closed algebras by referring to Table I,
where the pseudospin operators are classified by irreducible
representation. In this work, we consider pseudospin operators
belonging to the irreps A1g, A2g, B1g, and B2g. From these four
irreps, we construct three intriguing models by considering
the following closed multiplication tables:

(1) pseudospin operators in the A1g, B1g irreps:

⊗ A1g B1g

A1g A1g B1g

B1g B1g A1g

(2) pseudospin operators in the A1g, B2g irreps:

⊗ A1g B2g

A1g A1g B2g

B2g B2g A1g

(3) pseudospin operators in the A1g, A2g, B1g, B2g irreps

⊗ A1g A2g B1g B2g

A1g A1g A2g B1g B2g

A2g A2g A1g B2g B1g

B1g B1g B2g A1g A2g

B2g B2g B1g A2g A1g

Interaction of conduction electrons with the moments in
these three tables will be the subject of the following three
subsections.

A. A1g ⊗ B1g pseudospin model

The first model, as outlined in the introduction to this
section, contains pseudospin operators in the A1g and B1g

irreps. These operators are an identity (S0), two quadrupoles,
(S6, S8), and an octopole (S10). Indeed, the operators S6 −
S0 ∈ A1g, S8 ∈ B1g, and S10 ∈ B1g form a canonically normal-
ized su(2) algebra:

[S10, S0 − S6] = iS8, (3)

[S8, S10] = i(S0 − S6), (4)

[S0 − S6, S8] = iS10. (5)

These observations signify that, when conduction electrons
scatter from multipolar moments, the localized f -electron
must interchange between the particular internal states cor-
responding to the moments forming the closed subalgebra.
There are four Hamiltonians containing these pseudospins and
respecting the full D4h symmetry and time-reversal symmetry:

HM = 2JMc†
0aασ z

αβτ 2
abS0c0bβ, (6)

HQ1 = 2JQ1c†
0aασ z

αβτ 2
abS6c0bβ, (7)

HQ2 = 2JQ2c†
0aασ 0

αβτ 3
abS8c0bβ, (8)

HO1 = 2JO1c†
0aασ z

αβτ 1
abS10c0bβ. (9)

The Latin indices a, b = {x, y} represent the conduction
electrons’ orbital degree of freedom, and the Greek indices
α, β = {↑,↓} represent the spin degree of freedom. The σ

and τ matrices each form a canonically normalized su(2) Lie
algebra (i.e., [σ i, σ j] = iεi jkσ k); we use different letters to
avoid confusion between orbital τ and spin σ spaces. Both the
a, b and α, β indices are summed over in these equations and
other Hamiltonians in this work. The index 0 on the conduc-
tion electron operators indicates that these are operators at the
origin (impurity site). These Hamiltonians are parameterized
by four coupling constants, JM, JQ1, JQ2, and JO1.
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B. A1g ⊗ B2g pseudospin model

An analogous exercise can be conducted with other subsets
of operators. In this case, we consider another closed algebra
consisting of one identity (S0), two quadrupoles (S4, S6), and
one octopole (S14). The operators S6 − S0, S4, and S14 also
form a closed su(2) subalgebra. The algebra is defined by the
following commutation relations:

[S4, S0 − S6] = iS14, (10)

[S14, S4] = i(S0 − S6), (11)

[S0 − S6, S14] = iS4. (12)

In similar fashion to the previous section, we construct
a model wherein conduction electrons scatter off of mo-
ments in this closed subalgebra. The pseudospin operators are
{S0, S6, S4, S14}, and this again leads to four Hamiltonians,
with coupling constants JM , JQ1, JQ3, and JO2. The Hamilto-
nians for this model are Eqs. (6) and (7), along with two
additional terms:

HQ3 = 2JQ3c†
0aασ 0

αβτ 1
abS4c0bβ, (13)

HO2 = 2JO2c†
0aασ z

αβτ 3
abS14c0bβ. (14)

This set of four interaction Hamiltonians is isomorphic
to those listed in Sec. III A. The mapping for the isomor-
phism between the interactions can be done with the unitary
transformation c†

x↑ = a†
1↑, c†

y↑ = a†
2↑, c†

x↓ = a†
2↓, c†

y↓ = −a†
1↓.

The a, a† operators are new fermionic operators which simply
correspond to a new basis of conduction electrons.

C. Combined model

The Stevens operators for the pseudospin form another
closed algebra if one considers the operators in the A2g irrep,
in addition to those in A1g, B1g and B2g irreps. This appears
organically because B1g ⊗ B2g = A2g, so combining the mod-
els of the previous two sections automatically generates these
operators. Referring to Table I, we see that the two operators
in the A2g representation are S2 and S12. The Hamiltonians that
need to be introduced, in addition to the ones we already have
[Eqs. (6)–(9), and (8), (14)], are given by

HD1 = 2JD1c†
0aασ 0

αβτ 2
abS2c0bβ, (15)

HD2 = 2JD2c†
0aασ z

αβτ 0
abS2c0bβ, (16)

HO3 = 2JO3c†
0aασ 0

αβτ 2
abS12c0bβ, (17)

HO4 = 2JO4c†
0aασ z

αβτ 0
abS12c0bβ. (18)

These models bring us to a grand total of 10 coupling
constants. These new terms correspond to two dipole terms
and two new octupolar terms. This combined model therefore
has full participation of all (available) ranks of multipoles in
the system.

IV. NONTRIVIAL FIXED POINTS FOR MULTIPOLAR
KONDO MODELS

In this section, we will uncover the low energy behaviors of
the models from Sec. III by calculating the scaling dimension

1 + � of the leading irrelevant operator for the different
theories. We will find that the A1g ⊗ B1g and A1g ⊗ B2g

critical models both have �perturb = 1, with two channels of
conduction electrons scattering from only three generators of
an SU(4) moment (as opposed to an SU(2) moment in the
ordinary two-channel Kondo effect). The third (combined)
model possesses a new stable fixed point with six generators
of the SU(4) moment coupling to the conduction electrons in
a highly anistropic manner. These models are not known to
be mappable to a k-channel Kondo model. We will discuss
the stability and validity of these fixed points via a strong
coupling analysis.

The constructed models require the renormalization group
(RG) formalism to shine light onto the low-energy behaviors.
In the standard Wilson RG, the interaction strengths depend
on a high-energy cutoff D corresponding to the bandwidth
of the conduction electrons [45,46]. As the cutoff is lowered,
coupling constants flow, and eventually arrive at a fixed point.
Stable fixed points correspond to the low-energy fate of the
theory. The low-energy fixed points of the models are pictured
schematically in Fig. 1.

The flow of the coupling constants is governed by β func-
tions, which we compute by expanding the vertex function
to third order in perturbation theory. In contrast to previous
works in Kondo problems, we need to carefully reconsider
the wave function renormalization diagram, the details of
which are outlined in Appendix F. This additional complexity,
appearing in the matrix structure of the diagram, arises due
to the anisotropic nature of the interaction, in addition to the
su(4)-type algebra obeyed by the pseudospin operators.

Physical information is contained within the β functions
via the slope � of the Jacobian at the fixed point, and the
properties of resistivity and heat capacity scale as ρ ∼ T �

and C ∼ T 2�, respectively [7]. We note that the mentioned
relationship of � to the physical quantities is not valid for
the ordinary single-channel Kondo model, as there, the lead-
ing irrelevant operator is the biquadratic bosonic spin-current
operator. This arises due to the impurity being completely
absorbed into the bulk fermionic theory and rendering a mere
change in the boundary condition [6]. Indeed, the striking
feature of the single-channel Kondo model (which is distinct
from k-channel Kondo models) is that the strong-coupling
limit is nondegenerate, indicating the formation of the stable
Kondo singlet. Below, we show that the critical Hamiltoni-
ans found here have degenerate ground states in the strong
coupling limit, signifying the departure from this Fermi liquid
picture. In the remainder of this section, we will discuss the
fixed points and associated scaling behaviors for the models
in question.

A. A1g ⊗ B1g and A1g ⊗ B2g models

The β functions for the coupling constants of the models
in Secs. III A and III B are given by

dJM

d log D
= −JO1JQ2 − JQ1

2

(
J2

O1 + J2
Q2

)
, (19)

dJQ1

d log D
= JO1JQ2 + JQ1

2

(
J2

O1 + J2
Q2

)
, (20)
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FIG. 1. Schematic denoting the renormalization group flow from the ultraviolet (UV) to infrared (IR) regime. In the UV limit, all the
different moments have their own distinct couplings to conduction electrons, but they rearrange in the IR to emergent and simplified models.
In the circles (top right), we consider different subsets of multipolar moments interacting with x and y conduction electrons. For the choice of
{A1g, B2g} irrep moments, that is, {Q0,O0,Q2−,T2+} (blue), the IR theory becomes a two-channel Kondo model with a truncated SU(4) spin
[i.e., only 3 of the 15 generators of SU(4)]. For the {A1g, B2g} irrep moments, {Q0,O0,Q2+,T2−} (red), the theory also becomes a two-channel
Kondo model with three-generator truncated SU(4) moment in the IR. If the pseudospin is allowed more general transitions, then we generate
further symmetry-allowed interactions and the corresponding multipolar moments can lie in any of the irreps {A1g, A2g, B1g, B2g} (red circle).
In the IR limit, this yields a 6 generator truncated SU(4) Kondo model at the fixed point. There is a particularly substantial rearrangement of
the moments, leadings us to define “effective spins” SA (A = 1, ...6) in terms of multipolar operators. In the “two-channel” cases, τ represents
the standard su(2) Pauli matrices. In the six-generator case, T A, describing the conduction electrons, refers to six particular SU(4) generators
enumerated in the main text [Eq. (40)]. This fixed point model can be interpreted as a single channel of SU(4) electrons interacting with a
limited set of SU(4) moments.

dJQ2

d log D
= JO1JQ1 + JQ2

2

(
J2

O1 + J2
Q1

)
, (21)

dJO1

d log D
= JQ1JQ2 + JO1

2

(
J2

Q1 + J2
Q2

)
. (22)

The density of states of conduction electrons has been
absorbed into the coupling constants appearing in the β func-
tions. We notice that the flow equation for JM is identical (up
to a minus sign) to that for JQ1. This indicates that JM can
be chosen freely, because, upon solution of the other three β

functions, Eq. (19) will automatically be satisfied. Because
the two models in Secs. III A and III B are isomorphic to one
another, we will analyze only the A1g ⊗ B1g model. Both sets
of β functions have four stable fixed points, each of which
exhibits the same ground state with perturbative �perturb =
1. The explicit forms of the fixed points are presented in
Appendix G1. Both the β functions and their solutions for
the A1g ⊗ B2g model can be found by making the following
substitutions in the results of the A1g ⊗ B1g model: JO1 → JO2,
and JQ2 → JQ3.

To gain further insight into the models and nature of the
fixed points, we approach the fixed point by defining a single
coupling constant g, which, when flowing to g → 1, yields
the fixed point Hamiltonian. One of the RG fixed points

is (JM, JQ1, JQ2, JO1) = (1,−1,−1,−1), which can be ob-
tained by setting JM = g, JQ1 = −g, JQ2 = −g, JO1 = −g, and
approaching g → 1. The fixed point Hamiltonian takes the
simplified form:

H = 2gc†
0aα

[−σ z
αβτ 1

abS10 + σ z
αβτ 2

ab(S0 − S6) − σ 0
αβτ 3

abS8
]
c0bβ.

(23)

In the strong coupling limit, g → ∞, so the kinetic energy
term can be ignored when compared to the Kondo interac-
tion. The ground state of this strong coupling limit is in
the two-particle sector and is fourfold degenerate. This in-
dicates that additional scattering occurs at strong coupling,
so the strong coupling limit is unstable, and the coupling
constant g flows back towards weak coupling [47]. It arrives
at an intermediate fixed point, as the Gaussian fixed point
is also unstable. These four degenerate ground states are
listed in Appendix H 1. Further, when a perturbatively small
kinetic term is introduced to allow coupling to neighboring
sites, the ground state remains fourfold degenerate, further
signifying that the strong coupling limit is unstable. This
demonstrates the validity and stability of the intermediate
fixed point.

We can perform a change of basis on the conduction
electrons to rewrite them in terms of a “channel” degree of
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freedom and a “spin” degree of freedom. The unitary trans-
formation on the creation and annihilation operators is simply
given by c†

x↑ = ψ
†
1↓, c†

y↑ = −ψ
†
1↑, c†

x↓ = ψ
†
2↓, c†

y↓ = ψ
†
2↑. The

model is therefore rewritable as

H = g
2∑

k=1

∑
s′,s=↑,↓

ψ
†
ks′σs′sψks · S, (24)

where S = (S10, S0 − S6, S8) and σ = (σ x, σ y, σ z ). The σ i

matrices are canonically normalized su(2) Pauli matrices.
Here, k denotes the “orbital” channel, and s′, s denote the
“spin” of the new operators. The distinction from the ordi-
nary two-channel SU(2) Kondo model is that the moment
is replaced by an SU(4) moment. However, since a SU(4)
moment has 15 generators, the number of available SU(4)
moments is truncated; only 3 of the 15 generators are
present. We emphasize that the three moments still sat-
isfy the algebra in Eq. (3), which allows us to make an
identification with a su(2) subalgebra of su(4). The fact
that these are su(4) operators suggests that the exact so-
lution for the SU(2) moment two-channel model does not
apply [6,15].

It is easier to see the SU(4) nature of the spin by writing
the pseudospin operators in terms of Gell-Mann generators.
Furthermore, the conduction electrons can also be written in
terms of SU(4) generators, by using a different unitary basis
change:

c†
x↑ = 1√

2
(−χ

†
1 + χ

†
2 ), (25)

c†
x↓ = 1√

2

(−χ
†
3 + χ

†
4

)
, (26)

c†
y↑ = i√

2

(
χ

†
1 + χ

†
2

)
, (27)

c†
y↓ = i√

2

(
χ

†
3 + χ

†
4

)
. (28)

After this basis change, another structural layer of the
model is revealed. If we write the pseudospin operators in the

(ordered) basis

{∣∣�(1)
7

〉
−,−∣∣�(1)

6

〉
+,

∣∣�(1)
6

〉
−,−∣∣�(1)

7

〉
+
}
, (29)

then the spin operators (see Appendix B) are expressed simply
in terms of SU(4) Gell-Mann generators, defined explicitly in
Appendix A. Now, the generators of SU(4) which describe
the conduction electrons clearly coincide with the generators
describing the pseudospin,

H = g
4∑

a,b=1

χ†
a

[(
�1

ab + �13
ab

)(
λ1 + λ13

)
+(

�2
ab − �14

ab

)(
λ2 − λ14) + (�3

ab − �̃ab)(λ3 − λ̃)
]
χb,

(30)

where λ̃ = 1√
3
(−λ8 + √

2λ15). We also define capitalized no-

tation �A to represent the same SU(4) Gell-Mann generators
for the conduction electrons; we have used a different let-
ter to distinguish components of conduction electrons (�)
from impurity operators (λ). The notation for the pseu-
dospin operators can be read as λA := ∑

cd f †
c λA

cd fd , where
f † and f are Abrikosov psesudofermion operators, described
in Appendix D. Note also that this representation requires
complex Fedotov-Popov chemical potentials to cancel out the
unphysical Hilbert space sectors introduced by this parton
construction, also described in Appendix D. With the model
written in this fashion, one can see that this fixed point model
can alternatively be viewed as a highly limited SU(4) Kondo
model. Indeed, the solution of such truncated SU(4) Kondo
problems would depend precisely on which generators are
chosen.

B. Combined model

The combined model of Sec. III C had 10 coupling con-
stants and the 10 resulting β functions are given by

dJM

d log D
= − dJQ1

d log D
= −JO1JQ2 − JO2JQ3 − JQ1

2

(
J2

Q3 + J2
Q2 + J2

O1 + J2
O2

)
, (31)

dJD1

d log D
= 2

dJO3

d log D
= 2JO1JO2 + 2JQ3JQ2 + (5JO3 − 2JD1)

(
J2

Q3 + J2
Q2 + J2

O1 + J2
O2

)
, (32)

dJD2

d log D
= 2

dJO4

d log D
= (5JO4 − 2JD2)

(
J2

Q3 + J2
Q2 + J2

O1 + J2
O2

)
, (33)

dJQ2

d log D
= JO1JQ1 + (5JO3 − 2JD1)JQ3 + JQ2

2

[
J2

Q1 + J2
Q3 + J2

O1 + (5JO3 − 2JD1)2 + (5JO4 − 2JD2)2
]
, (34)

dJQ3

d log D
= JO2JQ1 + (5JO3 − 2JD1)JQ2 + JQ3

2

[
J2

Q1 + J2
Q2 + J2

O2 + (5JO3 − 2JD1)2 + (5JO4 − 2JD2)2
]
, (35)

dJO1

d log D
= JQ1JQ2 + (5JO3 − 2JD1)JO2 + JO1

2

[
J2

O2 + J2
Q1 + J2

Q2 + (5JO3 − 2JD1)2 + (5JO4 − 2JD2)2
]
, (36)

dJO2

d log D
= JQ1JQ3 + (5JO3 − 2JD1)JO1 + JO2

2

[
J2

O1 + J2
Q1 + J2

Q3 + (5JO3 − 2JD1)2 + (5JO4 − 2JD2)2
]
. (37)
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We note that there is a special grouping of coupling
constants JD1 and JO3, and also JD2 and JO4. This can be
understood because the Hamiltonians for these terms satisfy
all the same symmetry properties; e.g., the Jz dipole and T30

octopole are in the same irrep. We also note that (up to a
constant multiple), the β functions for JD1 and JO3 are the
same, the β functions for JD2 and JO4 are the same, and the
β functions for JM and JQ1 are the same. Because three of
the β functions are redundant, we conclude that the space of
solutions will be three-dimensional. At every point on this
three-dimensional solution manifold of fixed points, we find
that with �perturb = 2. Points on the manifold are described
by three free parameters ζ , ν, η. The origin of these free

parameters and the explicit solution of the β functions are
shown in Appendix G2. To study the fixed point Hamilto-
nian, we fix the ratios between the coupling constants by
introducing a single parameter g, which, when taken to 1,
lands on the perturbative fixed point. To gain insight into this
fixed point Hamiltonian, we perform the same unitary change
of basis on conduction electrons as in the previous section
[Eqs. (25)–(28)]. This decouples the conduction electrons into
two sectors, which demonstrates that only scattering between
{χ1, χ2} and {χ3, χ4} is allowed. In terms of the new χ opera-
tors and the free parameters describing the three-dimensional
manifold of solutions, the Hamiltonian becomes

H = g(χ†
1 χ

†
2 )[ντ 0S̃′ + τ x(S8 + S14) + τ y(S4 + S10) + τ z(−S6 − S̃ + ζ S̃′ + ηS0)]

(
χ1

χ2

)

+ g(χ†
3 χ

†
4 )[−ντ 0S̃′ + τ x(S8 − S14) + τ y(S4 − S10) + τ z(S6 − S̃ + ζ S̃′ − ηS0)]

(
χ3

χ4

)
, (38)

where the τ matrices are the canonically normalized su(2)
Pauli matrices, and they are multiplied with the row and col-
umn vectors of χ conduction electron operators. For example,
(χ†

1 χ
†
2 )τ 0S̃′(χ1 χ2)T = 1

2 (χ†
1 χ1 + χ

†
2 χ2)S̃′. We have de-

fined two special linear combinations of pseudospin operators
for brevity,

S̃ = − 2

29
S2 + 5

29
S12, S̃′ = 5

29
S2 + 2

29
S12. (39)

The most convenient values of the fixed manifold pa-
rameters, ζ = −12, ν = 0, η = 1, maximally simplify the
Hamiltonian. The simplification is made clear by writing the
spin operators in the particular basis defined in the previous
section Eq. (29). For example, in this basis, S8 + S14 = 2λ1;
the other effective spin operators are written explicitly in
terms of the Gell-Mann generators in Appendix I. In this
simplified form, the Hamiltonian can be written as

H = 2g
4∑

a,b=1

χ†
a

[
�1

abλ
1 + �2

abλ
2 + �3

abλ
3

+�13
abλ

13 + �14
abλ

14 + �̃abλ̃
]
χb. (40)

With the fixed point Hamiltonian in such a simple form,
it is easier to analyze the strong-coupling limit g → ∞. Di-
agonalizing the strong coupling Hamiltonian in all electron
number sectors, we find a twofold degenerate ground state in
the single-particle sector, a fourfold degenerate ground state in
the two-particle sector, and a twofold degenerate ground state
in the three-particle sector; the ground-state energies of the
one-, two-, and three-particle sectors are all equal, whereas the
ground states of the empty and fourfold occupied sectors are at
a higher energy. The strong-coupling ground states are listed
in Appendix H 2. Once again, these degeneracies indicate
that the strong coupling limit is unstable, and the coupling
constant must flow back towards an intermediate coupling.
Additionally, perturbatively adding a kinetic term does not
split the degeneracy of any of the single, double, or triple

occupied sectors. This confirms the instability of the strong
coupling limit and validity of the intermediate fixed point.

Given the stability of the fixed point, we interpret the fixed
point Hamiltonian in the following manner: depending on
whether a χ1, χ2 electron or a χ3, χ4 electron scatters, the
impurity electron will rearrange its occupation of the internal
states (and the supported moments as well) into different
forms, e.g., S8 and S14 become S8 + S14 if a χ1 electron scat-
ters, or S8 − S14 if a χ3 scatters. These special combinations of
multipolar moments constitute combined charge and magne-
tization densities, and therefore do not have definite character
under time reversal. For example, electric quadrupole mo-
ments (S8) are time-reversal even, and they are added
here to magnetic octopoles (S14), which are time-reversal
odd.

Additionally, not every pseudospin can scatter with every
conduction electron; this as can be seen by the representa-
tions of the effective spin operators in terms of Gell-Mann
generators. Furthermore, the moment operators decouple into
two closed su(2) subalgebras formed by {λ1, λ2, λ3} and
{λ13, λ14, λ̃}. The upshot is that different flavours of conduc-
tion electrons couple to multipolar moments forming different
sets of su(2) subalgebra.

Lastly, we want to contrast this fixed point model with the
single-channel Kondo model. On the surface, �perturb = 2 ar-
tificially resembles the (k = 1) single-channel Kondo model,
because the k-channel perturbative scaling dimension for an
SU(2) impurity is given in general by �k = 2/k. Despite this
similarity, closer consideration revealed that this fixed point
is not related to a single-channel Kondo model, or even a
k-channel Kondo model. In particular, the strong coupling
limit of our model is degenerate, whereas the strong-coupling
limit of the single-channel model is nondegenerate (indicating
the formation of the Kondo singlet). Thus the �perturb = 2
must have a different physical identity. Further evidence is
encoded in the fact that, although the conduction interactions
are interacting with the same impurity, they are interacting
with different “parts” of it; that is, different f -electron states
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(or multipolar moments) “flip” depending on the flavour of the
conduction electron that arrives into the impurity site.

V. DISCUSSIONS

We have investigated a number of theoretical models for
novel multipolar Kondo problems, where conduction elec-
trons are interacting with a local moment in a quasi-quartet
ground state arising from a tetragonal crystalline electric
field. The quasi-quartet ground state leads to a plethora of
multipolar moments carried by the local moment. Applying
perturbative RG analysis, we uncovered the IR fixed points of
these models and the scaling dimension of the leading irrele-
vant operators. Depending on the symmetry character of the
multipolar moments we include, we found different nontrivial
fixed points. When multipolar moments in the {A1g, B1g} or
{A1g, B2g} irreps of D4h are considered, we found that the
fixed point is a truncated SU(4) Kondo model, where only
three generators of SU(4) describing the impurity states are
coupled to two channels of conduction electrons. We also find
that a leading irrelevant operator has the scaling dimension,
1 + �, where the perturbative �perturb = 1. When we consider
all of A1g, A2g, B1g, B2g irreps’ multipolar moments, we find
a different nontrivial fixed point and a leading irrelevant op-
erator with the scaling dimension, 1 + �, with �perturb = 2.
This fixed point is characterized by a distinct truncated SU(4)
Kondo model, where six generators of SU(4) are now coupled
to conduction electrons. The resulting symmetry of this fixed
point model is SO(4) = SU(2) × SU(2), but should not be
interpreted as two independent SU(2) moments; the occupa-
tion number constraint on the pseudofermions links the two
sectors. At this fixed point, upon the scattering of conduction
electrons, the 8 multipolar moments rearrange themselves into
different effective moments depending on the flavour of the
incoming electron. The strong coupling limits of the critical
Hamiltonians at all of the above fixed points are unstable,
which confirms the stability of these intermediate coupling
fixed points. This result, combined with the fact that such crit-
ical Hamiltonians are not related to any known Kondo models,
suggests that these fixed points represent novel ground states
that were not identified before. Clearly the emergence of these
fixed points results from the presence of multiple multipolar
moments carried by the local impurity. The unfamiliar nature
of the novel Kondo models found here presents an opportunity
to explore unusual non-Fermi liquid behavior in multipolar
impurity systems.

We have analyzed this multipolar Kondo system in the
context of a single impurity, especially with the compound
YbRu2Ge2 in mind. This situation may be realizable exper-
imentally by diluting the Yb3+ ions, which constitute the
J = 7/2 moments, with Lu3+. The full 4 f shell of Lu does not
support the higher rank moments. Indeed even upon dilution,
the conduction electron band shape in the paramagnetic state
remains largely intact, which further justifies the applicability
of our model to diluted settings [43,48]. While YbRu2Ge2

possesses a lattice of multipolar impurities, experiments have
observed an upturn in the resistivity at low temperatures,
suggesting possible importance of the Kondo effect in under-
standing electronic properties [41].

The most natural direction of work going forward is to
understand the precise nature of the nontrivial fixed points
found in this work and the exact scaling dimension of the
leading irrelevant operators. We are inspired by other works
[6,49–52] to apply CFT or the density matrix renormalization
group, to shed light on studying the models. Another direction
would be the investigation of a model including multipolar
moments in the Eg representation as well. Such investigations
could lead to a highly anisotropic version of SU(4) Kondo
problem, where all generators are included. This would con-
trast previous works on the isotropic SU(N ) Kondo model
[12,13], few of whose models have been inspired by a realistic
compound.
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APPENDIX A: su(4) GELL-MANN MATRICES

We express the Stevens operators in terms of a quasi-
quartet basis, described in Appendix B. The easiest way to
represent these matrices is as linear combinations of genera-
tors of SU(4), with an additional matrix corresponding to the
identity; su(4) does not include the identity. These genera-
tors have been normalized to satisfy tr(λAλB) = 1

2δAB, where
A, B = 0, . . . , 15. For later use, we enumerate here the 16
Gell-Mann matrices, forming a basis for all 4 × 4 Hermitian
matrices:

λ0 = 1

2
√

2

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, λ1 = 1

2

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

(A1)

λ2 = 1

2

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, λ3 = 1

2

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

(A2)

λ4 = 1

2

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠, λ5 = 1

2

⎛
⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎠,

(A3)

λ6 = 1

2

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠, λ7 = 1

2

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠,

(A4)

λ8 = 1

2
√

3

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎠, λ9 = 1

2

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠,

(A5)
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λ10 = 1

2

⎛
⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎠, λ11 = 1

2

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠,

(A6)

λ12 = 1

2

⎛
⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎠, λ13 = 1

2

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠,

(A7)

λ14 = 1

2

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠, λ15 = 1

2
√

6

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎠.

(A8)

We have also used � to denote the su(4) Gell-Mann ma-
trices, and, as matrices, they are defined as �A = λA. As
mentioned in the main text [below Eq. (30)], we have used an
alternative symbol to distinguish matrices used for conduction
electrons (�) and impurity operators (λ).

APPENDIX B: QUASI-QUARTET IMPURITY

When a J = 7/2 moment is immersed in a tetragonal D4h

crystal field, the eight degenerate states split. The experimen-
tally determined ground states are explicitly listed in the main
text; see Eqs. (1) and (2). Of these four states, we define a new
orthonormal basis by reordering and adding phases. This is the
same basis as defined in Eq. (29), but with the |ϕ〉 notation for
compactness:

|ϕ1〉 = ∣∣�(1)
7

〉
−, (B1)

|ϕ2〉 = −∣∣�(1)
6

〉
+, (B2)

|ϕ3〉 = ∣∣�(1)
6

〉
−, (B3)

|ϕ4〉 = −∣∣�(1)
7

〉
+. (B4)

In this basis, we can project the Stevens operators, which
normally act on an eight-element J = 7/2 basis |J, m〉, to act
on this four-element basis Eqs. (B1)–(B4). In terms of the
normalized su(4) generators defined by Appendix A, these
project Stevens operators take the form given in Eqs. (B5)–
(B20):

S0 = 4
√

2λ0, (B5)

S1 = (
√

7ac +
√

15bd )(λ5 + λ12) + 4b2λ7 + 4
√

3cdλ10, (B6)

S2 = (−7a2 + b2)

(
λ3

2
−

√
3

2
λ8

)
+ (−5c2 + 3d2)

(
λ3

2
+

√
3

6
λ8 +

√
6

3
λ15

)
, (B7)

S3 = (
√

7ac +
√

15bd )(λ4 + λ11) − 4b2λ6 − 4
√

3cdλ9, (B8)

S4 =
(

−
√

35ad

10
−

√
3bc

2
+ bd

)
(λ2 + λ14), (B9)

S5 =
(

−
√

105ac

5
+ bd

)
(λ5 − λ12), (B10)

S6 = (−7a2 + 5b2)

(√
2

2
λ0 − λ3

2
−

√
3

6
λ8 +

√
6

6
λ15

)
+ (−c2 + 3d2)

(√
2

2
λ0 + λ3

2
+

√
3

6
λ8 −

√
6

6
λ15

)
, (B11)

S7 =
(

−
√

105ac

5
+ bd

)
(λ4 − λ11), (B12)

S8 =
(√

35ad

10
+

√
3bc

2
+ bd

)
(λ1 + λ13), (B13)

S9 = −4
√

5bc

5
(λ5 + λ12) − 2

√
35ab

5
λ7 − 2d2λ10, (B14)

S10 =
(

−
√

35ad

2
+ 3

√
3bc

2
+ bd

)
(λ2 − λ14), (B15)

S11 = (
√

21ac −
√

5bd )(λ5 + λ12) − 2
√

3b2λ7 + 2cdλ10, (B16)

S12 = (7a2 + 3b2)

(
−λ3

2
+

√
3

2
λ8

)
+ (5c2 − 7d2)

(
λ3

2
+

√
3

6
λ8 +

√
6

3
λ15

)
, (B17)

S13 = (
√

21ac −
√

5bd )(λ4 + λ11) + 2
√

3b2λ6 − 2cdλ9, (B18)
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S14 =
(√

35ad

2
− 3

√
3bc

2
+ bd

)
(λ1 − λ13), (B19)

S15 = 4
√

5bc

5
(λ4 + λ11) − 2

√
35ab

5
λ6 − 2d2λ9. (B20)

APPENDIX C: SYMMETRY ANALYSIS OF D4h

To construct Hamiltonians respecting the local tetragonal
symmetry, we need to find out how each constituent degree
of freedom transforms under the generators of this group. The
three generators we pick are a C4, a rotation by π/2 about
the z axis, C2, a rotation by π about the x axis, and I, spatial
inversion. We also include time reversal symmetry. The results
are in Table II.

1. Irreducible representation products

When constructing models, it is useful to understand
products of the irreducible representations. For the reader’s
convenience, we list the table of products of irreducible repre-
sentations for the relevant irreps of D4h in Table III.

TABLE II. Transformations under D4h and time reversal T of
all relevant objects in the Hamiltonian. Here, σ i are the Pauli spin
matrices with identity, normalized with [σ i, σ j] = iεi jkσ k , and the
Si are the pseudospin operators.

Object C4 C ′
2 I T

x y x −x x

y −x −y −y y

z z −z −z z

σ 0 σ 0 σ 0 σ 0 σ 0

σ x σ y σ x σ x −σ x

σ y −σ x −σ y σ y −σ y

σ z σ z −σ z σ z −σ z

S0 S0 S0 S0 S0

S1 −S3 −S1 S1 −S1

S2 S2 −S2 S2 −S2

S3 S1 S3 S3 −S3

S4 −S4 −S4 S4 S4

S5 −S7 S5 S5 S5

S6 S6 S6 S6 S6

S7 S5 −S7 S7 S7

S8 −S8 S8 S8 S8

S9 S15 −S9 S9 −S9

S10 −S10 S10 S10 −S10

S11 −S13 −S11 S11 −S11

S12 S12 −S12 S12 −S12

S13 S11 S13 S13 −S13

S14 −S14 −S14 S14 −S14

S15 −S9 S15 S15 −S15

APPENDIX D: GENERALIZED FEDOTOV-POPOV TRICK

When doing perturbation theory, one often needs to ex-
pand n-point correlation functions in terms of two-point ones.
Wick’s theorem presents a solution to this, but only for op-
erators obeying canonical commutation or anticommutation
relations. Spin operators obey a Lie algebra, so Wick’s theo-
rem does not apply. It is possible, however, to represent spin
operators in terms of Abrikosov pseudofermion operators,
obeying canonical anticommutation relations, which circum-
vent this difficulty. However, this representation artificially
expands the Hilbert space on which these spin operators act,
the notion of occupation number now being well defined.
To restrict to the original Hilbert space, we require that the
contribution to the partition function of sectors of occupation
other than 1 all cancel out among themselves. This requires
extension of the Fedotov-Popov trick for SU(2) spins, which
normally cancels out the empty and doubly occupied pseud-
ofermion sectors, to an SU(N ) spin [53]. An SU(N ) spin, in
the fundamental representation, can have up to N-states oc-
cupied when represented by pseudofermions. Furthermore, an
SU(N ) spin can be represented on a vector space of dimension
other than N , so to maintain full generality we let d be the
dimension of the representation space of the spin. This allows
d + 1 possible occupations, from empty, 0, up to full, d . For
example, d = 2s + 1 for a spin s su(2) spin, or, d = N for
an su(N ) spin in the fundamental representation. To cancel
out d of these sectors and leave the singly occupied sector
untouched in the partition function, we introduce d complex
chemical potentials,

μ� = iπ

β

2� − 1

d
, � = 1, . . . , d. (D1)

This choice of chemical potentials means the equivalence
of the ordinary spin partition function with the spin partition
function written as a path integral over the Abrikosov pseud-
ofermion fields. To do this, we consider the effective action

S f
0 =

∫ β

0

[
d∑

γ=1

f̄γ (τ )∂τ fγ (τ ) + H f
0 [ f̄ (τ ), f (τ )]

]
dτ. (D2)

TABLE III. Products of Irreducible Representations of D4h.

⊗ A1g A2g B1g B2g Eg

A1g A1g A2g B1g B2g Eg

A2g A2g A1g B2g B1g Eg

B1g B1g B2g A1g A2g Eg

B2g B2g B1g A2g A1g Eg

Eg Eg Eg Eg Eg A1g ⊕ [A2g] ⊕ B1g ⊕ B2g
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The free pseudofermion Hamiltonian has solely the chem-
ical potential:

H f
0 (μ) = −μ

d∑
γ=1

f̄γ (τ ) fγ (τ ). (D3)

We Fourier transform the effective action to write it in
terms of the fermionic Matsubara frequencies:

fγ (τ ) = 1√
β

∑
iωn

fγ (iωn)e−iωnτ , (D4)

f̄γ (τ ) = 1√
β

∑
iωn

f̄γ (iωn)eiωnτ . (D5)

The action then becomes

S f
0 =

∫ β

0

d∑
γ=1

[ f̄γ (τ )∂τ fγ (τ ) − μ f̄γ (τ ) fγ (τ )]dτ (D6)

= −
d∑

γ=1

∑
iωn

f̄γ (iωn) fγ (iωn)(iωn + μ). (D7)

At this point, we have not used the different complex
chemical potentials in the calculation yet. In fact, the different
chemical potentials do not enter in to the Hamiltonian at
all, but rather when correlation functions are calculated. This
allows us to calculate the free partition function Z f

0 for the
pseudofermions at a particular chemical potential. We do this
simply by calculating

Z f
0 (μ) =

∫
e−S f

0 D f̄D f (D8)

= (1 + eβμ)d . (D9)

This is the typical result for a fermionic partition function
for d different occupiable states. However, this partition func-
tion came from a trace over all different occupation number
sectors for the pseudofermions. To calculate the true partition
function Zspin, we restrict to the singly occupied sector:

Zspin = trn=1e−βH (D10)

=
d∑

n=0

δn,1trne−βH , (D11)

where n is the occupation number, and trn is the trace over
all states with n particles, and d is the maximum occupation
number. By writing the Kronecker δ in terms of its Fourier
transform

δn,1 = 1

d

d∑
�=1

eβμ�(n−1), (D12)

we can express the true partition function as

Zspin =
d∑

n=0

1

d

d∑
�=1

eβμ�(n−1)trne−βH (D13)

= 1

d

d∑
�=1

e−βμ�

d∑
n=0

trn
[
e−β(H−μ�n)

]
(D14)

= 1

d

d∑
�=1

e−βμ�Z f
0 (μ�). (D15)

Recognizing this alternative way of writing Z f
0 (μ�), we can

plug in its form calculated from the path integral version in
Eq. (D9). Thus, the true partition function is then defined in
terms of the Fock space partition function at different chemi-
cal potentials:

Zspin = 1

d

d∑
�=1

e−μ�β (1 + eβμ� )d (D16)

= d. (D17)

APPENDIX E: ABRIKOSOV PSEUDOFERMION GREEN
FUNCTION

Correlation functions of Abrikosov pseudofermions need
to be calculated with respect to the true partition function, de-
scribed in the previous section. However, even introducing the
Abrikosov pseudofermions requires us to use the definition
of correlation functions on the Fock space. We relate the two
quantities in an analogous way to how the partition functions
are related:

G f
0 (iωn) = −〈 fγ (iωn) f̄γ (iωn)〉0

= 1

Zspind

d∑
�=1

e−μ�β
(−Z f

0 (μ�)〈 fγ (iωn) f̄γ (iωn)〉
μ�,0

)
(E1)

= 1

d2

d∑
�=1

e−μ�β (1 + eβμ� )d 1

iωn + μ�

, (E2)

where the Fock space correlation function is defined in the
usual way:

〈A〉μ,0 := 1

Z f
0 (μ)

∫
Ae−S f

0 D f̄D f . (E3)

In this paper, d = 4 because the quasi-quartet has a four-
element basis; in other words, we are working with an su(4)
spin.

APPENDIX F: DIAGRAMMATIC PERTURBATION
THEORY

To calculate the β functions for the theory, we calculate
the vertex function to two-loop order. Only the irreducible
diagrams renormalize the interaction couplings in the renor-
malization group flow. In contrast to SU(2) Kondo problems,
the generators λA of SU(N ) do not satisfy (λA)2 is a Casimir
operator. This means that the 1/3! from the Dyson expansion
is partially canceled by a factor of 3 from three choices of con-
tracting the first conduction electron operator with an external
point, but contracting the next operator yields a different result
for the wave function renormalization diagrams. This intro-
duces an additional wave function renormalization diagram
for anisotropic SU(N ) problems, and therefore the 1/2 for
wave function renormalization diagrams does not cancel out.
The symmetry remains for the vertex correction diagram and
cancels the remaining 1/2. We have enumerated all relevant
diagrams below in Fig. 2. In the figure, the solid lines are the
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FIG. 2. Feynman diagrams contributing to the renormalization
of interaction vertices at two loop order. We note that the two
wave function renormalization diagrams are distinct for the case of
anisotropic SU(N ) Kondo Hamiltonians.

free fermion propagator

Gc
0(k, iωn) = 1

iωn − ξk
, (F1)

and the dashed lines are the pseudofermion propagator from
Eq. (E2).

APPENDIX G: SOLUTION OF β FUNCTIONS

The β functions governing the flow of the Kondo couplings
are enumerated in Sec. IV. Here, we present the fixed points
g∗ of the flow, which correspond to β(g∗) = 0.

1. A1g ⊗ B1g Model

We list here the renormalization group flow equations for
the coupling constants in Eqs. (6)–(9).

The solutions are then given by (JQ1, JQ2, JO1) =
{(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1,−1)}, and JM is
free. As mentioned in the main text, each of these fixed points
yields the same (up to unitary transformation) fixed point. In
the main text, we have chosen the last of these four fixed
points, and JM = 1.

2. Combined model

The β functions for the model described in Sec. III C are
given by Eqs. (31)–(37) have solutions given by the following:

JM = η, (G1)

JD1 = 2

29
+ 5

29
ζ , (G2)

JD2 = 5

29
ν, (G3)

JQ1 = −1, (G4)

JQ3 = −1, (G5)

JQ2 = −1, (G6)

JO3 = − 5

29
+ 2

29
ζ , (G7)

JO1 = −1, (G8)

JO2 = −1, (G9)

JO4 = 2

29
ν. (G10)

As mentioned in the main text, η, ζ , ν are all free param-
eters and can take any value, while still being a fixed point
of the β functions. The β functions also have other solutions
(corresponding to changing signs of some of the parameters)
but all are equivalent up to unitary transformation.

APPENDIX H: STRONG COUPLING ANALYSIS

In this section, we present the ground states resulting from
the strong coupling analyses done on the two models of in-
terest in Secs. IV A and IV B. We recall that a perturbative
intermediate fixed point is only stable if the corresponding
strong coupling limit is unstable. An unstable strong coupling
limit is signified by a degenerate ground state. The strong
coupling ground state also needs to remain degenerate when
perturbatively coupled to the conduction electrons [47].

1. Strong coupling analysis for A1g ⊗ B1g model

For the two-channel SU(4) moment model, we calculate
the strong coupling ground states in the χ conduction electron
basis. There are between 0 and 4 conduction electrons able to
occupy the impurity site, and, diagonalizing the fixed point
Hamiltonian in all particle sectors, the doubly occupied sector
has the lowest energy, with a fourfold degenerate ground state.
Here, the |χ〉 states are defined by Eqs. (25)–(28) and the |ϕ〉
states are defined by Eqs. (B1)–(B4). The ground states are
given by

|GS1〉 = − 1√
6
|χ1χ3〉|ϕ1〉− 1√

2
|χ2χ4〉|ϕ1〉 +

√
2

3
|χ1χ4〉|ϕ2〉,

(H1)

|GS2〉 = −
√

2

3
|χ2χ3〉|ϕ1〉+ 1√

6
|χ1χ3〉|ϕ2〉 + 1√

6
|χ2χ4〉|ϕ2〉,

(H2)
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|GS3〉 = − 1√
6
|χ1χ3〉|ϕ3〉− 1√

6
|χ2χ4〉|ϕ3〉 +

√
2

3
|χ2χ3〉|ϕ4〉,

(H3)

|GS4〉 =
√

2

3
|χ1χ4〉|ϕ3〉 − 1√

6
|χ1χ3〉|ϕ4〉 − 1√

6
|χ2χ4〉|ϕ4〉.

(H4)

2. Strong coupling analysis for combined model

For the combined model of moments in the A1g, A2g, B1g,
B2g models, the fixed point Hamiltonian was a truncated
SU(4) Kondo model with 6 generators of SU(4). As in the
previous section, the impurity site can host 0 to 4 conduc-
tion electrons. Diagonalizing the fixed point Hamiltonian in
all particle sectors, the single-particle sector has a twofold
ground state, the two-particle sector has a fourfold ground
state, and the three-particle sector has a twofold ground state.
The ground-state energy in each of the different sectors is the
same, so the total degeneracy of the ground state across all
particle sectors is 8. In the single-particle sector, the ground
states are given by

|GS1〉 = − 1√
2
|χ1〉|ϕ2〉 + 1√

2
|χ2〉|ϕ1〉, (H5)

|GS2〉 = − 1√
2
|χ3〉|ϕ4〉 + 1√

2
|χ4〉|ϕ3〉. (H6)

In the two-particle sector, the ground states are given by

|GS1〉 = 1√
2
|χ1χ4〉|ϕ3〉 − 1√

2
|χ1χ3〉|ϕ4〉, (H7)

|GS2〉 = − 1√
2
|χ1χ4〉|ϕ2〉 + 1√

2
|χ2χ4〉|ϕ1〉, (H8)

|GS3〉 = − 1√
2
|χ1χ3〉|ϕ2〉 + 1√

2
|χ2χ3〉|ϕ1〉, (H9)

|GS4〉 = 1√
2
|χ2χ4〉|ϕ3〉 − 1√

2
|χ2χ3〉|ϕ4〉. (H10)

In the three-particle sector, the ground states are given by

|GS1〉 = − 1√
2
|χ1χ3χ4〉|ϕ2〉 + 1√

2
|χ2χ3χ4〉|ϕ1〉, (H11)

|GS2〉 = 1√
2
|χ1χ2χ4〉|ϕ3〉 − 1√

2
|χ1χ2χ3〉|ϕ4〉. (H12)

APPENDIX I: EFFECTIVE MOMENT OPERATORS

The pseudospin operators in Sec. IV B are explicitly shown
here in the basis given by Eqs. (B1)–(B4). The σ i represent
canonically normalized su(2) Pauli matrices, and the 0’s are
2 × 2 zero matrices:

S8 + S14 = 2

(
σ x 0
0 0

)
= 2λ1, (I1)

S4 + S10 = 2

(
σ y 0
0 0

)
= 2λ2, (I2)

S0 − 2S2 − S6 − S12 = 2

(
σ z 0
0 0

)
= 2λ3, (I3)

S8 − S14 = 2

(
0 0
0 σ x

)
= 2λ13, (I4)

S4 − S10 = 2

(
0 0
0 σ y

)
= 2λ14, (I5)

−S0 − 2S2 + S6 − S12 = 2

(
0 0
0 σ z

)
= 2λ̃. (I6)
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