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Role of Majorana fermions in spin transport of anisotropic Kitaev model
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We study a quantum spin Kitaev model with zigzag edges to clarify the effects of anisotropy in the exchange
couplings on spin propagation. We simulate the spin and Majorana dynamics triggered by a magnetic pulse,
using the real-space time-dependent Majorana mean-field theory. When the anisotropy is small, the dispersion of
the itinerant Majorana fermions remains gapless, where the velocity of the spin propagation matches the group
velocity of the itinerant Majorana fermions at the nodal points. On the other hand, in the gapped system with large
anisotropy, the spin propagation is strongly suppressed although its nature depends on the shape of the pulse. The
spin transport in the junction system described by the Kitaev models with distinct anisotropies is also addressed.
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I. INTRODUCTION

Recently, spin transport has been attracting much interest.
One of the important mechanisms is the spin current induced
by a polarized electric current in metallic ferromagnets. Such
a spin current has intensively been studied [1–8]. Another
is spin current in conventional insulating magnets, where
magnons carry spins without the electric current [9–12]. The
common feature is that the spin current is realized in materials
with magnetic orders. On the other hand, it has been revealed
that spin transport is also realized in quantum spin liquids
(QSLs), where long-range magnetic order is suppressed even
at the zero temperature due to strong quantum fluctuations
[13–19]. One of the typical examples is provided by an anti-
ferromagnetic S = 1/2 Heisenberg chain at the ground state.
The anisotropic negative spin Seebeck effect in the candi-
date material Sr2CuO3 indicates the spin current mediated by
spinons [20], which are magnetic elementary excitations in
this system.

Another interesting playground for QSLs is given by
the Kitaev model [21]. The model is composed of bond-
dependent Ising interactions between S = 1/2 spins on the
honeycomb lattice. One of the most remarkable features in
this model is the existence of the local conserved quan-
tity [21–25]. This guarantees the ground state to be a QSL
where the spin-spin correlation is exactly zero except for the
nearest-neighbor sites. The conserved quantity also leads to
the existence of the spin fractionalization and the spin degrees
of freedom are split into the itinerant and localized Majorana
fermions, the latter of which correspond to fluxes [24]. Un-
like spinons in the one-dimensional Heisenberg system, the
Majorana fermions are not accompanied by the spin excita-
tions naively, and hence it remains unclear whether they are
capable of carrying the spin current. To clarify this issue,
the spin transport through QSL was studied in the isotropic
Kitaev model in Refs. [26,27]. It was found that the spin
excitation can propagate with a certain velocity through the

QSL regime without inducing spin polarizations. The spin
propagation turns out to be mediated by the itinerant Majorana
fermions and the velocity of the spin propagation directly
reflects the dispersion of the itinerant Majorana fermions. The
results suggest the close relationship between the spin trans-
port through the Kitaev QSL and the low-energy properties of
the itinerant Majorana fermions, which can be controlled by
changing the exchange couplings. In this paper, we study the
spin propagation in the anisotropic Kitaev model using real-
space time-dependent Majorana mean-field theory [28,29].
The model exhibits gapless and gapped QSLs [24], and we
reveal the effects of anisotropy in the exchange couplings on
the spin propagation.

The paper is organized as follows. In Sec. II, we intro-
duce the Kitaev model on the honeycomb lattice and explain
the Majorana mean-field theory. In Sec. III, we discuss how
the anisotropy in the exchange interactions affects the spin
transport in the Kitaev model. A summary is given in the last
section.

II. MODEL AND METHOD

We study the spin transport through the QSL region in the
Kitaev model on a two-dimensional honeycomb lattice. To
this end, we consider the Kitaev cluster shown in Fig. 1, where
zigzag edges appear along a certain direction while the peri-
odic boundary condition is imposed in the other. The system is
composed of L, M, and R regions, where the distinct magnetic
fields are applied. In the L region on the left edge, a time-
dependent magnetic field hL(t ) is applied. No magnetic field
is applied to the M region, while the static magnetic field hR

is applied to the R region. The model Hamiltonian is given as

H (t ) = −
∑

μ=x,y,z

Jμ

∑
〈i, j〉μ

Sμ
i Sμ

j

−hR

∑
i∈R

Sz
i − hL(t )

∑
i∈L

Sz
i , (1)
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FIG. 1. The La × Lb cluster of the Kitaev model on the honey-
comb lattice with zigzag edges. a and b are primitive translational
vectors. Green, red and blue lines indicate x, y, and z bonds, respec-
tively. Solid (open) circles indicate spin-1/2 in the A (B) sublattice
and the numbers in circles are the sequence of Jordan-Wigner trans-
formation. In this figure, La = 7, Lb = 3, and LR = 3, and its lattice
constant is 1/

√
3.

where 〈i, j〉μ indicates the nearest-neighbor sites on the
μ(= x, y, z) bonds. The x, y, and z bonds are shown as
green, red, and blue lines, respectively in Fig. 1. Sμ

i is
the μ component of an S = 1/2 spin operator at site i.
Jμ (μ = x, y, z) is the exchange coupling on the μ bonds.

To discuss the real-time dynamics in the model (1), we rep-
resent the Hamiltonian in terms of Majorana fermions. First,
we regard the honeycomb lattice as a set of one-dimensional
chains composed of the x and y bonds, as shown in Fig. 1.
Then, the spin operators are described with the spinless
fermions using the Jordan-Wigner transformations as

S+
i =

i−1∏
j=1

(1 − 2a†
j a j )a

†
i , (2)

S−
i =

i−1∏
j=1

(1 − 2a†
j a j )ai, (3)

Sz
i = a†

i ai − 1
2 , (4)

where a†
i and ai are the creation and annihilation operators of

the spinless fermion at the ith site [22–24,30]. We furthermore
introduce two kinds of Majorana fermion operators for the
A (B) sublattice as

γ A
j = a j,A + a†

j,A, γ̄ A
j = −i(a j,A − a†

j,A), (5)

γ B
j = −i(a j,B − a†

j,B), γ̄ B
j = a j,B + a†

j,B, (6)

where (γ j )† = γ j , (γ̄ j )† = γ̄ j , γ 2
j = γ̄ 2

j = 1, {γi, γ̄ j} = 0, and
{γi, γ j} = {γ̄i, γ̄ j} = 2δi j [31,32]. The Hamiltonian (1) is
rewritten as

H (t ) = − Jx

4

∑
rz

iγ A
rz+bγ

B
rz

− Jy

4

∑
rz

iγ A
rz−a+bγ

B
rz

− Jz

4

∑
rz

iγ A
rz
γ B

rz
iγ̄ A

rz
γ̄ B

rz
− hR

2

∑
rz∈R

(
iγ A

rz
γ̄ A

rz
− iγ B

rz
γ̄ B

rz

)

+ hL(t )

2

∑
rz∈L

iγ B
rz
γ̄ B

rz
, (7)

where rz is the position vector for the z bond and γ A
rz

(γ B
rz

) is
the Majorana fermion operator at the A (B) sublattice on the z
bond, which is shown as the solid (open) circle in Fig. 1.

When hR = hL(t ) = 0, the operator ηrz = iγ̄ A
rz
γ̄ B

rz
com-

mutes with the Hamiltonian and this model can be solved
exactly, where ηrz is the Z2 local conserved quantity. This is
because the second line of Eq. (7), which originally describes
the interaction between the two-types of Majorana fermions,
is regarded as a one-body term. On the other hand, ηrz is
no longer the conserved quantity in the regions under the
magnetic field. Then the model, in general, cannot be solved
since the magnetic fields induce the hybridization between
two types of the Majorana fermions, and thereby, the inter-
action between them is needed to be considered. Here, we use
the mean-field theory in the Majorana representation given
by Eq. (7), and the time-evolution is calculated within this
formalism [28,29]. Note that the cluster does not have the
translational symmetry in the x direction perpendicular to the
zigzag edges, as shown in Fig. 1. We introduce six kinds of
time-dependent mean-field parameters, which are also func-
tions of x, as

η(x, t ) = 〈
iγ̄ A

rz
γ̄ B

rz

〉
, (8)

ξ (x, t ) = 〈
iγ A

rz
γ B

rz

〉
, (9)

mA(x, t ) = 1
2

〈
iγ A

rz
γ̄ A

rz

〉
, (10)

mB(x, t ) = − 1
2

〈
iγ B

rz
γ̄ B

rz

〉
, (11)

�(x, t ) = 〈
iγ̄ A

rz
γ B

rz

〉
, (12)

�(x, t ) = 〈
iγ A

rz
γ̄ B

rz

〉
, (13)

where η and ξ are the expectation values of the localized
and itinerant Majorana fermions, and mλ(= 〈Sz

λ〉) (λ = A, B)
is the magnetization at the λ sublattice. Then, the interaction
between the Majorana fermions given by the second line in
Eq. (7) is decoupled in terms of the Hartree-Fock approxima-
tion as

iγ A
rz
γ B

rz
iγ̄ A

rz
γ̄ B

rz
≈ iγ A

rz
γ B

rz
η(x, t ) + ξ (x, t )iγ̄ A

rz
γ̄ B

rz
− η(x, t )ξ (x, t )

+ 2iγ A
rz
γ̄ A

rz
mB(x, t ) − 2mA(x, t )iγ B

rz
γ̄ B

rz

− 4mA(x, t )mB(x, t ) − iγ A
rz
γ̄ B

rz
�(x, t )

− �(x, t )iγ̄ A
rz
γ B

rz
+ �(x, t )�(x, t ). (14)

By solving the mean-field Hamiltonian self-consistently, we
obtain the initial mean-field parameters and wave function.
Since the mean-field theory gives the exact results for hL(t ) =
hR = 0, we believe that the obtained results are reliable as
far as the applied fields are small enough. When the time-
dependent MF theory [33–38] is applied to the system, the
time evolution of the one-body wave function |ψk,n(t )〉 is
given by the Schrödinger equation,

i
d

dt
|ψk,n(t )〉 = HMF

k (t, Xt )|ψk,n(t )〉, (15)

where HMF
k (t, Xt ) is the MF Hamiltonian with wave number k

and Xt is a set of six mean-field parameters. This equation can
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FIG. 2. Upper panels represent the dispersion relations of the itinerant Majorana fermions for parameters indicated. Lower panels depict
the dispersion relations along the red lines shown in the upper panels. The dashed line in (d) represents the Majorana velocity.

be formally solved as

|ψk,n(t )〉 = T exp

[
−i

∫ t

0
HMF

k (t ′, Xt ′ )dt ′
]
|ψk,n(0)〉, (16)

where T is the time-ordering operator. In this paper, we eval-
uate Eq. (16) using extended Euler methods [33–38]. Details
of the implementation of the Majorana MF theory are given
in Appendix. Before discussing the real-time dynamics, we
briefly review the dispersion relation of the itinerant Majo-
rana fermions in the Kitaev model without the magnetic field,
which is closely related to the spin transport. When the peri-
odic boundary conditions are imposed in x and y directions,
the dispersion relation of the itinerant Majorana fermions
E (k) is obtained as [21]

E (k) = 1
2

∣∣Jxeik·b + Jyeik·(b−a) + Jz

∣∣, (17)

where a and b are the primitive lattice vectors shown in Fig. 1.
Here, we focus on the velocity defined by

v(k) = ∇kE (k). (18)

In the isotropic case (Jx = Jy = Jz), gapless linear dispersions
appear at k0 = K and K ′ points in the Brillouin zone, where
k0 is defined so that E (k0) takes a minimum. Its velocity
is given by |v(k0)| = (

√
3/4)Jz and does not depend on the

direction around k0, and the low-energy dispersion can be
regarded as an isotropic cone. Beyond the isotropic case, the
gapless dispersion appears as far as the following inequalities
are satisfied as

|Jx| + |Jy| � |Jz|, (19)

|Jy| + |Jz| � |Jx|, (20)

|Jz| + |Jx| � |Jy|. (21)

Figures 2(b) and 2(c) show the dispersions for the Kitaev
models with the small anisotropy in the exchange couplings.
It is found that the gapless points k = k0 are shifted from the
K or K ′ points. The dispersion in the gapless state is then

expanded around k = k0 as

[E (k)]2 ∼ 3

16
J2

y k̃2
x + 1

16

[
4J2

x + J2
y + 4JxJy cos (k0 · a)

]
k̃2

y

+
√

3

8

(
J2

x − J2
z

)
k̃xk̃y, (22)

where k̃ = (k̃x, k̃y) ≡ k − k0. The velocity of the itinerant
Majorana fermions v(k0) = (vx(k0), vy(k0)) depends on both
the direction in the k space and the anisotropy in the exchange
couplings. In the case with Jx = Jz and Jy < 2Jz, the system
is in the gapless state and vx(k0) = (

√
3/4)Jy. On the other

hand, when Jy > 2Jz, the system has the excitation gap in the
Majorana dispersion, 
 ∝ Jy − 2Jz, as shown in Fig. 3. In
this state, vx is zero because of the quadratic band dispersion
around k0. Instead, we numerically examine vx,max, which is
the maximum value of vx(k) in the Brillouin zone. In the case
with Jx/Jz = 1.0 and Jy/Jz = 2.5, vx(k) is maximum at kx ∼
±2.9 and vx,max ∼ 0.87 � √

3/2, in Fig. 2(d). The maximum
values as a function of Jy/Jz are shown as the dashed lines in
Fig. 3. We find that vx,max is not changed in the gapped state
and coincides with vx(k0) at the critical point (Jy/Jz )c. In the
next section, we discuss the role of these velocities for the spin
transport in the gapless and gapped Kitaev systems.

FIG. 3. The excitation gap 
 (orange line) and velocities vx

(solid blue line) and vx,max (dashed blue line) as a function of Jy/Jz in
the Kitaev system on the honeycomb sheet with fixed Jx/Jz = 1.0.
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In the present study, we consider the honeycomb lattice
with La = 200, Lb = 300, and LR = 50. Then we examine
real-time dynamics in the Kitaev model with anisotropic ex-
change couplings. The static magnetic field hR in the R region
is set to be 0.01Jz, which is smaller than the critical values
hc [28,39,40]. Furthermore, in the uniform lattice with h =
0.01Jz, the magnetization obtained by the MF theory is in
good agreement with that obtained by the exact diagonaliza-
tion [28]. Therefore, we believe that the MF theory for h �
0.01Jz reproduces reliable results. We introduce a Gaussian
magnetic pulse as the time-dependent field in the L region,
which is given as

hL(t ) = A√
2πσ

exp

(
− t2

2σ 2

)
, (23)

where A and σ are strength and width of the pulse. In the fol-
lowing, the width of the pulse is mainly used as σ = 5.0/Jz

and A = 1.0. Then, we study how the anisotropy in the ex-
change couplings affects the spin transport in the Kitaev
model.

III. RESULTS

First, we focus on the Kitaev model with gapless dis-
persions to discuss the spin propagation. Figure 4 shows
the change in the spin moment and Majorana mean fields

Sz(x, t ), 
ξ (x, t ), and 
η(x, t ) for the system with Jx/Jz =
1.0 and Jy/Jz = 1.5, where 
O(x, t ) = O(x, t ) − O(x,−∞).
The ground state of the Kitaev model without the external
magnetic field is the QSL, where the magnetic moment never
appears [41]. This originates from the existence of the local-
ized Majorana fermions as local conserved quantities. In fact,
no magnetic moments are induced in the M region since the
local conserved quantities are present, even after the magnetic
pulse is introduced in the L region as shown in Fig. 4(a). By
contrast, in the R region with the magnetic field hR, finite
oscillations in 
Sz(x, t ) emerge after some time interval. In
this region, there are no local conserved quantities since finite
magnetic field hybridizes itinerant and localized Majorana
fermions, which leads to the oscillations of magnetization. It
is also found that the mean field for the itinerant Majorana
fermions oscillates in the whole region, while that for the
localized Majorana fermions changes only in the R region,
as shown in Figs. 4(b) and 4(c). This means that the spin exci-
tations are carried by the itinerant Majorana fermions, which
are induced by the spin fractionalization in the Kitaev model,
as is previously discussed in Ref. [26]. Thus we expect that
the velocity of spin propagation is determined by that of the
itinerant Majorana fermions. The dashed lines in Fig. 4 stand
for the velocity of the itinerant Majorana fermions along the x
direction, vx(k0). We find that the emergence of the magnetic
oscillation in the R region is well scaled by the motion of
the Majorana fermions with the velocity (

√
3/4)Jy, implying

that the change of the magnetization is induced by low-energy
Majorana fermions. Similar behavior is also observed in the
case with Jx/Jz = 1.5 and Jy/Jz = 1.0 (not shown) and in
the isotropic case addressed in Ref. [26]. Thus we confirm
that the itinerant Majorana fermions around the gapless points
play an essential role for the spin transport in the gapless
Kitaev model. Next, we consider the Kitaev model with

FIG. 4. Real-time evolution of (a) 
Sz, (b) 
ξ , and (c) 
η in the
Kitaev system with Jx/Jz = 1.0 and Jy/Jz = 1.5. Here, we use A =
1.0 and σ = 5.0/Jz for the magnetic field pulse. The dashed lines
represent x = (

√
3/4)Jyt (see text).

the large anisotropy in the exchange couplings to discuss the
spin propagation in the gapped system. When Jx/Jz = 1.0 and
Jy/Jz = 2.5, the system has the excitation gap 
 = 0.25Jz.
Nevertheless, a similar spin propagation is observed although
its amplitude is much smaller. Figure 5 shows the time and
space dependence of the mean fields for the above exchange
parameters. The spin moments never appear in the M region
as presented in Fig. 5(a) but small oscillations are induced in
the R region after some time interval. The oscillation in the
itinerant Majorana fermions appears in the whole region, as
shown in Fig. 5(b). This implies that the Majorana-mediated
spin transport occurs even in the gapped system although spin
and Majorana fluctuations are strongly suppressed due to the
presence of the excitation gap. Now, we focus on the velocity
of the spin propagation. The oscillation of mean fields prop-
agates with a certain velocity comparable to but a bit smaller
than vx,max, which is shown as dashed lines in Fig. 5. This
is due to the existence of the gap in the itinerant Majorana
dispersion. In the case with σ = 5.0/Jz, the pulse does not
dominantly contribute to the Majorana fermions with vx,max

while it does to the lower-energy Majorana fermion, leading
to the slightly slower spin propagation visible in Fig. 5.
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FIG. 5. Real-time evolution of (a) 
Sz, (b) 
ξ , and (c) 
η in the
Kitaev system with Jx/Jz = 1.0 and Jy/Jz = 2.5. Here, we use A =
1.0 and σ = 5.0/Jz for the magnetic field pulse. The dashed lines
represent x = vx,maxt (see text).

Generally, the Gaussian pulse can be represented by the
superposition of plane waves with distinct energies. Thus the
magnetic field pulse excites itinerant Majorana fermions in
a certain energy range � σ−1. To clarify the pulse depen-
dence of the spin propagation in the gapped Kitaev system,
we focus on the itinerant Majorana fermions, which play an
essential role for the spin transport. Figure 6 shows the change
of the mean field, 
ξ when the magnetic field pulses with
σ = 2.0/Jz and 7.0/Jz are injected. It is clearly found that,
in the case with a sharper pulse, the velocity of the spin
transport corresponds to vx,max ∼ 0.87, which is shown as the
dashed line in Fig. 6(a). In this case, the characteristic energy
scale given by 1/σ = 0.50Jz is larger than excitation gap

 = 0.25Jz, and thereby Majorana fermions with a maximum
velocity are excited efficiently. On the other hand, in the case
of σ = 7.0/Jz, 1/σ ∼ 0.14Jz is smaller than the gap, and Ma-
jorana fermions with the maximum velocity are less excited.
This suppresses the intensity of Majorana (spin) propagation
with the velocity of vx,max and the dominant propagation orig-
inates from Majorana fermions with lower energies. Thus the
oscillations appear to propagate slowly in Fig. 6(b).

Therefore we can say that the spin transport in the gapped
Kitaev model depends on the form of the injected magnetic

FIG. 6. Real-time evolution of 
ξ when the magnetic field
pulses with (a) σ = 2.0/Jz and (b) σ = 7.0/Jz are introduced in the
gapped Kitaev system with Jx/Jz = 1.0 and Jy/Jz = 2.5. The dashed
lines represent x = vx,maxt . For comparison, we have the same scale
of color map as that in Fig. 5(b).

field. These results are in contrast to those for the gapless
state, where low energy massless excitations always play an
essential role for the spin transport and the change in σ has
little effect on its velocity.

Before conclusion, we consider the junction system com-
posed of two Kitaev models with distinct coupling constants.
We discuss the effect of an interface on the Majorana excita-
tions triggered by the magnetic pulse. The cluster we treat here
is composed of two regions M1 and M2 without static mag-
netic fields, as shown in Fig. 7(a). In the left region M1, the
system is the isotropic Kitaev model with Jx,1 = Jy,1 = Jz,1.
The right region M2 is described by the anisotropic Kitaev
model with Jx,2 = Jz,2 = Jz,1 and Jy,2 
= Jz,1. Then, the inter-
face is located between two regions. Here, we calculate the
change in the mean field for the itinerant Majorana fermions
since it plays an important role for the spin transport as dis-
cussed above. Figures 7(b)–(d) show 
ξ in the systems with
Jy,2/Jz,1 = 0.6, 1.1 and 1.5. Since the velocity of the itinerant
Majorana fermions is suddenly changed at the interface, the
refraction occurs, yielding reflected and transmitted waves.
By introducing the anisotropy in Jy,2, the Majorana oscilla-
tion smears in the right region. The results indicate that the
reflection ratio increases associated with the decrease of the
transmission ratio. This is consistent with the conventional
Fresnel’s theorem, which says that the refraction ratio given
by proportion of two kinds of velocities in M1 and M2. In
addition, low-energy properties such as the position of the
nodal point in the momentum space are suddenly changed
at the interface. This should lead to a certain delay in the
propagation at the interface.

Finally, we note that the mean-field analysis of the Kitaev
model does not include effects of scattering of Majorana
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FIG. 7. (a) The zigzag-edge cluster composed of two Kitaev
models. The interface of the junction is located at the center. Real-
time evolution of 
ξ in the Kitaev system with (b) Jy,2/Jz,1 = 0.6,
(c) 1.1, and (d) 1.5. Each dashed line represents the Majorana veloc-
ity in the corresponding region.

fermions. Furthermore, for candidate materials [42–48], the
effects of additional terms beyond the Kitaev model as well
as scattering with impurities should be considered. With these
effects, we expect that the spin transport immediately vanishes
in the gapped case. On the other hand, since low-lying itiner-
ant Majorana fermions does not induce magnetic excitations
in the bulk, long-range spin transport is expected to be re-
tained even in the presence of magnetic impurities. It is also
interesting to examine Majorana correlations in the present
system [49], which is beyond the scope of our study.

IV. CONCLUSION

We have studied the spin transport in the Kitaev model
with anisotropic exchange couplings by means of the time-
dependent Majorana mean-field theory. When the anisotropy
is small, the dispersion of the itinerant Majorana fermions
remains gapless. The group velocity of the low-energy Ma-
jorana fermions along the x direction is proportional to Jy,
and it determines the velocity of the spin transport. In the
gapless cases, the spin transport is mediated by the itinerant
Majorana fermions around the nodal points, and hence spin
excitations can travel over long distance regardless of the
shape of magnetic field pulse. When the anisotropy is large,
the Majorana dispersion is gapped. While the magnitude of
spin oscillations is drastically reduced in comparison with the
gapless case, the velocity of the spin propagation correlates
with the group velocity of the Majorana fermions above the
gap. However, we find that the difference between them is
more apparent in the case with the wider magnetic field pulse.
We have also studied the junction of the Kitaev systems with
different anisotropies of the exchange constants to show the
reflection and transition of the itinerant Majorana fermions
at the interface. Since the manipulation of an anisotropy in
the exchange coupling was recently proposed in the realistic
materials by means of the light irradiation [50], the junction
system would be a promising candidate for spintronic devices
mediated by Majorana fermions.
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APPENDIX: IMPLEMENTATION OF MAJORANA
MEAN-FIELD THEORY

The Majorana mean-field theory is implemented for the
present problem in the following way. First, the Majo-
rana mean-field Hamiltonian is obtained from Eq. (7) using
Eqs. (8)–(13). Since the system has a translational invariance
along the b direction, we make the partial Fourier transforma-
tion for γ and γ̄ , and express the mean-field Hamiltonian with
them. Namely, we introduce

cA
x,k = 1√

2Lb

∑
y

γ A
rz

e−iky, (A1)

c̄A
x,k = 1√

2Lb

∑
y

γ̄ A
rz

e−iky, (A2)

cB
x,k = 1√

2Lb

∑
y

γ B
rz

e−iky, (A3)

c̄B
x,k = 1√

2Lb

∑
y

γ̄ B
rz

e−iky, (A4)
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where rz = (x, y) is the position vector for the z bond, and we
define the wave vector k as only for k > 0. In this case, the
operators cA(B)

x,k and c̄A(B)
x,k satisfy cA(B)

x,−k = (cA(B)
x,k )† and the usual

fermionic anticommutation relation as{
cA(B)

x,k ,
(
cA(B)

x′,k′
)†

}
= δx,x′δk,k′ ,{

cA(B)
x,k , cA(B)

x′,k′
} = 0,{(

cA(B)
x,k

)†
,
(
cA(B)

x′,k′
)†

}
= 0 (k, k′ > 0). (A5)

With these operators, the mean-field Hamiltonian can be ex-
pressed as

HMF(t ) =
∑
k>0



†
kHMF

k (t, Xt )
k, (A6)

where 
k = {cA
0,k, cB

0,k, c̄A
0,k, c̄B

0,k, cA√
3/2,k

, · · · , c̄B√
3(La−1)/2,k

}T

and Xt is a set of six mean-field parameters. Since HMF
k are

4La × 4La Hermitian matrices, they can be diagonalized by
unitary matrices Uk (t, Xt ) as

HMF
k (t ) =

4La−1∑
n=0

εk,n(t, Xt )d
†
k,ndk,n, (A7)

⎛
⎜⎜⎝

dk,0

dk,1
...

d4La−1

⎞
⎟⎟⎠ = Uk (t, Xt )

†
k . (A8)

Then, we can introduce the single particle eigenstates |φk,n(t )〉
with the eigenenergy εk,n(t, Xt ) as

HMF
k |φk,n(t )〉 = εk,n|φk,n(t )〉. (A9)

In our calculations, we assume that hL(−∞) = 0 and that the
system is in the ground state at t = −∞. Thus, the ground

state is determined self-consistently as |�(−∞)〉, which is the
many-body state composed of the one-body states |φk,n(−∞)〉
with n satisfying εk,n < 0. This set of n is referred to as Nin.
We regard |�(−∞)〉 as an initial state.

In the mean-field theory, the time evolution of the one-
body wave function |ψk,n(t )〉 is described by the Schrödinger
equation,

i
d

dt
|ψk,n(t )〉 = HMF

k (t, Xt )|ψk,n(t )〉, (A10)

where HMF
k depends on mean fields, which are calculated from

|�(t )〉 = ⊗
k,n∈Nin

|ψk,n(t )〉. We compute the time evolution
of |ψk,n(t )〉 using the extended Euler method under the ini-
tial condition, |ψk,n(−∞)〉 = |φk,n(−∞)〉 [33–38]. First, we
calculate |φ̃k,n(t ′)〉 as

HMF
k (t ′, Xt )

∣∣φ̃k,n(t ′)
〉 = ε̃k,n(t ′)

∣∣φ̃k,n(t ′)
〉
, (A11)

where t ′ = t + 
t . Then, we calculate |ψ̃k,n(t ′)〉 as∣∣ψ̃k,n(t ′)
〉 =

∑
m

e−i
t ε̃k,m (t ′ )〈φ̃k,m(t ′) | ψk,n(t )
〉∣∣φ̃k,m(t ′)

〉
.

(A12)

Next, we obtain a set of six mean-fields X̃t ′ using |�̃(t ′)〉 =⊗
k,n∈Nin

|ψ̃k,n(t ′)〉, and |φk,n(t ′)〉 as

1
2

[
HMF

k (t, Xt ) + HMF
k (t ′, X̃t )

]|φk,n(t ′)〉 = εk,n(t ′)|φk,n(t ′)〉.
(A13)

Finally, we calculate |ψk,n(t ′)〉 in the same manner as
Eq. (A12) using |φk,n(t ′)〉 and εk,n(t ′), and a set of mean-fields
Xt ′ from |�(t ′)〉 = ⊗

k,n∈Nin
|ψk,n(t ′)〉.

By the above procedure, we can obtain mean fields and
wave function at t = t ′. In order to have the converged solu-
tion, we need to take 
t small enough.
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