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Quantum phases of a frustrated spin-1 system: The 5/7 skewed ladder
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The quantum phases in a spin-1 skewed ladder system formed by alternately fusing five- and seven-membered
rings are studied numerically using the exact diagonalization technique up to 16 spins and using the density
matrix renormalization group method for larger system sizes. The ladder has a fixed isotropic antiferromagnetic
(AF) exchange interaction (J2 = 1) between the nearest-neighbor spins along the legs and a varying isotropic AF
exchange interaction (J1) along the rungs. As a function of J1, the system shows many interesting ground states
(gs) which vary from different types of nonmagnetic and ferrimagnetic gs. The study of various gs properties
such as spin gap, spin-spin correlations, spin density, and bond order reveal that the system has four distinct
phases, namely, the AF phase at small J1; the ferrimagnetic phase with gs spin SG = n for 1.44 < J1 < 4.74
and with SG = 2n for J1 > 5.63, where n is the number of unit cells; and a reentrant nonmagnetic phase at
4.74 < J1 < 5.44. The system also shows the presence of spin current at specific J1 values due to simultaneous
breaking of both reflection and spin parity symmetries.
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I. INTRODUCTION

In low-dimensional magnetic systems, confinement leads
to strong quantum fluctuations, and these systems can show
many exotic phases in the presence of frustration induced by
the topology of exchange interactions [1–21]. Even in a one-
dimensional (1D) spin system, with only a nearest-neighbor
Heisenberg antiferromagnetic (HAF) exchange interaction,
the ground state (gs) can be gapped or gapless for integer or
half odd-integer spins, respectively, as pointed out in a seminal
paper by Haldane [22]. The gs of the HAF integer spin chain
can be represented as a valance bond solid (VBS) [23–25], and
in 1987 Affleck, Kennedy, Lieb, and Tasaki (AKLT) showed
that perfect VBS state may exist on various geometries with
specific spins [23,24]. The AKLT state still continues to in-
spire physicists for various reasons; for example, the AKLT
state has led to many recent developments such as the matrix
product states technique [26–28], which is a form of the den-
sity matrix renormalization group (DMRG) method [29–32];
the tensor network method [33]; and the projected entangled
pair states ansatz [27,28]. AKLT states can also be represented
as cluster states which can be used in measurement-based
quantum computation [34,35], and recently these states have
been explored in a spin-3/2 on a hexagonal lattice [36,37].

The HAF spin-1 chain exhibits a topological phase, spin-
1/2 edge modes, and the gs is fourfold degenerate in the
thermodynamic limit. The correlation length in the gs of
spin-1 is 6.05 lattice units and the eigenvalue spectrum has
large spin gaps [38,39]. The gs can be represented as a
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VBS, which belongs to the same universality class of AKLT
states [23,24]. The two leg HAF spin-1 ladder shows in-
teresting properties like plaquette-singlet solid state, where
two spin-1/2 singlet dimers are sitting at each rung and
there is no overlap between the VBS states in the large
rung exchange limit [40]. The AKLT state in the system
breaks down for any finite value of rung exchange interac-
tion [40]. The spin-1 zigzag ladder shows a transition from
a Haldane phase to a double Haldane phase [41,42]. In fact,
the zigzag ladder can be mapped into a chain system with
nearest-neighbor and next-nearest-neighbor exchange interac-
tions, and the gs of the frustrated systems is a singlet. In this
work, we explore the magnetic phases of a spin-1 system on
a 5/7-skewed ladder system; it has been demonstrated that
a spin-1/2 system on this lattice shows many exotic phases
[43].

The 5/7-skewed ladder is inspired by fused Azulene, a
ladderlike structure made up of 5- and 7-membered carbon
rings alternately fused on a chain, studied by Thomas et al.
in which they showed that the gs is ferrimagnetic [44]. These
structures can be mapped to a zigzaglike ladder structure with
some missing bonds [43,44]. The HAF spin-1/2 system on
various lattices such as the 5/7, 3/4, 3/5, and 5/5 is studied
and it was shown that the gs of these systems exhibits many
interesting magnetic and nonmagnetic gs in their quantum
phase diagrams with strength of the rung exchange interaction
as a phase parameter [43]. In the large rung exchange limit, the
gs wave function of a 5/7 skewed ladder can be represented as
a product of rung singlet dimers and two ferromagnetically in-
teracting spins per unit cell [45]. In various parameter regimes
this system shows dimer, spiral, and chiral vector phases [43].
In the presence of an axial magnetic field, the HAF spin-1/2
system on the 5/7 skewed ladder exhibits four magnetization
plateau phases [45].
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FIG. 1. Schematic diagram of (a) a zigzag ladder. The nearest
neighbor or rung interaction is J1 and the next-nearest neighbor
(along the leg) interaction is J2. (b) The 5/7 skewed ladder: Some
rung bonds shown in red of the zigzag ladder are periodically re-
moved to give a 5/7 skewed ladder. Here “i” is the index of the unit
cell and the numerals 1, 2, . . . are numbering of the spins within the
unit cell. There are 2 spins per unit cell in the zigzag ladder while
there are 8 spins per unit cell in the 5/7 ladder. The sites on the top
leg are even numbered and on the bottom leg are odd numbered.

The structure of zigzag and a 5/7 skewed ladder are shown
in Figs. 1(a) and 1(b) and by periodically removing some
of the rung bonds, shown in red, from Fig. 1(a) to give 5/7
skewed ladder in Fig. 1(b). In this paper, we are interested in
the gs phases of a spin-1 5/7 skewed ladder as a function of
the ratio of rung-to-leg exchanges J1 and J2, respectively. We
show that this system is highly frustrated, and in the small
rung interaction limit, J1/J2 < 1.06, singlet dimers along the
rung are weak and correlations along the leg remain short
ranged, whereas for J1/J2 > 1.44, the gs is magnetic and each
unit cell contributes spin-1 to the gs spin SG, and spin densities
are distributed over the whole unit cell, with spin density at
sites 3 and 7 being large. For 4.74 < J1/J2 < 5.44 the system
is nonmagnetic but for J1 > 5.63 gs of the system is magnetic
with each unit cell contributing spin 2 to SG with prominent
rung dimers and site spin densities.

This paper is divided into four sections. In Section II we
discuss the model Hamiltonian and the numerical methods.
The results are presented and discussed in Section III under
four subsections. Section IV provides a summary of results
and conclusions.

II. MODEL AND METHOD

The site numbering used in this paper for the 5/7 skewed
ladder is shown in Fig. 1(b). All nonzero exchange interac-
tions between spins are antiferromagnetic (AF). The sites are
numbered such that odd numbered sites are on the bottom
leg and even numbered sites are on the top leg. Thus the
rung bonds are the nearest-neighbor exchanges J1 and the
bonds on the legs are the next-nearest-neighbor exchanges J2.
The exchange J2 is set to 1 and it defines the energy scale.
The model Hamiltonian of the 5/7 skewed ladder can be

written as

H5/7 = J1

∑
i

(�Si,1 · �Si,2 + �Si,4 · �Si,5) + J2

∑
i

(
�Si,7 · �Si+1,1

+ �Si,8 · �Si+1,2 +
6∑

k=1

�Si,k · �Si,k+2

)
, (1)

where i labels the unit cell and k are the spins within the unit
cell (Fig. 1). The first term denotes the rung exchange terms,
and the second term denotes the exchange interactions along
the legs.

We use the exact diagonalization technique for finite lad-
ders with up to 16 spins and impose periodic boundary
condition (PBC). There are mirror planes perpendicular to the
ladder, for example, the plane perpendicular to the ladder and
passing through site 3 and the perpendicular bisector of sites
2 and 4, as well as the one passing through site 7 and the
perpendicular bisector of sites 6 and 8, again perpendicular to
the ladder. An extra rung is needed when the open boundary
condition (OBC) is used. For larger system sizes we use the
DMRG method [29–32] to handle the large degrees of free-
dom in the many-body Hamiltonian. We retain up to 500 block
states (m = 500), which are the eigenvectors of the block
density matrix with dominant eigenvalues. The chosen value
of “m” keeps the truncation error to less than ∼10−10. We also
carry out 6–10 finite sweeps for improved convergence. The
details of building the 5/7 ladder for the DMRG method is
the same as in Ref. [43]. The largest system size studied is a
system with 130 sites or 16 unit cells with OBC. The DMRG
calculations are carried out for different Sz values of ladders.
The gs spin is SG = l , for l that satisfies �l = 0 and �l+1 > 0,
where �l is given by

�l = E0(Sz = l ) − E0(Sz = 0), (2)

with E0 being the lowest energy state in the chosen Sz sector.
The correlation function and bond orders are computed in the
gs, with Sz = S.

III. RESULTS AND DISCUSSIONS

In the gs, the spin-1 5/7 skewed ladder, like the spin-1/2
system, also shows many exotic phases like the bond order
wave (BOW) phase, chiral points in parameter space of the
Hamiltonian and nonmagnetic to magnetic phase transition
on tuning the value of J1. However, there are significant dif-
ferences from the spin-1/2 system. To analyze the magnetic
transitions in the quantum phase diagram, various quantities
are analyzed as a function of J1/J2 which is the only variable
model parameter in this system and J2 is set to 1. Besides
the spin gaps �l , we have the computed correlation function
C(r) = 〈�Si · �Si+r〉 to study the behavior of the spins in the
system. The bond order between bonded neighbors −〈�Si · �Si′ 〉,
where sites i and i′ are bonded neighbors, and spin-density
〈Sz

i 〉 within a unit cell are also calculated and compared with
the results for a 1D spin-1 chain where appropriate.

A. Nature of gs

The spin in the gs, SG, of the skewed 5/7 ladder systems
is obtained from the magnetic gaps �l defined in Eq. (2). In
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FIG. 2. (a) The lowest excitation gaps �l for different Sz = l
manifolds are shown as functions of J1. For J1 < 1.06, �1 is nonzero,
whereas for 1.06 < J1 < 4.74, �l is zero for l � S where S is the
total spin of the gs. The system exhibits reentrant nonmagnetic
phase for 4.74 < J1 < 5.44 where �1 is nonzero. For 1.44 < J1 <

4.74 SG ∼ n and for J1 > 5.63 SG ∼ 2n. (b) The variation of the gs
spin per unit cell SG/n with J1 for system sizes of 48 (n = 6) spins
in regions I and II and of 24 (n = 3) spins in all the regions. (c) The
lowest excitation gaps �1, �2, and �3 with the inverse of the number
of unit cells of a 5/7 with PBC are shown for J1 = 5.1. (d) The lowest
excitation gaps �1 to �7 with the inverse of the number of unit cells
of a 5/7 with OBC are shown for J1 = 5.1.

Fig. 2(a), we plot the gaps �l for different values of “l” as a
function of J1 for a system with 24 spins corresponding to 3
unit cells (n = 3) under PBC. The plot shows that there are
four distinct regions: In region I with 0 < J1 < 1.06, the gs is
a singlet and is nonmagnetic; in region II, 1.06 < J1 < 4.74,
SG is less than or equal to the number of unit cells in the
systems; consequently, each unit cell contributes at most spin-
1 to SG and for 1.44 < J1 < 4.74, the spin SG saturates to the
number of unit cells. We calculate SG/n as a function of J1 for
systems with N = 24 and N = 48 spins to investigate if the
transition to SG = n is smooth or abrupt. We find that SG/n
shows a gradual increase in the region 1.06 < J1 < 1.44 for
the larger system, shown in Fig. 2(b). The weak finite size ef-
fect in SG/n can be attributed to the short spin-spin correlation
lengths. As shown in Fig. 2(b), the increase in SG/n is contin-
uous between regions I and II. In region III, 4.74 < J1 < 5.44,
the gs becomes nonmagnetic for the 24 spin system. The
spin-spin correlation function reveals that in this region, the
“free” spins in each unit cell align ferromagnetically while
the alignment of the spins across unit cells is AF, with large
periodicity. The transition from region II to region III is abrupt
for N = 24 spins and we had convergence difficulties even for
the N = 48 spins and hence cannot comment on the effect of
system size.

We investigated the spin gaps at J1 = 5.1 (where there is a
peak in the �l values for the N = 24 spin system) as a function
of system size from N = 24 to N = 96 spins, retaining 2400
block states in the finite DMRG calculations for both PBC and
OBC. We find that for this J1 value, the gaps �1 to �n exhibit
nonlinear variation with system size as shown in Figs. 2(c)

FIG. 3. The variation of the gs spin SG with the number of unit
cells n shown for J1 = 1.0, 1.9, and 6.0.

and 2(d) for PBC and OBC, respectively. The convergence for
higher values of l in �l for PBC is poor and hence is not shown
in Fig. 2(c). We find that for some system sizes (number of
unit cells n) the excitation gaps �1, �2, and �3 vanish for both
PBC and OBC. We surmise that the vanishing of the gaps is
because for “n,” the number of unit cells in the system is an in-
tegral multiple of the periodicity of the spin-spin correlations.
In region IV, the spin of the gs is 2n and indicates that all the
free spins are ferromagnetically aligned. The transition from
region III to region IV was followed for the 24 spin system
under PBC by varying J1 in small increments. We find a step
in the gs spin at an intermediate value 1 < SG/n < 2 with a
step width of 0.18 in J1, but this region could not be studied for
larger system sizes due to convergence difficulties. In region
IV, with J1 > 5.63, SG corresponds to twice the number of unit
cells. We summarize the behavior of the gs in different regions
in Fig 3.

B. Spin correlations

To understand the spin structure in different regions of the
parameter space, we have studied the spin-spin correlations
of the total spin C(r) = 〈�Sk · �Sk+r〉, where k is the reference
site of spins in the middle of the system. The z component of
the spin correlations, Czz(r) = 〈Sz

kSz
k+r〉 − 〈Sz

k〉〈Sz
k+r〉, shows

behavior similar to the total spin correlation. The total spin
correlations are shown for a system of 98 spins, which cor-
respond to 12 unit cells for OBC. These are calculated in the
gs with Sz = SG. There are three different spin correlations
that we have computed. They correspond to the correlation be-
tween spins on the lower leg C1(49, 49 + 2r), C2(50, 50 + 2r)
between spins on the upper leg and C3(51, 51 + 4r) between
free spins which reside on the lower leg. The reference site for
the correlations is from the middle unit cell which for C1 is site
49, for C2 is site 50, and for C3 is site 51. For convenience,
we classify the spins on the lower leg as of two types, type
1 “bound” spins, which are bound to three nearest-neighbor
spins, and type 2 as free spins, which are the middle sites in
the five- and seven-membered rings.

In Fig. 4, we show the spin correlations in the four dif-
ferent regions of the parameter space. The correlations C1(r)
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FIG. 4. The spin-spin correlations between (a) spins in the lower leg, (b) spins in the upper leg, and (c) free spins at sites 3, 7, 11, etc.
for a 5/7 ladder with N = 98 spins with OBC. Four J1 values are chosen to represent different regions of the phase diagram. J1 = 1.0 for the
nonmagnetic phase, J1 = 2.0 for the SG = n phase, J1 = 5.0 for the reentrant phase, and J1 = 6.0 for the SG = 2n phase.

shown in Fig. 4(a) correspond to spins in the lower leg. The
correlations are given from site 49 which is in the middle of
the system. For J1 = 0, we have the correlation length of the
Haldane system. We also find that as J1 is increased, the corre-
lation length gradually decreases to ∼2.2 for J1 = 1.0. In the
transition region between I and II, the correlations fluctuate
rapidly and we cannot extract a correlation length. We note
that for J1 = 1.0, the system has a singlet gs. The correlations
fall off rapidly and the correlation length ξ is ∼2.2 sites of the
specified kind. In the spin-1 AF chain, the correlation length
is longer by almost a factor of three and is approximately six
sites. The shorter correlation length can perhaps be attributed
to the frustration in exchange interactions in the rings. For
J1 = 2.0 and 6.0, the system is in a magnetic state, and C1(r)
decays very slowly and is AF in nature. In the reentrant phase,
the system goes to a nonmagnetic state, and the spin correla-
tions between the spins on the lower leg have long wavelength
spin oscillations whose amplitude shows an exponential decay
and corresponds to a noncollinear spin arrangement. From
the spin correlations, it appears that the magnetic unit cell is
tripled in this region. In Fig. 4(b), C2(r) in the upper leg is
shown for the four phases, with the reference spin being the
50th spin in the system. C2(r) for both J1 = 1 and 2 is AF and
exponentially decaying with correlation length, ξ ≈ 3. For
J1 = 5 and 6, C2(r) is vanishingly small, the magnitude is less
than ≈0.05, even for nearest neighbor pair, and shows long
wavelength behavior. However, the amplitude of this wave
is too small to definitively conclude this oscillatory behavior.
The small correlation in the upper leg at high J1 is due to the
strong dimer formation along the rungs and between the (i, 6)
and (i, 8) sites. The correlations between free spins C3(r) show
a rapid decay in the nonmagnetic state at J1 = 1, while those
for J1 = 2 and J1 = 6, the correlations are ferromagnetic. For
the J1 = 6, the spins at these sites have almost completely
aligned ferromagnetically, while for J1 = 2, the alignment is
partially ferromagnetic. This reflects in the net spin of the gs
which is 2n for the J1 = 6 case and n for the J1 = 2 case. In
the reentrant phase, the free spins in each unit cell are aligned
ferromagnetically, while the alignment of these spins across
unit cells is AF, with large periodicity.

In summary, all the nearest-neighbor spin correlations are
always AF in the nonmagnetic gs for J1 in regime I, and the
correlation lengths are much shorter than the Haldane chain.
For J1 values in regime-II where SG ∼ n, the correlations in
the lower leg are AF and very long ranged, while those in the

upper leg are AF and fall off rapidly. The free spin correlations
are ferromagnetic with an amplitude of about 0.6 and show
very slow decay. When the J1 value is in the reentrant regime
III, the lower leg spin correlations show formation of wave
packets over approximately three unit cells. The free spin
correlations show a long wavelength oscillatory behavior with
about five unit cell wavelength, which corresponds to a long
period Néel arrangement of free spins. While in the classi-
cal, frustrated J1 − J2 model, the pitch angle is dependent on
J1/J2, in the skewed ladder, we have not been able to obtain
a similar relationship. Besides, it is unlikely that a classical
model will exhibit a reentrant phase. In regime IV, the bound
spins on the lower leg are antiferromagnetically aligned and
the correlations fall off very slowly with distance. The corre-
lations between spins on the upper leg show weak long period
Néel structure. The free spins are aligned ferromagnetically
with very long correlation length.

C. Spin densities and bond order

The correlation lengths in the system are short, often less
than the distance to a third equivalent nearest neighbor. Hence,
we can get qualitatively correct behavior of the system in the
thermodynamic limit from high accuracy DMRG studies on a
system with three unit cells. We have carried out studies on
a 48 site spin-1 system, with PBC corresponding to six unit
cells (n = 6). We have retained 2400 block states for high
accuracy in our DMRG computations. We have computed the
spin densities in the gs for Sz = SG and the bond orders of all
the nearest-neighbor bonds. The system has reflection sym-
metry and hence there are five unique bonds and five unique
sites. The spin densities are computed as the expectation value
of 〈ψgs | Sz

i | ψgs〉. They are uniformly zero in the singlet gs.
The bond orders are computed as bi, j = −〈ψgs | Si · S j | ψgs〉,
where i and j are nearest-neighbor bonds. When the gs of the
system is a singlet (region I), from the bond orders (Fig. 5)
we can describe the system as weakly coupled spin-1 HAF
chains. The upper leg has a BOW with a periodicity of four
bonds, while the lower leg has a BOW with a periodicity
of two bonds. The rung bonds are weak and the leg bond
orders vary between 1.285 and 1.370. For comparison, in
the spin-1 HAF, all the bond orders are uniform and have
a value of 1.40. In region II, where SG = n, the upper leg
bond between the sites in the pentagon becomes weak, the
rung bonds become strong, and the bonds in the lower leg
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FIG. 5. Bond orders for 5/7 skewed ladder with N = 48 spins
and PBC in the four different regions: (a) Nonmagnetic at J1 = 1.0,
(b) SG = n at J1 = 1.5, (c) reentrant nonmagnetic at J1 = 5.1, and
(d) SG = 2n at J1 = 6.0. The numbers adjacent to the bonds are the
bond orders. The width of the bonds is proportional to the magnitude
of the bond order. The site numbering is given in (a), the zero spin
density is represented by open circles in (a) and (c), the spin density
in (b) and (d) is proportional to the area of the filled circles. Red
circles represent positive spin densities and blue circles represent
negative spin densities.

also become slightly weak. Besides, the bond on the upper
leg between the sites, which entirely belongs to the seven-
membered ring, also becomes strong. The rung bonds become
much stronger while the ladder bonds become weaker. The
spin densities at the free spin sites are nearly equal and there
is a net negative spin density on the rung bonds with the spin
density of the sites on the lower leg being large negative. The
“bonded” spin sites on the seven-membered ring on the upper
leg acquire small negative spin densities. In region IV, where
the SG = 2n, the rung bonds and the bond in the upper leg of
the seven-membered ring almost form singlets, with a bond
order close to 2.0. All other bonds are very weak. The spin
densities of the sites in the seven-membered ring which form
the singlet are very nearly zero, while the rung bonds are
qualitatively different with large negative (on the lower leg)
and positive (on the upper leg) spin densities. The free spins
are almost completely polarized and have spin densities that
are very nearly unity.

D. Vector chirality

Broken symmetry states give rise to different quantum
phases whose properties depend on the type of symmetry
that is broken in the system. In general, broken spatial in-
version/reflection symmetry gives rise to the BOW phase,
whereas broken spin inversion symmetry gives rise to spin-

density wave (SDW). If both the spatial and spin inversion
symmetries in the system are broken, then the vector chiral
phase arises and it leads to a spontaneous spin current in the
system. For these symmetries to break simultaneously, the
lowest energy states in the two subspaces that the symme-
try element divides the appropriate Hilbert space should be
degenerate. In this case, any linear combination of the two
low-lying states in the two subspaces, which are even (odd)
under both reflection and spin inversion, will be degenerate
resulting in symmetry breaking. The symmetry group of the
5/7 skewed ladder system consists of four elements: E , P, σ ,
and σP, where E is identity, σ is the reflection symmetry, and
P is the spin inversion symmetry, and all these elements com-
mute with each other leading to an Abelian group. The four
irreducible representations correspond to A+, A−, B+, and B−.
A (B) corresponds to even (odd) under σ while “+” (“−”)
corresponds to even (odd) under P. A BOW transition requires
a degeneracy between the lowest states in A+ and B+ (or A−
and B−) subspaces. Similarly, an SDW transition requires a
degeneracy of the lowest energy states in A+ and A− (or B+
and B−) subspaces. For a vector chiral transition, the lowest
energy states in A+ and B− (or A− and B+) subspaces must be
degenerate. Since the spin inversion symmetry, P divides the
Sz = 0 subspace into even and odd total spin (S) sectors, the
lowest energy states of the odd and even subspaces under P
should be degenerate to break the spin inversion symmetry.
To determine the degeneracy of the lowest energy state in
the odd and even subspaces under spin inversion symmetry,
instead of employing “P” to divide the Hilbert space with
Sz = 0 into even and odd total spin subspaces, we use the
following argument. Whenever there is a degeneracy of the
lowest energy states with odd and even total spin sectors,
then the spin inversion symmetry is broken. We recognize the
degeneracy of the gs when two states in the Sz = 0 sector are
degenerate. In this case, we compute the energies of the lowest
states in the higher Sz sectors. The spin of the degenerate
spin states is determined by following the degeneracies of the
states in these sectors.

We calculate the energy gap �σ as the modulus of the
difference in energy between the lowest energy states in the
A and B subspaces,

�σ = |E0(σ = −1) − E0(σ = +1)|, (3)

where E0(σ = +1) and E0(σ = −1) are the lowest energies
in the even and odd subspaces under σ . In Fig. 6, �σ is shown
as a function of J1 for a system size N = 16 with PBC. We
see that it vanishes at four values of J1, namely, J1 = 1.07,
J1 = 1.408, J1 = 4.601, and J1 = 5.550. At these values of
J1, we compute �l and find the two degenerate gs have spins
S = 0 and 1, S = 1 and 2, S = 2 and 3, and S = 3 and 4,
respectively, at J1 1.07, 1.408, 4.6, and 5.550. In Table I we
show the lowest energy states in different Sz sectors at the four
points at which �σ vanishes. The degeneracy under reflection
and spin inversion at a given J1 implies a vector chiral state
and nonzero spin currents for these J1 values.

Usually, in all known systems, the chiral phase emerges
either due to exchange anisotropy or due to an external
magnetic field on a ferrimagnetic gs. However, in our sys-
tem, due to the peculiar nature of the frustrated exchange
interactions, accidental degeneracy occurs between the lowest
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FIG. 6. The energy gap �σ [see Eq. (3)] between two lowest en-
ergy levels belonging to different reflection symmetry subspaces. �σ

vanishes at J1 = 1.07, 1.408, 4.601, and 5.55 indicating degeneracies
at these J1 values.

energy states in the A+ and B− symmetries. In the basis of
these degenerate states, the spin chirality operator has nonzero
eigenvalues. This leads to nonzero spin current in a well-
defined Sz state, but the total spin is no longer conserved in
the eigenstate. This implies spontaneous symmetry breaking,
i.e., the eigenstate does not exhibit the full symmetry of the
Hamiltonian.

The magnitude of the z component of the spin current,
κz( j, k), is given by the eigenvalues of the matrix of the spin
current operator for the j − k bond, viz., (�S j × �Sk )z in the
| ψG(±)〉 basis. The matrix, in this basis, is given by,(〈ψ (+) | κ̂z | ψ (+)〉 〈ψ (+) | κ̂z | ψ (−)〉

〈ψ (−) | κ̂z | ψ (+)〉 〈ψ (−) | κ̂z | ψ (−)〉
)

,

where the function | ψG(+)〉 is the lowest energy state in
the even subspace for reflection and even subspace for spin
inversion, similarly, | ψG(−)〉 is in the odd subspace under
both symmetries. The matrix elements of the spin current
operator can be evaluated easily by using the operator identity

κz( j, k) = −i(�S j × �Sk )z = 1
2 (S+

j S−
k − S−

j S+
k ). (4)

The diagonal matrix element in the 2 × 2 matrix is zero, and
the eigenvalues of the spin current are given by ± 1

2 |〈ψG(+) |
(S+

j S−
k − S−

j S+
k ) | ψG(−)〉|.

FIG. 7. Spin currents κz( j, k) of a 5/7 skewed ladder of N = 16
spins [see Eq. (4)] for (a) J1 = 1.408 in the Sz = 1 sector, (b) J1 =
5.55 in the Sz = 2 sector, and (c) J1 = 5.55 in the Sz = 3 sector.
Arrows indicate the direction of the current, and the magnitude of
the currents is given adjacent to the arrows. No arrowhead for a bond
means the spin current is zero along that bond.

In Fig. 7, we show the spin currents for J1 = 1.408 and
5.550 for different degenerate Sz values. Spin currents for all
J1 values, at which �σ = 0 and there is a degeneracy between
states of odd and even total spin, are shown in Table II for
different Sz values. We find that the spin currents are large
for J1 = 1.408 compared with J1 = 5.550. At J1 = 1.408, the
spin current is larger in the five-membered ring compared with
that in the seven-membered ring. Also, the direction of spin
currents is opposite in the two rings. The spin currents are
also not uniform for all the bonds, implying the mean angle
between the spins depends on the bond, as the spin current of
a bond is a measure of the angle between orientations of the
spins of the bond. The rung bonds have smaller currents than
the leg bonds and in the five-membered ring, the upper leg has
larger currents than the lower leg, while it is the opposite in the
seven-membered ring. The spin current in the five-membered
ring almost vanishes at J1 = 5.550, while it is much weaker in
the seven-membered ring. The spin currents of the rung bonds
are very small and the spin current on the leg bonds in the
seven-membered ring becomes uniform. There is also weak
dependence of the spin current on the Sz value of the state for
which it is calculated.

TABLE I. Two lowest energy levels from different Sz sectors at specified J1 values (see Fig. 6).

J1 E (Sz = 0) E (Sz = 1) E (Sz = 2) E (Sz = 3) E (Sz = 4)

1.07 −23.8471 −23.8470
−23.8470

1.408 −25.0575 −25.0575 −25.0574
−25.0574 −25.0574

4.601 −44.7871 −44.7871 −44.7871 −44.7871
−44.7871 −44.7871 −44.7871

5.55 −51.7948 −51.7948 −51.7948 −51.7948 −51.7946
−51.7946 −51.7946 −51.7946 −51.7946
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TABLE II. Spin currents for different J1 values in different Sz sectors. At J1 = 1.07, S = 0 and S = 1 are degenerate. At J1 = 1.408, S = 1
and S = 2 are degenerate. At J1 = 4.601, S = 2 and S = 3 are degenerate, and finally at J1 = 5.5, S = 4 and S = 5 are degenerate; κz is defined
in Eq. (4).

J1 Sz κz(1, 2) κz(4, 5) κz(1, 3) κz(5, 7) κz(2, 4) κz(4, 6)

1.07 0 −0.302 −0.302 0.165 −0.158 −0.237 0.086

1.408 0 −0.316 −0.316 0.225 −0.220 −0.315 0.129
1 0.274 0.274 −0.195 0.190 0.273 −0.112

4.601 0 −0.045 0.045 0 0.205 0 −0.205
1 −0.042 0.042 0 0.193 0 −0.193
2 0.033 −0.033 0 −0.153 0 0.153

5.55 0 0.027 −0.027 0 −0.147 0 0.147
1 −0.026 0.026 0 0.143 0 −0.143
2 −0.023 0.023 0 0.127 0 −0.127
3 −0.018 0.018 0 0.097 0 −0.097

IV. SUMMARY AND CONCLUSION

In this paper, we study quantum phases of a spin-1 HAF
model on a 5/7 ladder shown in Fig. 1(b). This system goes
from a nonmagnetic state to a partially magnetized state for
J1 > 1.06, and for J1 > 1.44, magnetization per unit cell is
m = SG/n = 1. The gs again goes to a nonmagnetic state for
4.74 < J1 < 5.44, and spins have noncollinear arrangement in
this phase. For large J1 > 5.63, the gs goes to a magnetic state
with m = 2.

The correlation length in the 5/7 ladder decreases mono-
tonically with J1 and for J1 = 1 the correlation length ξ ∼ 3
lattice units in the singlet gs. The bond order of the rung bonds
increase monotonically with J1, and in the large J1 limit, the
gs is a product of rung dimers and free spins at 3 and 7 sites
in each unit cell. The uniform VBS state of spin-1 chain dis-
appears even for the small value of J1 as spin-1/2 at the edges
of the ladder gets pinned by the rung interaction and forms
singlet pairs. In large J1 limit, the spins at sites 8i − 2 and 8i
(i is the unit cell index) form a strong singlet dimer, which is
comparable to a spin-1 singlet dimer with bond order ∼2.0.
Thus, in the large J1 limit we have a VB state with singlets
on the rung bonds and between sites 6 and 8 in each unit cell.
The free spins at sites 8i + 3 and 8i + 7 have ferromagnetic
alignment.

For J1 < 1.06, �σ vanishes and reflection symmetry is
broken leading to dimer order in the system. For larger J1

values, the gs is in a ferrimagnetic state and for some J1 values
the lowest energy states in the even-even and odd-odd sub-
space under reflection and spin inversion become degenerate.
This leads to both inversion and spin-parity symmetry being
broken at the degeneracy points; therefore, the gs at this J1

value possesses vector chirality and there is spontaneous spin
current in the ladder system. This is unique as it can have

both finite magnetization and spin current in the absence of
an external magnetic field. In this system, maximum gs mag-
netization per unit cell, m = 2, while for a spin-1/2 system,
m = 1 [43,45]. In the spin-1/2 system magnetic moments are
localized mostly on (4i − 1) sites of the system and other sites
have vanishingly small spin density [43,45]. However, in the
spin-1 system while magnetization contribution comes mostly
from sites (4i − 1), there is antiferromagnetically aligned spin
density in the lower leg and ferromagnetically aligned spins in
the upper leg due to strong singlet dimer formation along the
rung. The isolated singlet spin-1 dimer between sites 8i − 2
and 8i in this extended system is unique.

In conclusion, the HAF spin-1 system on a skewed 5/7
ladder is unique with different ferrimagnetic gs, and this sys-
tem exhibits a plethora of exotic phases in the gs on tuning
J1. The spin arrangements of the spin-1 system are vastly
different from those on the spin-1/2 on this lattice. This is
a unique ladder system where a singlet spin-1 dimer and a
BOW can coexist. The topological phase of the spin-1 chain
vanishes for any finite value of J1. The HAF 5/7 ladder system
can be mapped onto a spin-1 chain with an AF nearest- and
next-nearest-neighbor interaction J1 and J2 with periodically
missing J1 bonds. This system may be realized in molecular
magnets based on transition metal compounds.
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