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A modified GW approximation to many-body systems is developed. The approximation has the same com-
putational complexity as the traditional GW approach, but uses a different truncation scheme. This scheme
neglects the high-order connected correlation functions. A covariant (preserving the Ward identities due to the
charge conservation) scheme for the two-body correlators is employed, which holds the relation between the
charge correlator and the charge susceptibility. The method is tested on the two-dimensional one-band Hubbard
model. The results are compared with exact diagonalization, the GW approximation, the fluctuation-exchange
(FLEX) theory, and determinantal Monte Carlo approach. The comparison for the (one-body) Green’s function
demonstrates that it is more precise in the strong-coupling regime (especially away from half filling) than the
GW and FLEX approximations, which have a similar complexity. More importantly, this method indicates a
Mott-Hubbard gap as the Hubbard U increases, whereas the GW and FLEX methods fail. In addition, the charge
correlator obtained from the covariant scheme not only holds the consistency of the static charge susceptibility,
but also makes a significant improvement over the random phase approximation calculations.
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I. INTRODUCTION

Understanding the physics of strongly correlated electronic
systems has been a challenge in condensed matter theory for
many decades. These systems are hosts of distinct phenomena
such as the Mott insulator [1], quantum magnetism [2], pseu-
dogap [3], strange metals [4], and d-wave high-temperature
superconductivity [5,6], all of which cannot be explained
within the framework of the traditional renormalized weak
coupling expansion. Above the atomic level (described by the
density-functional approximation), the main features of these
systems are typically captured sufficiently well by the lattice
effective Hamiltonian with (quasi)local Coulomb repulsion.
Up to now, numerous nonperturbative numerical and analytic
approaches have been developed to tackle these seemingly
simple models, such as the (one or multiband) Hubbard model
[7].

Numerical nonperturbative methods include the density
matrix renormalization group (DMRG) [8], determinantal
quantum Monte Carlo (MC) simulation [9], and dynamic
mean-field theory (DMFT) [10,11]. They can produce reliable
results in certain cases, but have limitations in the cases of in-
terest, for example, at very low temperature or deviations from
half filling (doping). DMRG is reliable mostly in the one-
dimensional case, while the determinantal MC encounters a
severe fermionic sign problem and thus fails at low temper-
ature and significant doping. DMFT, although successful at
intermediate coupling, generally misses nonlocal fluctuations.
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A lot of effort was made to remedy this by the extensions of a
more elaborate scheme [12,13].

Analytic nonperturbative methods evolved from simple
mean-field methods [2] like variations of Hartree-Fock (HF),
to more sophisticated field theoretical methods. Generally, a
closed set of (quite complicated) equations of the correla-
tors and the vertex functions is constructed and subsequently
solved numerically. The most used approximations are based
on the Baym-Kadanoff formalism [14,15], Hedin’s equations
[16], and diagrammatic analysis [17]. Others are based on
particular truncations of Dyson-Schwinger equations [18–20].

By their complexity, analytic methods can be broadly clas-
sified into two classes. In the simpler class, one identifies a
function (or functions) of just one energy-momentum vari-
able as the relevant degree of freedom. Examples include the
electronic Green’s function G(ω, k), the screened dynamical
potential W (ω, k), and the charge and spin susceptibilities
χ (ω, k). Beyond the HF, two popular approximations of this
class are the GW approximation [16,21], involving G and W ,
and the fluctuation-exchange (FLEX) theory [22], involving
G and χ ’s. More complicated schemes such as the parquet ap-
proximation [23,24] and covariant quartic approximation [25],
in addition to one-momentum functions, unfortunately have
to consider multiple-momenta-dependent quantities, such as
two-body vertex functions and high-order correlators.

To describe realistic correlated materials, complicated
schemes are often not feasible yet due to their large computa-
tional complexity, and thus the simpler class is more favored.
However, the current GW and FLEX approximation pro-
duce less accurate data compared with experimental [26] or
numerically exact results [24]. Therefore, a simpler yet suffi-
ciently reliable and precise method is highly sought after.
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In this paper, one such method, a modification of GW
approximation, is developed. To fully take advantage of the
clustering properties of the connected correlators, the modi-
fied GW approximation is to truncating high-order connected
correlators on Dyson-Schwinger equations. The resulting
equations turn out be quite similar to the GW equations, and
the physical meanings are also analogous. As in GW , the
Coulomb interaction is renormalized and the screening for
long-range interaction is included within the modified GW
approximation. In this degree, this method is applicable to
realistic materials.

In a many-body system, the charge conservation leads to
a set of Ward identities. In an approximation (such as GW or
FLEX), the Ward identity for a one-body Green’s function is
obeyed, whereas the Ward identity for the two-body correlator
(directly obtained from equations after the approximation) is
often violated. In addition, the relation between the charge
correlator and charge susceptibility, ∂n/∂μ = χ ch(ω =
0, k = 0), is often violated [27]. To preserve these identities,
the covariant scheme [28–30] is employed in this paper.

The modified GW approximation is tested on the two-
dimensional (2D) one-band Hubbard model in this paper. The
results for the density and the Green’s function demonstrate
that the modified GW approximation produce satisfactory
results even in the strong-coupling regime compared with ex-
act diagonalization (ED) or the determinantal MC approach.
The method also indicates a Mott-Hubbard gap as the Hub-
bard U increases, whereas the GW and FLEX methods fail.
The results of the charge correlator demonstrate a significant
improvement over the random phase approximation (RPA)
scheme, and the charge susceptibility obtained from the co-
variant scheme is consistent with an independent calculation
∂n/∂μ.

This paper is organized as follows. In Sec. II, the modified
GW approximation is presented for the fermionic (one-body)
Green’s function. Next, in Sec. III, the covariant scheme for
the two-body correlators is presented. In Sec. IV, this method
is tested on the 2D Hubbard model by comparing the (one-
body) Green’s function (and the density), and the (two-body)
charge correlator (and the static charge susceptibility) with
other approaches. The conclusions and discussions are given
in Sec. V.

II. MODIFIED GW APPROXIMATION FOR FERMIONIC
GREEN’S FUNCTION

In this section, basic equations and assumptions of the
modified GW approximation are presented. The general
density-density-type interacting fermionic system at finite
temperature is considered. Two exact equations involving the
connected correlators are derived. The approximation is moti-
vated by the clustering properties of the connected correlators.

A. Two exact equations for correlators

The Matsubara action for a density-density-type interact-
ing fermionic system at finite temperature has the form

S[ψ,ψ∗] = −
∫

d (12) T (1, 2)ψ∗(1)ψ (2)

+ 1

2

∫
d (12) V (1, 2)ρ(1)ρ(2), (1)

where ψ∗, ψ are Grassmannian fields and ρ(1) ≡ ψ∗(1)ψ (1)
is the density (composite operator). The label (1) ≡
(σ1, x1, τ1) represents a generalized coordinate, containing the
spin projection σ1, the space coordinate x1, and the Matsubara
time 0 < τ1 < β, with β being the inverse temperature. The
condensed notation

∫
d (1) stands for the integral or summa-

tion over all the values of a generalized coordinate (σ1, x1, τ1).
The bilocal functions T and V are the hopping strength and the
interaction (dynamical) potential. Generalization to several
fermionic species or type of interactions (spin, current) is
straightforward.

Consider the perturbation of the system by an external
bosonic source φ(1) (local spin selective chemical potential)
coupled to the density:

S[ψ,ψ∗; φ] = S[ψ,ψ∗] −
∫

d (1) φ(1)ρ(1). (2)

Note that unlike in Ref. [25], the source is coupled to a quan-
tity quadratic in the fermionic fields. Using the grand partition
function,

Z[φ] =
∫

D[ψ,ψ∗] e−S[ψ,ψ∗;φ], (3)

the (one-body) Green’s function G is given by

G(1, 2) ≡ 〈ψ∗(2)ψ (1)〉

= 1

Z[φ]

∫
D[ψ,ψ∗] ψ∗(2)ψ (1)e−S[ψ,ψ∗;φ]. (4)

Here
∫
D[ψ,ψ∗] is the (Grassmannian) functional path inte-

gral measure.
The Green’s function G(1, 2) and its functional derivative

δG(1, 2)/δφ(3) are related through the following equation of
motion (see Appendix A1 for derivation):

δ(1, 2) =
∫

d (3) H−1(1, 3)G(3, 2)

−
∫

d (3) V (1, 3)
δG(1, 2)

δφ(3)
. (5)

Here δ(1, 2) is the Dirac/Kronecker delta function and the
Hartree propagator H is defined by

H−1(1, 2) ≡ T (1, 2) + δ(1, 2)v(1). (6)

Here the density weighted interaction potential v is

v(1) ≡ φ(1) −
∫

d (2) V (1, 2)ρ(2). (7)

Note that in the absence of the external source, i.e., φ = 0,
the quantity H is the free Green’s function with Hartree self-
energy absorbed in the chemical potential.
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Functional derivative of Eq. (5) with respect to the source
φ yields

0 =
∫

d (4)
δH−1(1, 4)

δφ(3)
G(4, 2)

+
∫

d (4) H−1(1, 4)
δG(4, 2)

δφ(3)

−
∫

d (4) V (1, 4)
δ2G(1, 2)

δφ(3)δφ(4)
, (8)

relating the one-body correlator G and the two-body correlator
correlator δG/δφ to the three-body correlator δ2G/δφ2. By
successive functional derivatives, one can obtain a hierarchy
of such relations for even higher order correlators. These are
used in the search of successful nonperturbative approxima-
tions by truncating certain terms considered small by a certain
qualitative argument valid for a particular class of systems and
values of parameters. This way, a closed set of equations is
obtained and solved numerically, typically by iterations.

B. Clustering property of connected correlators
and the HGW truncation

The simplest approximation is to truncating δG/δφ in the
first equation of motion Eq. (5). This yields G = H , namely,
the Hartree approximation widely used in condensed-matter
physics [2]. A more complicated (and hopefully precise, see
below) approximation would be truncating the δ2G/δφ2 term
in Eq. (8). Justification for such a truncation originates from
the clustering property, which states that the connected corre-
lation function is very small as its coordinates are separated.
The quantity

δ2G(1, 2)

δφ(3)δφ(4)
= 〈ψ∗(2)ψ (1)ρ(3)ρ(4)〉c (9)

is a connected correlation function, and thus can be omitted in
certain cases. The reliability of this truncation is determined
by the inequality∣∣∣∣

∫
d (45)H (1, 5)V (5, 4)

δ2G(1, 2)

δφ(3)δφ(4)

∣∣∣∣
�

∣∣∣∣
∫

d (45) H (1, 4)
δH−1(4, 5)

δφ(3)
G(5, 2)

∣∣∣∣. (10)

Then one can approximate Eq. (8) by

δG(1, 2)

δφ(3)
= −

∫
d (45) H (1, 4)

δH−1(4, 5)

δφ(3)
G(5, 2). (11)

The validity of inequality Eq. (10) will be indirectly checked
by whether the Green’s function obtained within the approx-
imation is in good agreement with the numerically exact
results.

Equations (5) and (11) form a closed set and will yield the
HGW equations (for derivation, see Appendix B1):

G−1(1, 2) = H−1(1, 2) − �(1, 2), (12a)

�(1, 2) = −H (1, 2)W (2, 1), (12b)

W −1(1, 2) = V −1(1, 2) − (1, 2), (12c)

(1, 2) = H (1, 2)G(2, 1). (12d)

TABLE I. Comparison between the HGW and GW equations.

HGW GW

Equation for G G−1 = H−1 − �

Equation for � � = −HW � = −GW
Equation for W W −1 = V −1 − 

Equation for   = HG  = GG
Approximation δ2G/δφ2 = 0 � = 1̂

Apparently, these equations resemble those of the GW ap-
proximation (see Ref. [21] or Appendix F). The equations
Eq. (12a) for Green’s function G and Eq. (12c) for screened
dynamical potential W are the same, whereas the equations
Eq. (12b) for self-energy function � and Eq. (12d) for po-
larization function  are different. The HGW approximation
is named due to its the similarity to the GW approximation
and Hartree approximation. Some of the propagators G in
GW equations are replaced by the Hartree propagator H in
the HGW equations.

Essentially, the HGW equations and GW equations are
based on different approximation schemes. The HGW equa-
tions are derived by the truncation of high-order connected
correlators, whereas the GW equations are based on simpli-
fication of Hedin’s vertex. The comparison of these two sets
of equations is summarized in Table I. These formulas will
be used to calculate the one-body Green’s functions and the
particle density in Sec. IV. Now we turn to more complicated
many-body correlators.

III. COVARIANT HGW APPROXIMATION
FOR THE TWO-BODY CORRELATOR

In this section, the covariant scheme is employed for
two-body correlators within the HGW approximation. The
covariant HGW equations for the density-density correlators
are also derived by functional derivatives of the HGW equa-
tions.

A. Ward identities and covariance

In a many-body system, the charge conservation leads to
a set of the Ward identities (see Appendix A2). In an ap-
proximation (such as GW or FLEX), the Ward identity for
the one-body Green’s function is obeyed, whereas the Ward
identity for the two-body correlator (directly obtained from
equations after the approximation) is often violated. The rela-
tion between the charge correlator and charge susceptibility,
∂n/∂μ = χ ch(q = 0, ω = 0), is also often violated. To pre-
serve the consistency in the HGW approximation, one can
define the two-body (connected) correlator as the functional
derivative of Green’s function G with respect to the external
source φ:

Lcov(1, 2; 3) = δG(1, 2)

δφ(3)

∣∣∣∣
φ=0

. (13)

Here G is obtained from the of-shell (nonzero φ) equations.
The superscript cov in Lcov denotes covariant.
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As G obeys the Ward identity for all φ’s, the derivative of
the Ward identity is also satisfied:∫

d (2)

(
T (1, 2)

δG(2, 1)

δφ(3)
− T (2, 1)

δG(1, 2)

δφ(3)

)
= 0. (14)

Letting φ = 0 in Eq. (14), one obtains∫
d (2) (T (1, 2)Lcov(2, 1; 3) − T (2, 1)Lcov(1, 2; 3)) = 0.

(15)

Thus one arrives at the conclusion that Lcov defined by
Eq. (13) satisfies the Ward identity for the two-body cor-
relator. In other words, the covariant scheme automatically
preserves all the charge-conserving laws.

B. Covariant HGW equations for the density-density correlator

The covariant version of the density-density correlator is
defined as

χ cov(1, 2) = δρ(1)

δφ(2)

∣∣∣∣
φ=0

, (16)

with ρ the density obtained from of-shell HGW Eqs. (12).
To compute χ cov, one differentiates the HGW equations with
respect to φ. After calculation, given in Appendix B2, one
obtains

χ cov(1, 2) = χ0(1, 2) −
∫

d (34) χ0(1, 3)V (3, 4)χ cov(4, 2),

(17)

where the covariant version of polarization function χ0 satis-
fies the equation

χ0(1, 2) = −
∫

d (34) G(1, 3)G(4, 1)�(3, 4; 2). (18)

The covariant version of vertex function � satisfies a set of
linear Eqs. (B18) and (B19) given in Appendix B2.

The calculation procedure for χ cov in the covariant HGW
approximation therefore can be summarized as follows. First,
one solves the on-shell (φ = 0) HGW Eqs. (12) to obtain
H, G,W . Second, one solves Eqs. (B18) and (B19) to obtain
�. Third, one uses Eq. (18) to calculate χ0. Finally, one
solves Eq. (17) to obtain χ cov. These equations, Eqs. (B18),
(B19), (18), and (17), are referred to as the covariant HGW
equations.

Let us contrast this with a frequently used RPA formula
for χ ,

χRPA(1, 2) = χ (1, 2) −
∫

d (34)χ (1, 3)V (3, 4)χRPA(4, 2),

(19)
where the Lindhard polarization function χ̄ is given by

χ (1, 2) = −G(1, 2)G(2, 1), (20)

with G(1, 2) approximated within a certain approach (such as
the GW ). Although the RPA scheme is much simpler than the
covariant scheme, it does not guarantee the Ward identities.
In addition, the charge susceptibility (charge susceptibility)
∂n/∂μ is not consistent with that obtained from the RPA

calculation [27]. In contrast, the covariant scheme preserves
all these identities.

IV. COMPARISON WITH OTHER APPROXIMATIONS
IN THE 2D HUBBARD MODEL

In this section, the HGW approximation is tested on a (nu-
merically) solvable model, the 2D one-band Hubbard model.
Exact diagonalization is possible on a relatively small cluster
N×N , N = 4, so we mainly focus on this system. In many
cases, we use determinantal MC in the range of parameters
in which it is consistent with the ED (practically, not too low
temperature and not too large U ).

The discretized time Matsubara action is employed for
numerical implementation to the 2D Hubbard model. Results
of the Green’s function (and the density) within the HGW
approximation and the charge correlator (and charge suscep-
tibility) based on the covariant scheme are presented. At any
stage, the HGW method is compared to two other relatively
simple analytic approaches, GW and FLEX (generally, all
three approximations are much better than the HF approxi-
mation not shown here).

A. Matsubara action for the 2D Hubbard model

The Hamiltonian of the 2D Hubbard model is

Ĥ =
∑

i j

∑
σ=↑,↓

ti jψ̂
†
i,σ ψ̂ j,σ + U

∑
i

ψ̂
†
i↑ψ̂i↑ψ̂

†
i↓ψ̂i↓

− μ
∑
i,σ

ψ̂
†
i,σ ψ̂i,σ . (21)

Here ψ̂
†
iσ , ψ̂iσ are the creation and annihilation operators of

electrons with spin σ =↑,↓ on lattice site i. The labels i, j
denote the coordinates on the N×N 2D square lattice with
periodic boundary conditions (and lattice constant setting the
unit of length). The hopping strength ti j equals −t , if sites
i, j are nearest neighbors and 0 otherwise. We set t = 1 to the
unit of energy. Coupling U is the on-site repulsion and μ is
the chemical potential.

The discretized time Matsubara action [31] for Hamilto-
nian Eq. (21) has the form

SM[ψ,ψ∗] =
M−1∑
l=0

∑
σ=↑,↓

∑
i

ψ∗
iσ (τl )[ψiσ (τl+1) − ψiσ (τl )]

+ �τ

M−1∑
l=0

H[ψ∗
iσ (τl ), ψiσ (τl )]. (22)

Here M is the number of Matsubara time slices, so �τ ≡ β/M
is the time step. The discrete label l takes integral value in
[0, M − 1] and τl ≡ l�τ . The functional H is obtained by
substituting ψ∗

iσ (τl ), ψiσ (τl ) for ψ̂
†
iσ , ψ̂iσ in Hamiltonian Ĥ,

respectively.
Comparing the Matsubara action Eq. (22) with general

action Eq. (1), one obtains the expression for the hopping

125137-4



MODIFIED GW METHOD IN ELECTRONIC SYSTEMS PHYSICAL REVIEW B 104, 125137 (2021)

FIG. 1. The doping δμ dependence of the particle density at (a) U = 2, T = 0.125 and (b) U = 4, T = 0.125 for the 4×4 Hubbard cluster.
The red dots denote the results obtained from MC. The darker green line denotes the results obtained from HGW equations. The darker orange
line denotes the results obtained from GW equations. The royal blue line denotes the results obtained from FLEX approximation.

matrix T ,

T (1, 2) = �τδσ1σ2

(
− 1

�τ
δi1i2

(
δl1,l2−1 − δl1,l2

) − ti1i2δl1l2 + μδi1i2δl1l2

)
, (23)

and the expression for the two-body interaction potential V ,

V (1, 2) = �τUδσ1σ2δl1l2δi1i2 , (24)

where Eq. (1) denotes (σ1, i1, τl1 ), which is a collection of the
spin, the lattice coordinate, and the Matsubara time indexes.
Here the symbol σ means the flip of the spin σ . The corre-
lators in discretized time Matsubara action are discussed in
Appendix D.

For a given set of parameters U, μ, T ≡ 1/β (and N, M),
one solves the HGW Eqs. (12) to obtain the Green’s func-
tions. The HGW equations in frequency-momentum space
are given in Appendix C2, the covariant HGW equations in
frequency-momentum space are given in Appendix C3, and
the numerical algorithm and cost are described in Appendix E.
We start with the thermodynamics and then proceed to the
Matsubara Green’s function and the charge correlator.

B. Doping dependence of the particle density

To study the doping dependence of the particle density,
we chose T = 0.125 for 4×4 cluster and two values of
the on-site repulsion U = 2, representing the weak coupling
strength, see Fig. 1(a) and U = 4, representing the inter-
mediate coupling strength, see Fig. 1(b). The results are
compared with those obtained from GW , FLEX, and deter-
minantal MC (the ED approach produces numerically the
same results). In Fig. 1(a), the three curves are all close to
the MC result (dots), which means HGW , GW , and FLEX
all produce satisfactory results of the density at weak cou-
pling regime. In Fig. 1(b), the HGW curve is much closer
to MC result than GW and FLEX when the particle density
is larger than 0.6, which shows HGW is much better than
GW and FLEX in the strong antiferromagnetic fluctuation
regime. In addition, MC dots show a plateau resembling
the Mott-Hubbard gap (due to the strong antiferromagnetic
fluctuation) phase near half filling. The HGW curve exhibits

this property, whereas GW and FLEX fail. In this degree,
the HGW approximation has the advantage of capturing the
Mott-Hubbard gap over the GW and FLEX approximations.

C. Matsubara Green’s function

1. Matsubara Green’s function at the Matsubara time axis

We compare results of Green’s function at the Matsubara
time axis at the antinodal momentum k = (π, 0) and the nodal
point k = (π/2, π/2) (see Fig. 2) for different doping and the
coupling strength with T = 0.125 for the 4×4 cluster. At U =
2 and half filling [see Figs. 2(a) and 2(e)], the GW and FLEX
curves are close to the MC data (dots), whereas the HGW
curve is relatively further. At U = 2 and away from half filling
[see Figs. 2(b) and 2(f)], the three curves are close to each
other, but all relatively further away from the MC result. These
results demonstrate that HGW might not be advantageous in
the weak coupling regime (particularly at half filling).

At a stronger coupling U = 4, at half filling [see Figs. 2(c)
and 2(g)], the HGW curve is much closer to the MC than
the GW and the FLEX curves. As away from half filling [see
Figs. 2(d) and 2(h)], the HGW curve is also much closer to
the MC data than the GW and FLEX curves. These results
demonstrate that the HGW approximation has a considerable
advantage over GW and FLEX in the strong coupling regime,
especially away from half filling.

At half filling, the determinantal MC is applicable to an
8×8 lattice. We compare the HGW method in these cases
(see Fig. 3). These results also demonstrate that at U = 2, the
HGW method is worse than the GW and FLEX methods, but
is better at U = 4.

These results can be understood as follows. The HGW
approximation is obtained by truncating the three-body con-
nected correlators, which have a good clustering property at
a stronger coupling U . At U = 2, the three-body connected
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FIG. 2. Comparison of results of Green’s function at Matsubara time axis for 4×4 cluster at T = 0.125 for different parameters:
(a) U = 2, n = 1, k = (π, 0), (b) U = 2, n = 0.833, k = (π, 0), (c) U = 4, n = 1, k = (π, 0), (d) U = 4, n = 0.826, k = (π, 0), (e) U = 2,

n = 1, k = (π/2, π/2), (f) U = 2, n = 0.833, k = (π/2, π/2), (g) U = 4, n = 1, k = (π/2, π/2), (h) U = 4, n = 0.826, k = (π/2, π/2).
The red dots denote the results obtained from MC. The darker green line denotes the results obtained from the HGW equations. The darker
orange line denotes the results obtained from the GW equations. Royal blue line denotes the results obtained from the FLEX approximation.

correlators might be very nonlocal and the inequality Eq. (10)
does not hold and, as a result, the HGW method doesn’t per-
form so well. In contrast, at U = 4, the connected correlators
become local and the HGW method exhibits its advantage.

2. Spectral function at half filling

Using the discrete Fourier transformation, one obtains the
values of the Green’s function at small Matsubara frequencies
from those at Matsubara time axis. The comparison of the

FIG. 3. Comparison of results of Green’s function at Matsubara time axis for 8×8 cluster for different parameters: (a) U = 2,

T = 0.125, n = 1, k = (π, 0), (b) U = 2, T = 0.125, n = 1, k = (π/2, π/2), (c) U = 4, T = 0.125, n = 1, k = (π, 0), (d) U = 4,

T = 0.125, n = 1, k = (π/2, π/2). The red dots denote the results obtained from determinantal MC. The darker green line denotes the results
obtained from HGW equations. The darker orange line denotes the results obtained from GW equations. The royal blue line denotes the results
obtained from FLEX approximation.
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FIG. 4. Comparison of the results of the imaginary part of
the Green’s function at the Matsubara frequency axis for an 8×8
cluster for different parameters: (a) U = 2, T = 0.125, n = 1, k =
(π, 0), (b) U = 2, T = 0.125, n = 1, k = (π/2, π/2), (c) U =
4, T = 0.125, n = 1, k = (π, 0), (d) U = 4, T = 0.125, n = 1, k =
(π/2, π/2). The red dots denote the results obtained from determi-
nantal MC. The darker green line denotes the results obtained from
HGW equations. The darker orange line denotes the results obtained
from GW equations.

imaginary part of the value of the Green’s function at the
Matsubara frequency axis at half filling for an 8×8 cluster
is shown in Fig. 4. These results demonstrate again that the
HGW method is worse than the traditional GW method in
the weak coupling regime. At a stronger coupling, U = 4, the
shape of the HGW curve implies a Mott-Hubbard gap, just like
the MC curve. On the contrary, the GW method fails.

With the values of the Green’s function at some Matsub-
ara frequencies, one can obtain the spectral function by the
analytical continuation. We adopt the Nevanlinna analytical
continuation [32], which is applicable to noiseless Matsubara
data. The results of the spectral function at U = 4, T = 0.125
at half filling for the 8×8 cluster are shown in Fig. 5. The spec-
tral function obtained from the HGW method does exhibit
a Mott-Hubbard gap. The spectral function for the 2D half-

filling Hubbard model has been studied by various methods,
for example, the MC simulation [33], the ladder dual fermion
approximation [34], the cellular dynamical mean-field theory
[35], and the cluster perturbation theory [36]. We found that
our results are similar to those obtained by the cluster pertur-
bation theory (Fig. 9(c) presented in Ref. [34]).

D. Charge density correlator and charge susceptibility
at half filling

We compare the charge correlator in Matsubara time at the
quasimomentum (π, π ) obtained from the covariant HGW
approximation (cHGW ) with those based on the RPA formula
(19), (20), where the Green’s functions G obtained from the
HGW , GW , FLEX approximations are used.

We study the 4×4 cluster and set M = 1024. Two sets of
parameters are chosen: U = 2, T = 0.125 in Figs. 6(a) and
6(b), and U = 4, T = 0.125 in Figs. 6(c) and 6(d). Since
the results turn out to be too close to differentiate, only the
FLEX and MC curves for the charge correlator are plotted in
Figs. 6(a) and 6(c), and the differences between the results
obtained from the above approximations and those obtained
from MC are plotted in Figs. 6(b) and 6(d).

In Fig. 6(b), with parameter U = 2, T = 0.125, the largest
differences given by HGW , GW , and FLEX (within the RPA
formula) are all about 0.12 (near τ = 0 and τ = β), while that
given by cHGW is about 0.01. In Fig. 6(d), with parameter
U = 4, T = 0.125, the largest differences (near τ = 0 and
τ = β) given by HGW , GW , and FLEX are all about 0.15,
while that given by cHGW is less than 0.01. These results
demonstrate that the covariant scheme makes a significant
improvement over the RPA calculations.

We study the dependence of the static charge susceptibility
χ ch(i� = 0, k) on the coupling strength U at T = 0.125, and
these results are presented in Figs. 7(a) and 7(b). The curves
obtained from the cHGW method and the RPA calculations
with the Green’s function obtained from the HGW , GW , and
FLEX approximations have a similar tendency to the MC
curve. The cHGW curve is much closer to the MC curve,
which demonstrates again that the covariant scheme makes a
significant improvement over the RPA calculations.

FIG. 5. Comparison of the results of the spectral functions for 8×8 cluster at U = 4, T = 0.125 and half filling at different momenta:
(a) k = (π, 0), (b) k = (π/2, π/2). The darker green line denotes for the results of the spectral function obtained from the HGW method, the
darker orange line denotes those obtained from the GW method, and the royal blue line denotes those obtained from the FLEX theory.
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FIG. 6. Comparison of results of charge correlator in Matsubara time at k = (π, π ) the 4×4 Hubbard cluster. For U = 2, T = 0.125, n = 1,
(a) shows the results of charge correlator obtained from FLEX and MC and (b) shows the differences between results of charge correlator
obtained from different approximations and those obtained from MC. For U = 4, T = 0.125, n = 1, (c) shows the results of charge correlator
and (d) shows the differences. The red line denotes MC. The darker green solid line denotes cHGW and the darker green dashed line denotes
HGW . The darker orange dashed line denotes GW . The royal blue dashed line denotes FLEX.

We also compare the values of ∂n/∂μ (by variation of the
density with the chemical potential, i.e., �n/�μ) at different
couplings and the results are presented in Fig. 7(c). The HGW
curve is much closer to the MC curve than the GW and FLEX
curves. The tendency of ∂n/∂μ to 0 as U increases showed by
the MC results demonstrates the Mott-Hubbard gap at strong
coupling.

In a self-consistent theory, the static charge susceptibil-
ity χ c ≡ χ ch(i� = 0, k = 0) is equal to the quantity ∂n/∂μ

from an independent calculation. To study this consistency,
we compare the quantity ∂n/∂μ − χc, and the results are
presented in Fig. 7(d). The results demonstrate that the MC
and the covariant calculations hold the consistency, whereas
the RPA calculations have significant deviations.

V. CONCLUSION AND DISCUSSION

To summarize, the HGW approximation, a modified GW
approximation, is developed. It is derived by introduction of
an external source φ coupled to the density ρ and trunca-
tion of high-order correlators on equations of motion. The
complexity of the HGW equations turn out to be very simi-
lar to GW equations. The HGW approximation is compared
with other approximations of comparable complexity GW ,
FLEX in the Hubbard model. The results of the density and

Green’s function demonstrate that the HGW approximation
has a significant advantage over GW and FLEX in a rela-
tive strong coupling regime especially away from half filling.
More importantly, the HGW approximation exhibits a gap as
U increases, whereas the GW and FLEX methods fail.

To obtain the charge-conserving two-body correlators in
the HGW approximation, the covariant scheme is devel-
oped. In this scheme, the two-body correlators are calculated
through functional derivatives of Green’s function G with
respect to the source φ. The covariant scheme for the charge
correlator is compared with the RPA scheme and determinan-
tal MC in the Hubbard model. The comparison demonstrates
that the covariant scheme makes a significant improvement
over the RPA scheme. The comparison of charge suscepti-
bility demonstrates that the covariant scheme for the charge
correlator is consistent with the charge susceptibility, whereas
the RPA calculation has a significant deviation.

The HGW method (to calculate the one-body Green’s
function) has a small complexity (for details, see Appendix E),
and thus can be applied to large systems. The formalism
presented in this paper is easily extended to more general
cases, such as multiorbital lattice models, as long as the band
index is put in the generalized coordinate. The similarity
to the traditional GW method helps the application of the
HGW method to study the electronic properties of realistic
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FIG. 7. Comparison of the results of the static charge susceptibility dependence of U at T = 0.125 for the 4×4 Hubbard cluster. (a) shows
the results of the static charge susceptibility obtained from the MC, cHGW , HGW , GW , FLEX methods, at k = (0, 0), (b) at k = (π, π ).
(c) shows the values of ∂n/∂μ obtained from the independent calculations through MC, HGW , GW , and FLEX methods. (d) shows the
deviation of the RPA calculations. In (a), (b), and (d), the red line denotes MC, the darker green solid line denotes cHGW , the darker
green dashed line denotes HGW , the darker orange dashed line denotes GW , and the royal blue dashed line denotes FLEX. In (c), the
red line denotes MC, the darker green solid line denotes HGW , the darker orange solid line denotes GW , and the royal blue solid line
denotes FLEX.

correlated materials. The substantial improvement over the
GW method in the relatively strong coupling regime might
imply that the HGW method is a good alternative in certain
cases. However, the numerical cost of the calculation of the
charge-conserving charge correlators is too large for realistic
systems.

To fully study the Hubbard model, the spin channel is
important, whereas it is neglected in our current formalism
(the traditional GW method also neglects the spin channel).
The variants of the GW method including spin channel were
proposed, for example, in Refs. [37–39]. A variant of the
HGW approximation could also be proposed by including
spin channel to better account the spin fluctuation at the
strong fluctuation regime in the 2D Hubbard model in future
research.

The self-consistency is important to nonperturbative an-
alytical methods, and numerous ideas are put forward to
ensure several identities. For example, in the two-particle self-
consistent theory [40–42], several constants are determined by
the sum rules and identities. In contrast, the idea of the covari-
ance is natural and universal in a sense that the correlators and
the sum rules are treated in the same footing.
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APPENDIX A: DYSON-SCHWINGER EQUATIONS
AND WARD IDENTITIES

1. Dyson-Schwinger equations of motion

The invariance of the functional integral measure
D[ψ,ψ∗] under the infinitesimal variation of field ψ,ψ∗
yields the equality [43]

∫
D[ψ,ψ∗]

δ

δψ∗(2)

(
ψ∗(1)e−S[ψ,ψ∗;φ]

) = 0. (A1)
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Substituting the perturbed action Eq. (2) into the equality, one
obtains the Dyson-Schwinger equation of motion:

δ(1, 2) =
∫

d (3) T (1, 3)G(3, 2) + φ(1)G(1, 2)

−
∫

d (3) V (1, 3)G2(1, 2; 3, 3). (A2)

Here the two-body correlator is defined by

G2(1, 2; 3, 4) ≡ 〈ψ∗(2)ψ (1)ψ∗(4)ψ (3)〉

= 1

Z[φ]

∫
D[ψ,ψ∗] ψ∗(2)ψ (1)ψ∗(4)ψ (3)

× e−S[ψ,ψ∗;φ]. (A3)

Through the definition Eq. (4), one obtains the derivative
of G with respect to φ,

L(1, 2; 3) ≡ δG(1, 2)

δφ(3)
= G2(1, 2; 3, 3) − G(1, 2)ρ(3), (A4)

where ρ(1) ≡ 〈ρ(1)〉 = G(1, 1). By virtue of Eq. (A4), one
can express G2 in terms of G and δG/δφ, and thus can obtain
Eq. (5) from Eq. (A2).

2. Ward identities for correlators

The invariance of the functional integral measure
D[ψ,ψ∗] under the infinitesimal phase rotation of the com-
plex field ψ yields an equality [43]
∫

D[ψ,ψ∗]

(
ψ∗(1)

δ

δψ∗(1)
− ψ (1)

δ

δψ (1)

)
e−S[ψ,ψ∗;φ] = 0.

(A5)
Substituting the perturbed action Eq. (2), one obtains the Ward
identity for Green’s function G:∫

d (2) T (1, 2)G(2, 1) − T (2, 1)G(1, 2) = 0. (A6)

The derivative of Eq. (A6) with respect to φ yields∫
d (2) T (1, 2)L(2, 1; 3) − T (2, 1)L(1, 2; 3) = 0. (A7)

Equation (A7) is the Ward identity for the two-body
correlator L.

APPENDIX B: DETAILS OF DERIVING HGW EQUATIONS
AND COVARIANT HGW EQUATIONS

1. Derivation of HGW equations

The HGW equations are derived from Eqs. (5) and (11).
First, one makes a derivative of Eqs. (6) and (7) with respect
to φ, and obtains

δH−1(1, 2)

δφ(3)
= δ(1, 2)

δv(1)

δφ(3)
(B1)

and

δv(1)

δφ(2)
= δ(1, 2) −

∫
d (3) V (1, 3)

δρ(3)

δφ(2)
. (B2)

Substituting Eq. (B1) into Eq. (11) leads to

δG(1, 2)

δφ(3)
= −

∫
d (4) H (1, 4)G(4, 2)

δv(4)

δφ(3)
. (B3)

Plugging Eq. (B3) into Eq. (B2), one obtains

δv(1)

δφ(2)
= δ(1, 2) +

∫
d (34) V (1, 3)(3, 4)

δv(4)

δφ(2)
, (B4)

with

(1, 2) ≡ H (1, 2)G(2, 1). (B5)

Then substituting Eq. (B3) into Eq. (5), one obtains

δ(1, 2) =
∫

d (3) H−1(1, 3)G(3, 2)

+
∫

d (34) V (1, 3)H (1, 4)G(4, 2)
δv(4)

δφ(3)
. (B6)

The equation above can be rewritten as

G−1(1, 2) = H−1(1, 2) − �(1, 2), (B7)

with the self-energy function � given by

�(1, 2) ≡ −H (1, 2)W (2, 1), (B8)

and the screened dynamical potential W defined by

W (1, 2) ≡
∫

d (3)
δv(1)

δφ(3)
V (2, 3). (B9)

Combining Eqs. (B4) and (B9), one arrives at the following
equation:

W (1, 2) = V (1, 2) +
∫

d (34) V (1, 3)(3, 4)W (4, 2),

(B10)
which can be rewritten as

W −1(1, 2) = V −1(1, 2) − (1, 2). (B11)

Now four important equations [Eqs. (B5), (B7), (B8), and
(B11)] are derived and they are called the HGW equations.

2. Derivation of covariant HGW equations

Here, details of derivation of covariant HGW equations
are given. For convenience, one can introduce the covariant
versions of two vertex functions:

�(1, 2; 3) ≡ δG−1(1, 2)

δv(3)

∣∣∣∣
φ=0

(B12)

and

�(1, 2; 3) ≡ δW −1(1, 2)

δv(3)

∣∣∣∣
φ=0

. (B13)

The derivatives of HGW equations with respect to v can be
easily obtained:

�(1, 2; 3) = δH−1(1, 2)

δv(3)
+ δH (1, 2)

δv(3)
W (2, 1)

+ H (1, 2)
δW (2, 1)

δv(3)
, (B14)

�(1, 2; 3) = −δH (1, 2)

δv(3)
G(2, 1) − H (1, 2)

δG(2, 1)

δv(3)
. (B15)
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There is a general relation for an array X ,

δX (1, 2)

δv(3)
= −

∫
d (45) X (1, 4)X (5, 2)

δX −1(4, 5)

δv(3)
, (B16)

and for X = H ,

δH−1(1, 2)

δv(3)
= δ(1, 2)δ(1, 3). (B17)

Then one can obtain the equation for �,

�(1, 2; 3) = δ(1, 2)δ(1, 3) − H (1, 3)H (3, 2)W (2, 1)

−
∫

d (45) H (1, 2)W (2, 5)W (4, 1)�(5, 4; 3),

(B18)

and the equation for �:

�(1, 2; 3) = H (1, 3)H (3, 2)G(2, 1)

+
∫

d (45) H (1, 2)G(2, 5)G(4, 1)�(5, 4; 3).

(B19)

From Eqs. (B18) and (B19), one can obtain � and �, giving
H, G,W obtained from on-shell (φ = 0) HGW equations.

One can introduce χ0 as

χ0(1, 2) ≡ δρ(1)

δv(2)

∣∣∣∣
φ=0

, (B20)

and then obtain Eq. (18). With the definitions Eqs. (16) and
(B20), one obtains

χ cov(1, 2) =
∫

d (3) χ0(1, 3)
δv(3)

δφ(2)
. (B21)

By virtue of Eq. (B2), Eq. (B21) leads to Eq. (17).

APPENDIX C: HGW AND COVARIANT HGW EQUATIONS
FOR THE HUBBARD MODEL

1. Generalized Fourier transformation for the Hubbard model

The generalized Fourier transformation for the Hubbard
model is introduced here. For a short formulation, two useful
notations,

EF(α, 1 − 2) ≡ eiπηα ·(σ1−σ2 )ei kα ·(i1−i2 )eiπ (2mα+1)·(τ1−τ2 ), (C1)

EB(α, 1 − 2) ≡ eiπηα ·(σ1−σ2 )ei kα ·(i1−i2 )eiπ2mα ·(τ1−τ2 ), (C2)

are introduced, where label α refers to ηα, kα, mα . For a
fermionic array XF which is antiperiodic over Matsubara time,
one can expand it as Fourier series:

XF(1, 2) = 1

N
∑

α

X̃F(α)EF(α, 1 − 2). (C3)

Here N = 2MN2, M is the number of time slices and N2 is
the number of lattice sites. σ is quantified as 1 for spin down
and 0 for spin up and, correspondingly, η takes value of 0 or 1.
i is the coordinate of lattice site and k is the momentum in the
first Brillouin zone. τ ∈ [0, β] is the discrete Matsubara time
and m takes integral value from 0 to M − 1. The summation∑

α is over all possible values of α ≡ (ηα, kα, mα ). Similarly,

one can expand a bosonic array XB, which is periodic over
Matsubara time, as a Fourier series:

XB(1, 2) = 1

N
∑

α

X̃B(α)EB(α, 1 − 2). (C4)

The coefficient T in action Eq. (1) is antiperiodic over Mat-
subara time and thus is a fermionic array. Substitute Eq. (23)
into the ansatz Eq. (C3), and one obtains

T̃ (α) = �τ

(
− 1

�τ
(e−iπ (2m+1)/M − 1) − ε(kα ) + μ

)
, (C5)

with

ε(k) = −2t (cos (kx ) + cos (ky)) (C6)

for the 2D Hubbard model, with k ≡ (kx, ky ). The coefficient
V is periodic over Matsubara time and thus is a bosonic array.
Substituting Eq. (24) into the ansatz Eq. (C4), one obtains

Ṽ (α) = �τU (−1)ηα . (C7)

From definitions Eqs. (C1) and (C2), one can derive the
following relations:

EF(α, 1 − 2)EF(α, 2 − 3) = EF(α, 1 − 3),

EB(α, 1 − 2)EB(α, 2 − 3) = EB(α, 1 − 3),

EF(α, 1 − 2)EB(β, 1 − 2) = EF(α + β, 1 − 2),

EB(α, 1 − 2)EB(β, 1 − 2) = EB(α + β, 1 − 2),

EF(α, 1 − 2)EF(β, 2 − 1) = EB(α − β, 1 − 2),

EB(α, 1 − 2) = EB(−α, 2 − 1). (C8)

These equations are helpful in the derivation of HGW equa-
tions in Fourier space.

2. HGW equations for the Hubbard model

In HGW equations, one encounters several quantities: the
fermionic arrays H, G, � and the bosonic arrays W,. Sub-
stitute the ansatz Eqs. (C3) and (C4) into the HGW equations,
and one obtains the HGW equations in Fourier space for the
Hubbard model:

G̃−1(α) = H̃−1(α) − �̃(α),

�̃(α) = − 1

N
∑

γ

H̃ (α + γ )W̃ (γ ),

W̃ −1(α) = Ṽ −1(α) − ̃(α),

̃(α) = 1

N
∑

γ

H̃ (α + γ )G̃(γ ), (C9)

with

H̃−1(α) = T̃ (α) − 2U

N
∑

γ

G̃(γ ). (C10)
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3. Covariant HGW equations for the Hubbard model

Similarly, one can obtain the covariant HGW equations
in Fourier space for the Hubbard model. One can make the
ansatz for the vertex functions:

�(1, 2, 3) = 1

N 2

∑
α,γ

�̃(α, γ )EF(α, 1 − 2)EB(γ , 1 − 3),

(C11)

�(1, 2, 3) = 1

N 2

∑
α,γ

�̃(α, γ )EB(α, 1 − 2)EB(γ , 1 − 3).

(C12)

And one can obtain from Eqs. (B18) and (B19),

�̃(α, β ) = 1 − 1

N
∑

γ

H̃ (α + β + γ )H̃ (α + γ )W̃ (γ )

− 1

N
∑

γ

H̃ (α + β + γ )W̃ (β + γ )W̃ (γ )�̃(γ , β )

(C13)

and

�̃(α, β ) = 1

N
∑

γ

H̃ (α + β + γ )H̃ (α + γ )G̃(γ )

+ 1

N
∑

γ

H̃ (α + β + γ )G̃(β + γ )G̃(γ )�̃(γ , β ).

(C14)

Combine Eqs. (C13) and (C14), and one obtains∑
γ

M(α, γ , β )�̃(γ , β ) = b(α, β ), (C15)

with

M(α, γ , β ) = δ(α, γ ) + 1

N G̃(β + γ )G̃(γ )

× 1

N
∑

λ

H̃ (α + β + λ)W̃ (β + λ)W̃ (λ)

× H̃ (β + γ + λ) (C16)

and

b(α, β ) =1 − 1

N
∑

γ

H̃ (α + β + γ )H̃ (α + γ )W̃ (γ )

− 1

N
∑

γ

H̃ (α + β + γ )W̃ (β + γ )W̃ (γ )

× 1

N
∑

λ

H̃ (β + γ + λ)H̃ (γ + λ)G̃(λ).

(C17)

Once Eq. (C15) is solved, �̃ will be obtained.
Next, one can make ansatz

χ0(1, 2) = 1

N
∑

α

χ̃0(α)EB(α, 1 − 2), (C18)

χ cov(1, 2) = 1

N
∑

α

χ̃ cov(α)EB(α, 1 − 2). (C19)

Then Eq. (18) yields

χ̃0(α) = −
∑

γ

G̃(α + γ )G̃(γ )�̃(γ , α) (C20)

and Eq. (17) yields

χ̃ cov(α) = χ̃0(α)

1 + Ṽ (α)χ̃0(α)
. (C21)

Up to now, the covariant HGW Eqs. (C15), (C20), and
(C21) are obtained in Fourier space for the Hubbard model.

APPENDIX D: CORRELATORS IN MATSUBARA ACTION

The Matsubara action given in Eq. (22) is dependent on
the number of time slices M and tends to the continuous time
limit,

S[ψ,ψ∗] =
∑
i,σ

∫ β

0
dτ ψ∗

i,σ (τ )∂τψi,σ (τ )

+
∫ β

0
dτ H[ψ∗

iσ (τ ), ψiσ (τ )], (D1)

with a convergence speed 1/M. For a short formulation, the
spin and space coordinates are dropped below. One can define
the M-dependent Green’s function as

GM (τl1 , τl2 ) ≡ 1

ZM

∫
D[ψ,ψ∗] ψ∗(τl2 )ψ (τl1 )e−SM [ψ,ψ∗],

(D2)
with the partition function

ZM ≡
∫

D[ψ,ψ∗] e−SM [ψ,ψ∗]. (D3)

Since, as M tends to infinity, SM[ψ,ψ∗] tends to S[ψ,ψ∗]
with a convergence speed 1

M , then GM (τl1 , τl2 ) tends to
G(l1β/M, (l2 + 1)β/M ) with the same convergence speed.
For this reason, one can approximate that in the continuous
time limit,

G

(
l1
M

β,
l2 + 1

M
β

)
= 2G2M (τ2l1 , τ2l2+1) − GM (τl1 , τl2 ).

(D4)
Define the M-dependent particle density as

ρM (τl ) ≡ GM (τl , τl ). (D5)

As M tends to infinity, it tends to the particle density in
the continuous time limit. Then one can conclude that the
M-dependent particle density ρM tends to the particle density
ρ with a convergence speed 1/M as M tends to infinity. There-
fore, one can approximate that

ρ(lβ/M ) = 2ρ2M (τ2l ) − ρM (τl ). (D6)

Equations (D4) and (D6) help to lower down the error of
O(1/M ) caused by finite M to O(1/M2).

APPENDIX E: ALGORITHM

1. Routine for the Green’s function

The HGW Eqs. (C9) are mathematically nonlinear equa-
tions of the Green’s function G̃. To solve the nonlinear
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equations, one can use the Broyden algorithm [44]. The Broy-
den algorithm is designed to solve the nonlinear equations
F [X ] = 0 with an initial value X = X0. This algorithm mainly
contains two inputs, the nonlinear function F , and the initial
value X0. In our cases, X stands for the Green’s function G̃,
and F stands for G̃′ − G̃, where G̃′ is given by

G̃′ = 1

H̃−1 + C
[
H̃ , 1

Ṽ −1−C[H̃ ,G̃]

] , (E1)

with the correlation functional

C[X̃ , Ỹ ](α) ≡ 1

N
∑

γ

X̃ (α + γ )Ỹ (γ ), (E2)

and X0 stands for the initial value given by

G̃0(α) = 1

T (α) − U
2 ρ0 − �0(α)

, (E3)

where the initial particle density ρ0 ∈ (0, 2) is given ran-
domly, and the initial self-energy �0 is also given randomly.
Note that the correlation Eq. (E2) can be fastened by discrete
Fourier transformation algorithm [44] and, as a result, the
complexity of one iteration Eq. (E1) is O(N log N ).

There might be multiple solutions to the nonlinear equa-
tions. In our calculations, only one solution is found in the
case that U/t is sufficiently small or βt is sufficiently small.
However, multiple solutions are found in the case of strong
coupling and low temperature. Our strategy is setting gradi-
ents to U or β and then solving the Green’s function with
different initial values for each parameter, and finally choos-
ing the solution continuous with U or β.

To eliminate the error of 1/M of the Green’s function in
Matsubara time, one can set different numbers of Matsubara
time slices and then make extrapolation. In our calculations,
M is set to 512, 1024, and 2048. To show M is sufficiently
large, one can verify (2ρ2048 − ρ1024) − (2ρ1024 − ρ512) is
close to zero. To obtain the density, one can use the approx-
imation ρ

.= 2ρ2048 − ρ1024. To obtain the Green’s function,
one uses

G

(
l1

1024
β,

l2 + 1

1024
β

)
= 2G2048(τ2l1 , τ2l2+1) − G1024(τl1 , τl2 ).

(E4)
Clearly, the Green’s function on only discrete Matsubara time
can be obtained. In addition, the particle density n per site
relates to ρ through the relation

n ≡ ni(τ ) = ρi↑(τ ) + ρi↓(τ ). (E5)

The numerical cost of the calculation of the Green’s func-
tion is analyzed as follows. For U = 2, T = 0.125 at half
filling and M = 1024, N = 16, the typical numerical cost is
about 2.3 s running on a 32-core CPU(2.6 GHz). The numer-
ical cost is almost proportional to MN2 and thus is applicable
to complicated systems.

The parameters U and T influence the number of iterations,
and then influence the numerical cost. We set M = 1024 and
N = 16. The numerical costs dependent on U at T = 0.125
are presented in Table II and the results demonstrate that
the numerical cost might be exponential in the Hubbard U .
The numerical costs dependent on T at U = 2 are presented
in Table III and the results demonstrate that the numerical

TABLE II. Dependence of the numerical cost on the Hubbard U .

U 2.0 2.5 3.0 3.5 4.0

Cost (seconds) 2.257 5.919 7.743 16.429 38.945

cost is almost linear in 1/T . In addition, for good precision,
one should increase M as U increases or T decreases. Ac-
cording to our experience, setting M = [16×U/T ] yields a
satisfactory precision [after the extrapolation Eq. (D4)]. With
these factors in consideration, the HGW method should be
applicable to the cases at sufficiently low temperature but not
very large U .

2. Routine for the density-density correlator

In the routine for the density-density correlator, there are
mainly three steps. First, calculate H̃ ,W̃ for given G̃ and
parameters. Second, construct M and b, and solve the linear
Eq. (C15) to obtain �̃. Third, calculate χ̃0 using Eq. (C20),
and calculate χ̃ cov using Eq. (C21). The second step has the
largest complexity, up to O(N4). The linear equations can be
solved iteratively in a much faster speed than the linear system
solver.

The charge correlator χ ch relates to χ through the relation

χ ch
i1,i2 (τ1, τ2) ≡ 〈ni1 (τ1)ni2 (τ2)〉 − 〈ni1 (τ1)〉〈ni2 (τ2)〉

=
∑
σ1,σ2

χi1σ1,i2σ2 (τ1, τ2). (E6)

Note that

χi1σ1,i2σ2 (τ1, τ2) = 〈ρi1σ1 (τ1)ρi2σ2 (τ2)〉 − 〈ρi1σ1 (τ1)〉〈ρi2σ2 (τ2)〉.
(E7)

The charge susceptibility χc ≡ ∂n/∂μ in discrete time
Matsubata action should satisfy

χc = �τ

M−1∑
l=0

∑
i

〈nni(τl )〉c = �τχ̃ ch(0, 0), (E8)

with the (discrete) Fourier transformation

χ ch
i1i2 (τ1, τ2) = 1

MN2

∑
k,m

χ̃ ch(k, m)eik·(i1−i2 )eiπ2m·(τ1−τ2 ). (E9)

The numerical cost of calculation of the two-body correlators
is analyzed as follows. For M = 1024, N = 4, the typical nu-
merical cost is about 3 h running on a 32-core CPU(2.6 GHz).
The numerical cost is almost proportional to the square of
MN2, and is almost independent of U and T . The numerical
cost is a bit large, and is not applicable to realistic materials
with the current algorithm.

TABLE III. Dependence of the numerical cost on the inverse
temperature.

1/T 8.0 16.0 24.0 32.0

Cost (seconds) 2.367 3.523 7.497 10.967
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APPENDIX F: GW EQUATIONS

The GW approximation is based on Hedin’s equations

G−1(1, 2) = H−1(1, 2) − �(1, 2),

�(1, 2) = −
∫

d (34) G(1, 4)W (3, 1)�(4, 2; 3),

W −1(1, 2) = V −1(1, 2) − (1, 2),

(1, 2) =
∫

d (34) G(1, 3)G(4, 1)�(3, 4; 2), (F1)

with Hedin’s vertex �(1, 2; 3) = δG−1(1, 2)/δv(3).

One can make the simplest approximation for Hedin’s
vertex �,

�(1, 2; 3)
.= δH−1(1, 2)/δv(3) = δ(1, 2)δ(1, 3),

to obtain the GW equations:

G−1(1, 2) = H−1(1, 2) − �(1, 2),

�(1, 2) = −G(1, 2)W (2, 1),

W −1(1, 2) = V −1(1, 2) − (1, 2),

(1, 2) = G(1, 2)G(2, 1). (F2)
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