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The continuous multiscale entanglement renormalization ansatz (cMERA) [J. Haegeman et al., Phys. Rev.
Lett. 110, 100402 (2013)] gives a variational wave functional for ground states of quantum field-theoretic
Hamiltonians. A cMERA is defined as the result of applying to a reference unentangled state a unitary evolution
generated by a quasilocal operator, the entangler. This makes the extension of the formalism to the case
where boundaries and defects are present nontrivial. Here we show how this generalization works, using the
(1 + 1)-dimensional free boson cMERA as a proof-of-principle example, and restricting ourselves to conformal
boundaries and defects. In our prescription, the presence of a boundary or defect induces a modification of the
entangler localized only to its vicinity, in analogy with the so-called principle of minimal updates for the lattice
tensor network MERA.
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The study and simulation of a quantum many-body system
is generically a very challenging numerical problem, due to
the exponential growth of the computational cost with the
number of degrees of freedom. In order to facilitate this
task, tensor network ansätze for quantum states have been
introduced. They make use of the particular entanglement
structure of ground states of local Hamiltonians to provide an
efficient way to represent and manipulate them (see [1–4] for
reviews and code examples). Among these, the multiscale en-
tanglement renormalization ansatz (MERA) has been proven
successful at capturing relevant properties of ground states of
critical Hamiltonians, such as the asymptotic scaling of their
correlators and entanglement entropy [5,6]. MERA has found
application in areas ranging from topological order [7] to error
correction [8,9], machine learning [10–14], or holography and
quantum gravity [15–36].

In the last decade, continuous tensor networks have arisen
as analogous constructions to lattice tensor networks in the
setting of quantum field theory (QFT) [37–41]. The contin-
uous MERA (cMERA) was introduced in [38] as an ansatz
wave functional for the ground states of QFT Hamiltonians.
cMERA states are defined by means of a unitary evolution
generated by a quasilocal operator, the entangler, and, as a
consequence, display a built-in UV cutoff length scale [42].
They have been proven capable of approximating the long-
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distance properties of noninteracting QFT ground states with
bosonic, fermionic, and gauge degrees of freedom [38,43]. In
the particular case of conformal field theory (CFT) ground
states, a full representation of the conformal group can be
defined on the cMERA approximation, allowing for the ex-
traction of conformal data [44]. cMERA has also found
applications in quantum gravity, as a toy model for the holo-
graphic principle and the AdS/CFT correspondence [45–50].

A QFT can be probed by placing it in a manifold with a
boundary, or by introducing a defect (domain wall) separating
two theories or two instances of the same theory. This intu-
itively requires a modification of the cMERA formalism, due
to the finite characteristic length of the entangler. In this paper,
we show explicitly how this modification works for the free
scalar cMERA. This problem has strong ties to the situation
on the lattice, where boundary critical phenomena were first
addressed with entanglement renormalization techniques in
[51]. Later, Evenbly and Vidal analyzed MERA representa-
tions of systems with boundaries and impurities (defects) [52].
They proposed and provided strong evidence for the minimal
update conjecture [53], which states that the insertion of a
boundary/defect only requires the modification of the tensors
of the MERA within a localized region around it, called its
causal cone (see Fig. 1, left). As a practical consequence,
the state resulting from adding a boundary or defect to a
translation-invariant state can be parametrized with a smaller
number of different tensors than a generic nontranslation-
invariant state. Defects in MERA have recently received
attention in the context of topological theories [54,55] and
holography [26,56].

In what follows, we build cMERA evolutions for nonin-
teracting scalar theories with boundaries and defects. These
support an equivalent minimal update prescription: That
cMERA approximations for systems with boundaries or
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FIG. 1. (left) The conjecture of minimal updates localizes the impact of a defect on the tensors of a MERA to its causal cone. (right) The
effect of a defect in cMERA is analogously localized to a “smeared causal cone” in its vicinity.

defects can be obtained from those without them by modifying
the entangler within a “smeared causal cone,” of width given
by the quasilocality length scale (see Fig. 1, right). We expect
this conjecture to hold indistinctly for free and interacting
systems, as is the case for lattice MERA.

This paper is structured as follows: We first provide a
review of cMERA (Sec. I) and the basics of boundaries and
defects in the free boson (Sec. II), in order to set up the nota-
tion for the following sections. Then, in Secs. III and IV, we
present our main result: We build cMERAs for the free boson
boundary and defect CFTs. We conclude with a discussion
(Sec. V). In Appendices A–C we elaborate on the background
material and technical aspects of our construction.

I. REVIEW OF cMERA

The cMERA contruction generates a one-parameter family
|��(s)〉 of ansatz wave functionals, which can be used to
approximate the ground state of a given QFT [38]. They are
defined by means of a unitary evolution applied to a reference
state |�〉:

|��(s)〉 ≡ P exp

(
−i

∫ s

0
du [L + K (u)]

)
|�〉. (1)

Here P exp stands for path-ordered integration and L + K (u)
is a Hermitian generator, which we explain below.

Fundamentally, cMERA states should be understood as the
result of an entangling evolution in scale, i.e., the sequential
introduction of entanglement in an initially unentangled state,
in such a way that correlations are introduced progressively
by length scale. To that end, we choose |�〉 to be such that for
local operators O,O′, their connected correlator vanishes at
different points, i.e.,

〈�|O(x)O′(y)|�〉 − 〈�|O(x)|�〉〈�|O′(y)|�〉 = 0, (2)

except possibly when x = y. This is equivalent to saying that
|�〉 is the continuum limit of a product state on the lattice: It
contains no entanglement.

On the other hand, the Hermitian generator L + K (u) is
the sum of two contributions. L is the generator of scale
transformations, which rescales space and the fields [see, e.g.,
Eqs. (10) and (11) below]. By itself, L cannot introduce en-
tanglement in |�〉. That is the task for the entangler K (u),
taken to be a quasilocal operator: Eqs. (9) and (12) show
an important example. K (u) entangles degrees of freedom

around a fixed length scale, conventionally denoted �−1 (so
that � is the associated momentum scale1). As the evolution
progresses, L keeps rescaling the correlations introduced by
K (u), so that |��(s)〉 is entangled at length scales within
(�−1,�−1es), while it remains practically uncorrelated at
distances below �−1. As a consequence, � plays the role of a
UV cutoff [42].

In the case where K (u) ≡ K is u independent [as in
Eq. (9)], there may exist an asymptotic fixed-point cMERA
state

|��〉 ≡ lim
s→∞ e−is(L+K )|�〉 = lim

s→∞ |��(s)〉. (3)

These are called scale-invariant cMERAs. With the exception
of Appendix C, we will focus entirely on such fixed-point
cMERA states, which we use to approximate the ground
states of conformally invariant target theories (CFTs, bound-
ary CFTs, and defect CFTs).

In this work, we will be making heavy use of the cMERA
for the free scalar theory originally defined in [38]. Consider
a bosonic field φ(x) defined on the real line, together with its
conjugate momentum π (x). The Klein-Gordon Hamiltonian

H = 1

2

∫
dx [(π (x))2 + (∂xφ(x))2], (4)

has a unique ground state |�〉 with two-point correlation func-
tions

Cφφ (x) ≡ 〈�|φ(0)φ(x)|�〉 = − 1

2π
log |x|, (5)

Cππ (x) ≡ 〈�|π (0)π (x)|�〉 = − 1

2π

1

x2
. (6)

Since |�〉 is the ground state of a quadratic Hamiltonian,
it belongs to the family of Gaussian states, and it is thus
characterized by its two-point functions.2

The cMERA approximation for |�〉 is now given by speci-
fying the three elements in its construction, namely, |�〉, L,

1Even though generally it need not be the case, in the free bosonic
cMERAs we work with here, the initial state does depend on the
entangling length scale �−1, which justifies the notation |�〉.

2The last two-point function 〈�|φ(0)π (x)|�〉 will equal i/2 δ(x)
for every Gaussian state in this work, and we will pay no further
attention to it.
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FIG. 2. The 〈π (x)π (y)〉 correlator with y = 10�−1 in the target ground state (blue) and its cMERA approximation (orange), for (left) the
theory on the full line, (center) the theory on the half-line with Dirichlet b.c. at the origin, (right) the theory with a defect θ = 3π

8 at the origin.
All cMERAs were built with the first entangling profile from Eq. (12). For each theory, its cMERA approximation reproduces the correlations
accurately at distances |x − y| � �−1. Delta function contributions are present at x = y for the cMERA correlators but not depicted in the
figure.

and K . These are chosen so that |�〉 is a Gaussian state,
defined as the common kernel of local annihilation operators(√

�

2
φ(x) + i

√
1

2�
π (x)

)
|�〉 = 0, ∀ x (7)

[note that this implies that |�〉 satisfies condition (2)], and L
and K are quadratic operators given by

L = 1

2

∫
dx π (x)

(
x ∂x + 1

2

)
φ(x) + H.c., (8)

K = 1

2

∫
dx dy g(x − y)φ(x)π (y) + H.c. (9)

This all implies that the cMERA evolution takes place on the
manifold of Gaussian states, which are easy to compute with.
We therefore call it a Gaussian cMERA. The action of L on
the field operators is as follows:

e−isLφ(x)eisL = e
1
2 sφ(esx), (10)

e−isLπ (x)eisL = e
1
2 sπ (esx), (11)

as befits a generator of scale transformations. On the other
hand, the entangler K is defined in terms of a function g(x)
which is taken to be quasilocal with characteristic length scale
�−1, and to satisfy the symmetries of the theory. In this
example, g(x) constitutes the sole variational parameter of the
ansatz. Two examples of such a function are

g(x) = 1

2
e− σ

4 (�x)2
, g(x) = �

4
e−�|x|, (12)

where σ ≡ eγ is the exponential of the Euler-Mascheroni
constant. The former was essentially the choice made in [38]
(the constant σ was introduced in [44]), while the latter corre-
sponds to the magic cMERA from [57] (see also Appendix C).
For an adequate choice of g such as these, the fixed-point state
|��〉 of this cMERA is a good long-distance approximation
of |�〉, in the sense that, for x � �−1,

C�
φφ (x) ≡ 〈��|φ(0)φ(x)|��〉 ≈ Cφφ (x), (13)

C�
ππ (x) ≡ 〈��|π (0)π (x)|��〉 ≈ Cππ (x), (14)

that is, their correlation functions coincide at distances larger
than than the UV cutoff scale �−1. On the other hand, at
length scales much shorter than �−1, C�

φφ (x) and C�
ππ (x)

display a UV-regularized behavior, reminiscent of |�〉, and
tend to a constant in the x → 0 limit [see Fig. 2 (left)]. The
ultraviolet divergences from Cφφ (x), Cππ (x) are replaced by
an onsite delta term such as the one in Eq. (2) [42].

II. CONFORMAL BOUNDARIES AND DEFECTS
OF THE FREE BOSON

Consider now once again a theory of a free scalar field, this
time defined on the positive half-line R+ = {x > 0}. At x = 0,
we impose conformal boundary conditions (b.c.). These turn
the theory into a boundary CFT (BCFT), i.e., one that is
invariant under the subgroup of the conformal group that
preserves the boundary.

In our case, the following conformal b.c. exist:

φ(0) = 0 (Dirichlet b.c.), (15)

∂xφ(0) = 0 (Neumann b.c.). (16)

Each of these allows for the canonical quantization of the
theory to carry on in the standard fashion. The corresponding
ground state |�B〉 is characterized by the following correlation
functions, for x, y > 0:

〈�B|φ(x)φ(y)|�B〉 = Cφφ (x − y) + ξ Cφφ (x + y), (17)

〈�B|π (x)π (y)|�B〉 = Cππ (x − y) + ξ Cππ (x + y), (18)

where ξ = −1 for Dirichlet boundary conditions, and ξ = 1
for Neumann boundary conditions. Note that translation in-
variance is lost, and the correlators satisfy the adequate b.c.

We now move on to conformal defects. We use the word
defect to refer to a domain wall, sitting at the origin, that
separates two instances of the free scalar theory, which re-
spectively occupy the left and right half-lines R−,R+. Here
we focus on conformal defects, so that the resulting theory is
a defect CFT (DCFT). In [58], two one-parameter families of
conformal defects for the free boson are introduced. Of these,
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we will work with the first one,3 for which the theories at each
side of the defect are related by the matching conditions

∂xφ(0−) = tan θ ∂xφ(0+), (19)

∂tφ(0−) = cot θ ∂tφ(0+), (20)

where θ ∈ (−π
2 , π

2 ] is an angular parameter that characterizes
the defect. Note that θ = π/4 corresponds to the trivial defect
(i.e., the absence thereof), while θ = 0 and θ = π/2 corre-
spond to pairs of boundary conditions, where the left and right
theories completely decouple.

Similarly to the BCFT, the resulting DCFT can be solved
to obtain the two-point functions that characterize its Gaussian
ground state |�D〉. For future reference, these can be written
in terms of θ as follows:

〈�D|φ(x)φ(y)|�D〉 = Cφφ (x − y) + cθ (x, y) Cφφ (|x| + |y|),
(21)

〈�D|π (x)π (y)|�D〉 = Cππ (x − y) + cθ (x, y) Cππ (|x| + |y|),
(22)

by defining a piecewise constant function cθ (x, y):

cθ (x, y) ≡
⎧⎨
⎩

cos 2θ x, y < 0,

sin 2θ − 1 xy < 0,

− cos 2θ x, y > 0.

(23)

III. BOUNDARY cMERA

Consider the free scalar BCFT on R+ with either Dirichlet
or Neumann b.c. at the origin. In this section, we propose a
cMERA approximation |��

B 〉 to the BCFT ground state |�B〉,
taking the cMERA for the full real line as a starting point.
We do it by specifying the initial unentangled state |�B〉,
the scaling generator LB, and the entangler KB. After that
we check that the fixed point of the corresponding cMERA
evolution approximates |�B〉 at long distances.

Initial state. As we did for |�〉 in Eq. (7), we define |�B〉
in terms of local annihilation operators(√

�

2
φ(x) + i

√
1

2�
π (x)

)
|�B〉 = 0, ∀ x > 0. (24)

|�B〉 can be interpreted as the continuum limit of a product
state on a semi-infinite lattice.

Scaling generator. We use the restriction to the half-line of
the original generator L,

LB ≡ L|R+ =
∫

x>0
dx π (x)

(
x ∂x + 1

2

)
φ(x) + H.c. (25)

Note that LB preserves the half-line, and both b.c.
Entangler. We define an entangler

KB ≡ K|R+ + Kbdy, (26)

where K|R+ is the restriction to the half-line of the original
entangler K ,

K|R+ ≡ 1

2

∫
x,y>0

dx dy g(x − y)φ(x)π (y) + H.c., (27)

3We explain this choice in Appendix A.

and the second term is

Kbdy ≡ ξ

2

∫
x,y>0

dx dy g(x + y)φ(x)π (y) + H.c. (28)

As before, ξ = −1 for Dirichlet b.c., and ξ = 1 for Neu-
mann b.c. Due to the quasilocality of g(x), this second term
is supported mostly within a distance �−1 of the boundary,
and it leaves the original entangler nearly unchanged away
from it. This property nicely corresponds with the minimal
update conjecture from lattice MERA, in that the presence
of the boundary only affects the entangling operator within
a “smeared” causal cone of the boundary. Both in MERA and
cMERA, because of the continuous rescaling as we evolve the
system, the causal cone has a fixed width, of the order of the
UV cutoff, i.e., the lattice spacing or �−1, respectively.

In Appendix B we compute the correlators of the boundary
cMERA to be〈

��
B

∣∣φ(x)φ(y)
∣∣��

B

〉 = C�
φφ (x − y) + ξ C�

φφ (x + y), (29)〈
��

B

∣∣π (x)π (y)
∣∣��

B

〉 = C�
ππ (x − y) + ξ C�

ππ (x + y). (30)

From comparison with Eqs. (17) and (18), it follows that the
boundary cMERA will inherit the characteristic properties
from the original cMERA: In particular, the correlation func-
tions of |��

B 〉 approximate those of its target |�B〉 at distances
longer than �−1 (see Fig. 2, center).

IV. DEFECT cMERA

Consider now the free scalar on the real line together with
a defect insertion at the origin, parametrized by θ (we mostly
omit the θ dependence in what follows in order not to overload
the notation). Once again, we propose a cMERA construction
|�D〉, LD, KD, whose fixed point state |��

D 〉 approximates the
long-distance behavior of the ground state |�D〉 of the DCFT.

Initial state and scaling generator. We choose them exactly
as in the case without defect:4

|�D〉 ≡ |�〉, LD ≡ L. (31)

Note that LD preserves the location of the defect.
Entangler. We propose an entangling operator obtained

from adding a modifying term to the defectless entangler

KD ≡ K + Kdef, (32)

where

Kdef ≡ 1

2

∫
x,y>0

dx dy cθ (x, y) g(|x| + |y|) φ(x)π (y) + H.c.

(33)
and cθ (x, y) is given by (23).5 As in the previous section, the
quasilocality of g implies that the modification due to Kdef

4It could be argued that there are no dynamical degrees of freedom
at x = 0 since the values of the field are constrained by the defect
conditions. We will not worry about this since in any case we are
speaking of a measure zero spatial set.

5It can be seen that, for θ = 0, π

2 , when the defect amounts to two
independent boundary conditions, our defect cMERA prescription
gives the same result as applying the boundary cMERA prescription
to each independent boundary, i.e., the defect entangler breaks up
into two uncorrelated boundary entanglers.
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nearly vanishes at distances larger than �−1 from the defect,
resulting in the cMERA version of a minimal update, depicted
in Fig. 1. Furthermore, in Appendix B we prove〈

��
D

∣∣φ(x)φ(y)
∣∣��

D

〉 = C�
φφ (x − y)

+ cθ (x, y) C�
φφ (|x| + |y|), (34)〈

��
D

∣∣π (x)π (y)
∣∣��

D

〉 = C�
ππ (x − y)

+ cθ (x, y) C�
ππ (|x| + |y|). (35)

From the comparison to Eqs. (21) and (22), and from the prop-
erties of the cMERA correlators C�

φφ (x), C�
ππ (x) it follows that

our defect cMERA yields a good long-distance approximation
to the DCFT ground state, as exemplified by Fig. 2 (right).

V. DISCUSSION AND OUTLOOK

In this paper we have introduced cMERA approximations
for the ground states of BCFTs and DCFTs, reconciling the
quasilocality of the entangler with the sharpness of boundaries
and defects, and further expanding the application domain
of the ansatz. For instance, a simple modification of our
construction would allow for the definition of a cMERA
on a compact interval with open boundary conditions, thus
completing the formalism of [59] where periodic boundary
conditions are considered. Moreover, our results fit within the
broader framework of the renormalization group approach to
impurity problems, rooted in Wilson’s work [60]. In partic-
ular, we have shown that an analog of the minimal update
conjecture can be mathematically proved for noninteracting
cMERAs. This complements the situation for lattice MERA,
where heuristic evidence for the conjecture exists for both free
and interacting systems. Together, these approaches hint at the
role of minimal updates as a fundamental principle for the
structure of quantum correlations in many-body systems.

It would be interesting to apply this formalism to the study
of boundary critical phenomena. Following techniques from
[44], it can be seen that fixed-point boundary cMERA states
support a full representation of the subgroup of conformal
symmetries that characterize their target BCFT. This allows
for the extraction of conformal data from the BCFT, analo-
gously to the CFT case. On the other hand, defect cMERA
provides a framework to study defect fusion rules. In crit-
ical lattice MERA, the fusion algebra of scaling operators
can be extracted by coarse-graining operator insertions until
their separation becomes smaller than the lattice spacing [61].
Analogously, a backward cMERA evolution can bring two
defects to within a distance of order �−1, below which the
cMERA stops resolving them, leading to defect fusion.

Our ability to carry out this example in full detail is un-
deniably linked to the fact that the theories used as proofs
of principle are all noninteracting. This leads to the clear
parallel between the structure of the correlation functions and
the entangler that generates them [e.g., between Eqs. (32),
(33) and (34), (35)]. We expect, however, that results for
solvable systems such as ours will be able to provide useful
prescriptions for interacting cMERA algorithms once these
have reached their maturity (some approaches to the inter-
acting case include [57,62–65]). In particular, we expand on

the relation between our results and the proposal from [57] in
Appendix C.
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APPENDIX A: FREE BOSON BCFT AND DCFT

In this Appendix we review in more depth the BCFTs and
DCFTs used in the main text.

1. Free boson CFT

Let us start by briefly recalling how to canonically quantize
and solve the free boson theory on the real line, which is
accomplished by expanding the field in momentum space. The
action of the theory is given by

S = 1

2

∫
dt dx [(∂tφ(x, t ))2 − (∂xφ(x, t ))2], (A1)

and the standard calculus of variations leads to the massless
Klein-Gordon equation of motion,(

∂2
t − ∂2

x

)
φ(x, t ) = 0, (A2)

whose general solution reads as

φ(x, t ) =
∫

dk√
4π |k| (akei(kx−|k|t ) + a†

ke−i(kx−|k|t ) ). (A3)

The coefficients ak, a†
k can be written in terms of the momen-

tum modes (Fourier components) of the fields

φ(k) ≡
∫

dx√
2π

e−ikxφ(x), φ†(k) = φ(−k), (A4)

π (k) ≡
∫

dx√
2π

e−ikxπ (x), π†(k) = π (−k), (A5)

as follows:

ak =
√

|k|
2

φ(k) + i

√
1

2|k|π (k). (A6)

Now we promote the fields to operators and impose canonical
commutation relations, which in our different sets of variables
look, equivalently, like this:

[φ(x), π (y)] = iδ(x − y), (A7)

[φ(k), π†(q)] = iδ(k − q), (A8)

[ak, a†
q] = δ(k − q). (A9)

125131-5



ADRIÁN FRANCO-RUBIO PHYSICAL REVIEW B 104, 125131 (2021)

The Klein-Gordon Hamiltonian can also be rewritten in mo-
mentum space, where all momenta decouple

H = 1

2

∫
dx (π (x))2 + (∂xφ(x))2 (A10)

= 1

2

∫
dk [π†(k)π (k) + k2φ†(k)φ(k)] (A11)

=
∫

dk |k|a†
kak, (A12)

where the last equality is up to an infinite constant. The last
expression allows us to easily characterize the vacuum of the
theory as the common kernel of the annihilation operators,

ak|�〉 = 0, ∀ k. (A13)

The determination of the two-point functions of the vacuum,
which completely determine it (due to it being a Gaussian
state), follows from this characterization, yielding

〈φ(k)φ†(q)〉 = 1

2|k|δ(k − q), (A14)

〈π (k)π†(q)〉 = |k|
2

δ(k − q). (A15)

By inverse Fourier transform, we get back the correlators
Cφφ (x), Cππ (x) from Eqs. (5) and (6).

2. Free boson BCFT

In order to define a quantum field theory on a spatial mani-
fold with boundaries, it is important to establish the boundary
conditions for the fields, so that, among others, we have a
well-defined variational principle. Consider for instance the
theory of a free scalar field on the half-line, given by the action

S = 1

2

∫
[0,T ]×R+

dt dx [(∂tφ(x, t ))2 − (∂xφ(x, t ))2], (A16)

for a time interval [0, T ]. The variation of the action, given a
variation of the field δφ(x, t ) that vanishes at the end points of
the time interval, is then

δS =
∫

[0,T ]×R+
dt dx [∂tφ(x, t )∂tδφ(x, t )

− ∂xφ(x, t )∂xδφ(x, t )] (A17)

=
∫

[0,T ]×R+
dt dx

( − ∂2
t φ(x, t ) + ∂2

x φ(x, t )
)
δφ(x, t )

+
∫ T

0
dt ∂xφ(0, t )δφ(0, t ). (A18)

If we now set δS to 0 for an arbitrary δφ(x, t ), apart from
recovering the Klein-Gordon equation of motion (A2), we
are forced to impose ∂xφ(0, t ) = 0 (Neumann b.c.) or to fix
the value of φ(0, t ) so that it is no longer dynamical and
δφ(0, t ) = 0 (Dirichlet b.c.). Other approaches to boundary
conditions include the functional analytic study of self-adjoint
extensions of a symmetric Hamiltonian, and various charge
conservation principles [66–68].

Consider now as an example the Dirichlet case φ(0, t ) = 0
[both these b.c. and the Neumann b.c. ∂xφ(0, t ) = 0 can be
seen to be scale invariant, and thus will lead to BCFTs].

Imposing the boundary condition in Eq. (A3) restricts us to
the subspace where ak = a−k , yielding

φ(x, t ) =
∫ ∞

0

dk√
π |k| (ak sin kx e−i|k|t + a∗

k sin kx ei|k|t ).

(A19)
Note the domain of integration has been restricted to k � 0.
If we modify the definition of φ(k), π (k) by using the sine-
Fourier transform

φ(k) ≡
√

2

π

∫ ∞

0
dx sin kx φ(x), (A20)

π (k) ≡
√

2

π

∫ ∞

0
dx sin kx π (x), (A21)

we have that Eq. (A6) still holds, relating the new annihilation
operators to the new momentum modes, which now take into
account the reflection of waves at the boundary. The commu-
tation relations (A7)–(A9) also hold [note, however, that φ(k)
and π (k) are now Hermitian]. Moreover, the Hamiltonian on
the half-line can be represented analogously to the full line,
i.e., Eqs. (A10)–(A12) hold upon restriction of the integrals to
x > 0 and k > 0, leading to a similar characterization of the
ground state in terms of annihilation operators: Eqs. (A13)–
(A15) hold as before, now restricted to positive values of k.
Inverting the sine-Fourier transforms (A20) and (A21) we re-
cover the Dirichlet version of (17) and (18). The Neumann b.c.
can be dealt with similarly (it basically amounts to replacing
sines by cosines).

As a side remark, note that the BCFT correlators can be in-
terpreted as linear combinations of CFT two-point correlators
between φ(x), φ(y), φ(−x), φ(−y), i.e., the two field inser-
tions and their reflections with respect to the boundary, along
the lines of the method of images in electromagnetism. (The
reader is also invited to compare this with Cardy’s doubling
trick [69] for BCFT correlators.)

3. Free boson DCFT

As presented in the main text, the notion of a defect we
use is that of a domain wall between two (possibly equal)
theories. In this sense, boundaries are a particular kind of
defect that separate a theory from the trivial theory (some-
times also called the vacuum theory, which has no degrees
of freedom), and thus the boundary formalism is, technically,
contained in the defect formalism. Here we focus on defects
between two instances of the same theory, namely, the free-
boson CFT. Whenever such a defect is conformal, i.e., scale
invariant, we speak of a defect CFT (DCFT). This condition
can be written as a condition on the continuity of the energy-
momentum tensor of the CFT at the defect. Also in terms
of the energy-momentum tensor, reflection and transmission
coefficients R, T (adding up to 1) can defined for a conformal
defect [70]. Defects for which R = 1 are totally reflective or
factorizing, and can be seen to correspond to two conformal
boundary conditions, so that the theories at both sides of the
defect are completely decoupled. On the other hand, defects
for which T = 1 are totally transmissive or topological, the
latter name stemming from the fact that they can be deformed
arbitrarily without affecting correlation functions, as long as
they do not cross field insertions. The trivial defect, the result
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of not really inserting anything and having a single theory on
both sides, is an (equally trivial) example of such a defect.

In [58], two families of conformal defects for the free bo-
son were introduced, each parametrized by an angular variable
θ ∈ (−π

2 , π
2 ]. They are given by the matching conditions

∂xφ(0−) = tan θ ∂xφ(0+), (A22)

∂tφ(0−) = cot θ ∂tφ(0+), (A23)

and

∂xφ(0−) = cot θ ∂tφ(0+), (A24)

∂tφ(0−) = tan θ ∂xφ(0+). (A25)

(The singular cases θ = 0, π/2 correspond to pairs of bound-
ary conditions and are more easily treated separately.) The
addition of these matching conditions modifies the expan-
sion of the field in momentum modes. Intuitively, as in the
boundary case, the presence of a defect allows for the re-
flection of incoming plane waves, thus a wave traveling in
a single direction will generally no longer be an eigenstate
of the Hamiltonian. We are forced to consider a generalized
momentum mode decomposition

φ(x, t ) =
∫

dk√
4π |k| (ak fk (x)e−i|k|t + a†

k f ∗
k (x)ei|k|t ), (A26)

where the fk (x) are suitably chosen functions so that the
equation of motion and the defect matching conditions are
satisfied. We make the following ansatz:

fk (x) = (αkeikx + βke−ikx )�(−x)

+ (α′
keikx + β ′

ke−ikx )�(x), (A27)

where �(x) is the Heaviside step function. Clearly, the result-
ing φ(x, t ) satisfies the equation of motion at each side of the
defect. For later reference, we compute the inner product of
two such functions,

〈 fk, fq〉 =
∫

dx f ∗
k (x) fq(x) (A28)

= (a†
kaq + a′

k
†
a′

q)πδ(k − q)

+ (a†
kXaq + a′

k
†Xa′

q )πδ(k + q)

+ (a†
kZaq − a′

k
†Za′

q)
i

k − q

+ (a†
kZXaq − a′

k
†ZXa′

q )
i

k + q
, (A29)

where we have defined

ak ≡
(

αk

βk

)
, a′

k ≡
(

α′
k

β ′
k

)
, (A30)

X ≡
(

0 1
1 0

)
, Z ≡

(
1 0
0 −1

)
, (A31)

and we have used the distributional expressions∫ 0

−∞
dx eikx = πδ(k) − i

k
, (A32)∫ ∞

0
dx eikx = πδ(k) + i

k
. (A33)

Let us now impose the first set of matching conditions (A22)
and (A23). If we define R(θ ) such that

R(θ ) ≡ 1

2

(
tan θ + cot θ tan θ − cot θ
tan θ − cot θ tan θ + cot θ

)
(A34)

the defect conditions amount to

a′
k = R(θ )ak. (A35)

Thus, the matching conditions give the primed coefficients a′
k

in (A27) in terms of the unprimed ones ak . Finally, in order to
recover the canonical commutation relations for the creation-
annihilation operators, we look for a choice of αk, βk such that
the fk form an orthonormal basis. Substituting (A35) in (A29),
the nondelta terms automatically vanish,6 so that solutions for
momenta of different magnitude are orthogonal, and we are
left with

〈 fk, fq〉 =a†
k[1 + R(θ )2]ak πδ(k − q)

+ a†
k[X + R(θ )XR(θ )]a−k πδ(k + q). (A36)

To arrive at an orthonormal basis, we can choose ak ≡ a to be
independent of k, and such that

a†π [1 + R2(θ )]a = 1, (A37)

a†[X + R(θ )XR(θ )]a = 0. (A38)

This can be achieved by introducing b defined as
b ≡ √

π [1 − iR(θ )]a, so that

b†b = 1, (A39)

b†Xb = 0. (A40)

Thus, b is of the form

eiζ

(
cos χ

i sin χ

)
. (A41)

We make the choice b = (ei π
4 , 0)T , and revert all changes of

variables to get our basis of functions

fk (x) ≡ ei π
4

2
√

π
{[(sin 2θ − i)eikx − i cos 2θe−ikx]�(−x)

+ [(1 − i sin 2θ )eikx − cos 2θe−ikx]�(x)}. (A42)

This choice for b is motivated by the fact that, for θ = π
4 (the

trivial defect), we recover the plane-wave basis. Now we can
proceed to define our generalized momentum space fields:

φ(k) ≡
∫

dx f ∗
k (x)φ(x), π (k) ≡

∫
dx f ∗

k (x)π (x),

(A43)
and once more, Eqs. (A6)–(A15) hold. [Note, however, that
Hermitian conjugation looks a bit different,

φ†(k) = sin 2θφ(−k) − i cos 2θφ(k), (A44)

6To simplify the reasoning, notice that XR(θ ) = R(θ )X and
ZR(θ ) = R(θ )−1Z . These follow from noticing that R(θ ) =
sign θ exp(ηX ) where cosh η = 1

2 | tan θ + cot θ |.
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due to the presence of the defect.] Applying the inverse trans-
formation, we get the correlators in real space, for instance:

〈φ(x)φ(y)〉 =
∫

dk dq fk (x) fq(y)〈φ(k)φ(q)〉, (A45)

=
∫

dk

2|k| fk (x) fk (y). (A46)

Solving the integrals leads back to Eqs. (21) and (22). The
transmission and reflection coefficients for these defects are
given by

R = cos2 2θ, T = sin2 2θ, (A47)

which identifies the totally transmissive cases as θ = π
4

(the trivial defect) and θ = −π
4 (the π -phase defect, which

changes the sign of the field when crossing it), and the to-
tally reflective cases as θ = 0, π

2 , which correspond to the
Neumann-Dirichlet and Dirichlet-Neumann pairs of boundary
conditions.

If we now attempt the same strategy with the second family
of defects [Eqs. (A24) and (A25)], we run into trouble. The
same ansatz leads to defect conditions

a′
k = −sign kR(θ )Zak, (A48)

which then give rise to the following inner product:

〈 fk, fq〉 =a†
k[1 + R(θ )−2]ak πδ(k − q)

+ a†
k[X + R(θ )−1XR(θ )−1]a−k πδ(k + q)

+ a†
kZaq

2i�(−kq)

k − q
+ a†

kZXaq
2i�(kq)

k + q
. (A49)

The last two terms imply that the subspaces of solutions with
different momenta k, q are generically not orthogonal, lead-
ing to nonvanishing overlaps between solutions with different
momenta. This prevents us from writing a decomposition in
canonically commuting creation-annihilation modes such as
(A26), so the formalism we have been developing, where
everything decouples in momentum space, does not apply. We
will thus not deal with this family of defects any further. It
can be shown that the only two exceptions to this behavior
are the singular cases θ = 0, π

2 . These correspond to totally
reflective defects, and give us the remaining choices of pairs of
boundary conditions not included in the first family: Dirichlet-
Dirichlet for θ = 0 and Neumann-Neumann for θ = π

2 .

APPENDIX B: cMERA, BcMERA, AND DcMERA

In this Appendix we perform the computations that prove
the properties we claim in the main text for the pro-
posed boundary cMERA (BcMERA) and defect cMERA
(DcMERA). We will progress in parallel to Appendix A,
starting from the CFT, introducing boundary conditions, then
defects.

1. cMERA

Let us first review the situation for the cMERA for free-
boson CFT, introduced in [38]. We also use the formalism and
notation from [44]. The key to being able to solve the cMERA
evolution exactly lies in the fact that we are dealing with
translation-invariant Gaussian states, which are characterized

as common kernels of families of momentum-indexed annihi-
lation operators. For instance, the CFT ground state |�〉,

ak|�〉 =
(√

|k|
2

φ(k) + i

√
1

2|k|π (k)

)
|�〉 = 0, (B1)

or the initial state |�〉,(√
�

2
φ(k) + i

√
1

2�
π (k)

)
|�〉 = 0, (B2)

as one obtains from Fourier transforming Eq. (7). All states
|��(s)〉 of the cMERA evolution can be written in this form,
and thus parametrized by a single function α(k, s):(√

α(k, s)

2
φ(k) + i

√
1

2α(k, s)
π (k)

)
|��(s)〉 = 0. (B3)

Indeed, we can obtain the annihilation operators for
|��(s)〉 = e−is(L+K )|�〉 by unitarily evolving7 those of the
initial state |�〉:

a|�〉 = 0 ⇒ e−is(L+K )aeis(L+K )|��(s)〉 = 0. (B4)

In this way, we can derive the differential equation for α(k, s)
corresponding to the cMERA evolution. This involves writing
the generators L and K from Eqs. (8) and (9) in momentum
space:

L = 1

2

∫
dk π†(k)

(
k∂k + 1

2

)
φ(k) + H.c., (B5)

K = 1

2

∫
dk g(k) φ(k)π†(k) + H.c., (B6)

defining their action on the momentum fields φ(k), π (k),

φ(k, s) ≡ e−i(L+K )sφ(k)ei(L+K )s, (B7)

π (k, s) ≡ e−i(L+K )sπ (k)ei(L+K )s (B8)

and computing its infinitesimal form

∂sφ(k, s) = −i[L + K, φ(k, s)]

= −
(

k∂k + 1

2
+ g(k)

)
φ(k, s), (B9)

∂sπ (k, s) = −i[L + K, π (k, s)]

= −
(

k∂k + 1

2
− g(k)

)
π (k, s), (B10)

where g(k) is the Fourier transform of g(x). Using these ex-
pressions together with (B3) and (B4), a differential equation
for α(k, s) can be found:

∂sα(k, s) = [k∂k − 2g(k)]α(k, s). (B11)

The solution to this equation reads as

α(k, s) = α(kes, 0) exp

(
−2

∫ s

0
du g(keu)

)
, (B12)

7Note that we need to evolve the operators with the inverse of the
usual Heisenberg evolution (obtained by s → −s).
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and adding in the initial condition α(k, 0) = � [from
Eq. (B2)],

α(k, s) = � exp

(
−2

∫ s

0
du g(keu)

)
. (B13)

This characterizes any cMERA state |��(s)〉, in particular the
asymptotic fixed point state |��〉, given by

α(k) ≡ lim
s→∞ α(k, s) = � exp

(
−2

∫ ∞

0
du g(keu)

)
. (B14)

For example, the two examples of g(k) given in Eq. (12) lead,
respectively, to

α(k) = � exp

[
1

2
Ei

(
− k2

σ�2

)]
, (B15)

α(k) = �|k|√
k2 + �2

, (B16)

where Ei(x) is the exponential integral function. At the level
of α functions the distinction between the short and long
distance behavior of the cMERA is even more transparent. For
the two entanglers, it interpolates between α(k) ∼ |k| at low
momenta (long distances), which is the behavior of the target
ground state [see Eq. (B1)] and α(k) ∼ � at high momenta
(short distances), which is the behavior of the initial state
[see Eq. (B2)]. Here “low” and “high” momenta are of course
taken with respect to the cutoff �.

The two-point functions in the cMERA state can also be
expressed rather compactly in terms of α(k):

〈��|φ(k)φ†(q)|��〉 = 1

2α(k)
δ(k − q), (B17)

〈��|π (k)π†(q)|��〉 = α(k)

2
δ(k − q). (B18)

Because of this, the comment we just made about the cMERA
α function approximating the target ground state at low
momenta and long distances translates into the correlation
functions Cφφ (x),Cφφ (x), which is the statement we made in
the main text.

2. BcMERA

Since our BcMERA is Gaussian, we enjoy a similar simple
characterization of BcMERA states in terms of annihilation
operators(√

α(k, s)

2
φ(k) + i

√
1

2α(k, s)
π (k)

)∣∣��
B (s)

〉 = 0, (B19)

where the momentum fields φ(k), π (k) are now the ones de-
fined in Eqs. (A20) and (A21) (respectively their Neumann
version). Remember that in this BCFT context, φ(k), π (q) are
Hermitian, and only defined for k � 0. The key to understand-
ing our proposal for the BcMERA comes from expressing LB

and KB as well in terms of these fields. If we do so, we notice
they are again given by Eqs. (B5) and (B6). Consequently, the
derivation from the previous section follows through in the
same fashion, reaching the analog of Eqs. (B17) and (B18):〈

��
B

∣∣φ(k)φ†(q)
∣∣��

B

〉 = 1

2α(k)
δ(k − q), (B20)

〈
��

B

∣∣π (k)π†(q)
∣∣��

B

〉 = α(k)

2
δ(k − q), (B21)

where α(k) is again given (B14). Undoing the sine (respec-
tively cosine)-Fourier transforms in Eqs. (A20) and (A21)
(respectively their Neumann version), we prove Eqs. (29)
and (30).

3. DcMERA

It will not surprise the reader that the strategy we follow
to propose the DcMERA is entirely analogous to the one
we just went through for the BcMERA. All DcMERA states
will be parametrized by an α function that characterizes their
annihilation operators(√

α(k, s)

2
φ(k) + i

√
1

2α(k, s)
π (k)

)
|��

D (s)〉 = 0, (B22)

where the momentum fields φ(k), π (k) are the ones defined
in Eq. (A43). The generators LD and KD, written in terms of
this DCFT momentum fields are again given by Eqs. (B5) and
(B6), and repeating our computations we reach

〈
��

D

∣∣φ(k)φ†(q)
∣∣��

D

〉 = 1

2α(k)
δ(k − q), (B23)

〈
��

D

∣∣π (k)π†(q)
∣∣��

D

〉 = α(k)

2
δ(k − q), (B24)

which, undoing the transformation (A43), are equivalent to
Eqs. (34) and (35).

APPENDIX C: MAGIC BcMERA AND DcMERA

So far, our understanding of interacting cMERA is rather
limited. One of the proposed roads towards the development
of interacting cMERA algorithms is based on the magic
cMERA introduced in [57]. In this Appendix, we briefly
review what the magic cMERA is and then analyze the prop-
erties of its boundary and defect analogs.

1. Magic cMERA

We have, in fact, already shown in the main text the original
example of a magic cMERA, namely, the free boson cMERA
whose entangler has the second profile from Eq. (12):

g(x) = �

4
e−�|x|. (C1)

This choice grants the construction the following special prop-
erties:

Local parent Hamiltonians. Each state |��(s)〉 in the
cMERA evolution, including the fixed point |�〉, has a local
parent Hamiltonian, i.e., it is the exact ground state of an
operator that is the integral of a local density (generically, for
a cMERA state, it would only be quasilocal). Moreover, this
Hamiltonian is obtained by adding to the CFT Hamiltonian H
from Eq. (4) a UV cutoff term and an s-dependent IR cutoff
term, which is nothing but a standard mass term:

H�(s) = H + 1

2�2

∫
dx(∂xπ (x))2 (C2)

+ 1

2

∫
dx m(s)2φ(x)2, (C3)
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FIG. 3. The continuum limit of discrete matrix product operators
(MPO) gives rise to a continuous matrix product operator (cMPO).
Both are characterized by finite-dimensional matrices Ai [respec-
tively A(x)], indexed by a discrete (respectively continuous) position
label, whose entries are operators acting on the corresponding lattice
site i (respectively point x on the line).

where m(s) ≡ �e−s. Notice how in this case evolving forward
in s corresponds very clearly to the lifting of the IR cutoff. Re-
call that, as mentioned in the introduction to cMERA, |��(s)〉
presents correlations at length scales between those associated
to the two cutoffs �−1 and m(s)−1 = �−1es.

The Hamiltonian (C3) can be found by the following rea-
soning in momentum space. For any given s, consider the
family of Hamiltonians

H[ε(k, s)] ≡
∫

dk ε(k, s) a�†
(k, s)a�(k, s), (C4)

where ε(k, s) is a real positive function, and a�(k, s) the anni-
hilation operators of the cMERA state |��(s)〉 [cf. Eq. (B3)]:

a�(k, s) ≡
√

α(k, s)

2
φ(k) + i

√
1

2α(k, s)
π (k). (C5)

For the magic g(k) from (C1), (B13) yields

α(k, s) =
√

k2 + m2(s)

k2 + �2
. (C6)

Note how, by construction, the cMERA state |��(s)〉, which
is characterized by

a�(k, s)|��(s)〉 = 0, (C7)

is the ground state of H[ε(k, s)] for any ε(k, s). In fact, all
Hamiltonians H[ε(k, s)] have the same eigenvectors, while
they differ on their spectrum [determined by the dispersion
relation ε(k, s)]. We can then choose the latter so that the
Hamiltonian is local. It can be seen that the choice

ε(k, s) ≡
√

k2 + m2(s)
√

k2 + �2

�
(C8)

yields the local parent Hamiltonian H�(s) from above.
Compatibility with cMPS and cMPO. Continuous matrix

product states (cMPS) [37] are probably the best understood
family of continuous tensor network states. They are obtained
from a well-defined continuum limit of lattice matrix product
states (MPS). In a magic cMERA, all states |��(s)〉 have the
UV structure of a cMPS, and thus can be represented within
this variational class. Moreover, the magic entangler K can be
represented as a continuous matrix product operator (cMPO,
see Fig. 3), the continuous limit of a matrix product operator
(MPO). The compatibility of the cMERA and cMPS/cMPO
formalisms is crucial for the study of the interacting case since
cMPS techniques work for both Gaussian and non-Gaussian
states and can thus handle the strongly correlated wave func-
tionals required to represent interacting QFT ground states.

In [57], the fact that the UV structure of magic cMERA
states is compatible with cMPS is argued in a dual manner.
On the one hand, the local parent Hamiltonians H�(s) can
be rewritten in terms of the creation-annihilation operators for
the unentangled state |�〉 [cf. Eq. (B2)], which we denote

ψ (x) ≡
√

�

2
φ(x) + i

√
1

2�
π (x), (C9)

to yield

H�
m =

∫
dx

(
1

�
∂xψ

†(x)∂xψ (x) + �2 + m2

2�
ψ†(x)ψ (x)

− �2 − m2

4�
[ψ (x)2 + ψ (x)†2]

)
, (C10)

whose first term, dominant at high energies, is a nonrelativistic
kinetic term, characteristic of Hamiltonians whose ground
state is well approximated by cMPS. On the other hand, one
can look at the occupation number with respect to the same
creation-annihilation operators n(k, s), defined by

〈��(s)|ψ†(k)ψ (q)|��(s)〉 ≡ n(k, s)δ(k − q). (C11)

Its scaling at high energies |k| � � can be computed to be

n(k, s) = 1

4

(
α(k, s)

�
+ �

α(k, s)
− 2

)
∼ 1

k4
, (C12)

which is known to be the scaling of this quantity for a generic
cMPS [71].

Let us now be more explicit about the expression of K as a
cMPO, following closely the Appendices from [57]. In terms
of ψ (x), ψ†(x), the magic entangler reads as

K = −i�

8

∫
dx dy e−|x−y|ψ (x)ψ (y) + H.c. (C13)

cMPOs are defined as the continuum limit of some “precur-
sor” MPO (see Fig. 3). Recall that an MPO is defined in
terms of a series of matrices Am on a finite-dimensional virtual
Hilbert space, whose entries are themselves operators acting
on the physical Hilbert space of the corresponding lattice site
m. The dimensionality χ of the virtual Hilbert space (i.e., the
size of the Am) is the bond dimension of the MPO, and we label
its basis elements by |i〉, i = 1, . . . , χ . The full operator the
MPO represents is obtained as a virtual space matrix element:

OMPO ≡ 〈v|A1A2 . . . AN |w〉, (C14)

where 〈v|, |w〉 are the boundary vectors in the extremes of
the MPO, which tell us what matrix element to pick.8 For
instance, consider a translation-invariant MPO with χ = 3
given by

Am ≡
⎛
⎝1 Em 0

0 λ1 Fm

0 0 1

⎞
⎠, (C15)

where Em, Fm are operators on lattice site m (in our case they
will be creation-annihilation operators) and λ is a real number.

8Sometimes, periodic boundary conditions are imposed instead,
which would amount to replacing the matrix element by a trace.
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FIG. 4. Finite state automata representations of (left) the MPO precursor of the magic cMERA cMPO AK (x) from (C29), (center) the
MPO precursor of AL (x) from (C39), (right) the MPO precursor of AR(x) from (C37). The definitions of Em, Fm, and λ are as in (C22)–(C24).

This is the fundamental MPO on which we base all of our
constructions. The matrix product of N such matrices will
read as

A1A2 . . . AN

=

⎛
⎜⎜⎜⎜⎝
1

∑
1�m�N

λN−mEm

∑
1�m<n�N

λn−m−1EmFn

0 λN1
∑

1�m�N

λm−1Fm

0 0 1

⎞
⎟⎟⎟⎟⎠.

(C16)

Choosing |v〉 = |1〉, |w〉 = |3〉, we have found an MPO repre-
sentation for the operator

OMPO =
∑

1�m<n�N

λn−m−1EmFn. (C17)

There is a very elegant way to understand the relation between
the operator OMPO and its MPO representation (Am, |v〉, |w〉)
in terms of a finite state automaton [72], i.e., a direct graph
where the nodes i correspond to the basis elements |i〉 of the
virtual space and the edges i → j are labeled by the matrix
elements [Am]i j . In our example, the graph looks as follows:

.

We can then assign an operator on the physical space to each
path of length N on this graph between the boundary vectors
|v〉 and |w〉, namely, the product of the operators correspond-
ing to each edge on the path, for m = 1, . . . , N . The sum
of all these terms is the operator OMPO. All the “precursor”
MPOs whose continuum limits we care about in this Appendix
have been obtained from finite state automata in this way. We
will not elaborate on this aspect of the construction, but the
interested reader can find the corresponding graphs in Fig. 4.

A cMPO can be defined by as a limit of discrete MPOs
whose matrices Ai have the structure

Am ≡ I + εA(xm) + O(ε2), (C18)

where I is the matrix with only identity operators on the
diagonal

I =
⎛
⎝1 0 . . .

0 1
...

. . .

⎞
⎠, (C19)

and xm = mε is a discretization of the real line with lattice
parameter ε. Then, taking the limits N → ∞, ε → 0 while
keeping Nε = L, we can define the path-ordered exponential

P exp

(∫ L

0
dx A(x)

)
≡ lim

ε → 0
N → ∞

N∏
m=1

[I + εA(xm)], (C20)

and the cMPO as one of its matrix elements:

OcMPO ≡ 〈v|P exp

(∫ L

0
dx A(x)

)
|w〉. (C21)

By taking a doubly infinite series of matrices, and letting
L → ∞, cMPOs can be similarly defined on the whole real
line. Now consider the MPO from (C15) with

Em = −i�

4
ε e−�ε/2ψ (xm), (C22)

Fm = ε e−�ε/2ψ (xm), (C23)

λ = e−�ε, (C24)

where ψ (x) is the annihilation operator from (C9). This MPO
has the structure (C18) for

A(x) =

⎛
⎜⎝0

−i�

4
ψ (x) 0

0 −�1 ψ (x)
0 0 0

⎞
⎟⎠. (C25)

Using (C17) we can find the (1,3) matrix element of the matrix
product in (C20) before taking the limits, which yields

−i�

4

∑
1�m<n�N

ε2e−�(n−m)εψ (xm)ψ (xn). (C26)

Now we take the limits and turn the sums into integrals (notice
there is a factor of ε for each variable we sum over). We
then find that the cMPO corresponding to (C25) with |v〉 =
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|1〉, |w〉 = |3〉 is

OcMPO = −i�

4

∫
y<x

dx dy e−�(x−y)ψ (x)ψ (y) (C27)

= −i�

8

∫
dx dy e−�|x−y|ψ (x)ψ (y), (C28)

which is half of the magic entangler K . The other half, the
ψ†ψ† term, can be obtained analogously, or by taking the Her-
mitian conjugate. Lastly, the sum of two cMPOs can always
be written as a cMPO with bond dimension at most the sum of
the two original bond dimensions. In this case, we can write
K as a cMPO with χ = 4 instead of 6 by defining

AK (x) ≡

⎛
⎜⎜⎜⎜⎝

0
−i�

4
ψ (x)

i�

4
ψ†(x) 0

0 −�1 0 ψ (x)
0 0 −�1 ψ†(x)
0 0 0 0

⎞
⎟⎟⎟⎟⎠, (C29)

and boundary vectors |v〉 = |1〉, |w〉 = |4〉. It can then be
checked that indeed

K = 〈1|P exp

(∫ ∞

−∞
dx AK (x)

)
|4〉. (C30)

Thus, we are done finding a cMPO representation for the
magic entangler K . Note that this relied heavily on the fact
that the profile of the entangler is exponentially decaying, as
opposed to, for instance, a Gaussian (which is the case for the
nonmagic cMERA presented in the main text).

2. Magic BcMERA

Let us now check what happens when we make the choice
(C1) for the BcMERA from the main text. We can follow
the argument in the previous section to find a local parent
Hamiltonian for every BcMERA state |��

B (k, s)〉. Consider
the annihilation operators a�

B (k, s) that characterize this state

a�
B (k, s)

∣∣��
B (k, s)

〉 = 0. (C31)

These can be written as (C5), with the momentum fields given
by (A20) and (A21) (or their Neumann counterparts). We then
define the analogous Hamiltonian

H�
B (s) ≡

∫ ∞

0
dk ε(k, s) a�

B
†
(k, s)a�

B (k, s), (C32)

with ε(k, s) given once more by (C8). Clearly |��
B (k, s)〉 is

the ground state of H�
B (s), which in position space reads as

H�
B (s) = 1

2

∫ ∞

0
dx [π (x)2 + (∂xφ(x))2]

+ 1

2�2

∫ ∞

0
dx (∂xπ (x))2

+ 1

2

∫ ∞

0
dx m(s)2φ(x)2, (C33)

which is nothing but the restriction of H�(s) to the half-line
R+.

We now proceed to verify the cMPS/cMPO compatibility.
The dual argument for the UV structure of |��(s)〉 can be
directly imported for |��

B (s)〉 since we have found the local

parent Hamiltonian to be identical to its full-line counterpart.
Using the formalism exposed in Appendix B it is also possible
to prove that Eq. (C12) holds in the boundary case, restricted
to positive momenta.

The cMPO structure of the entangler will take a bit more
analysis to pinpoint. Our proposal for the magic BcMERA
entangler was made of two pieces. The first one, K|R+ , can be
made into a cMPO as in the previous section. The second one,
in the language of ψ (x), ψ†(x), reads as

Kbdy = −iξ�

8

∫
dx dy e�(x+y)ψ (x)ψ (y) + H.c. (C34)

It can also be represented as a cMPO, with a rather similar
matrix:

Abdy(x) =

⎛
⎜⎜⎝

−2�1
−iξ�

4
ψ (x) 0

0 −�1 ψ (x)

0 0 0

⎞
⎟⎟⎠, (C35)

and boundary vectors |v〉 = |1〉, |w〉 = |3〉. Here ξ = ±1 is
defined as in the main text. This yields the ψψ term, with
an equivalent one for the ψ†ψ† one. In fact, we can compress
all four terms of the entangler and write it exactly as a cMPO
with bond dimension χ = 5,

KB,R = (〈1| + ξ 〈5|)P exp

(∫ ∞

0
dx AR(x)

)
|4〉, (C36)

with

AR(x) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−i�

4
ψ (x)

i�

4
ψ†(x) 0 0

0 −�x 0 ψ (x) 0

0 0 −�x ψ†(x) 0

0 0 0 0 0

0
−i�

4
ψ (x)

i�

4
ψ†(x) 0 −2�1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C37)
An equivalent cMPO representation can be found for a
BcMERA on the left half-line R−,

KB,L = 〈1|P exp

(∫ 0

−∞
dx AL(x)

)
(|4〉 + ξ |5〉), (C38)

with

AL(x) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−i�

4
ψ (x)

i�

4
ψ†(x) 0 0

0 −�1 0 ψ (x) ψ (x)

0 0 −�1 ψ†(x) ψ†(x)

0 0 0 0 0

0 0 0 0 −2�1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(C39)
Note that the boundary vectors corresponding to the physical
boundary (respectively |v〉 and |w〉) contain a superposition of
basis elements that carries the information ξ of the physical
boundary conditions.

3. Magic DcMERA

We proceed analogously to the two previous cases. We
denote the annihilation operators that characterize |��

D (s)〉
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by a�
D (k, s), and recall that they are given by (C5) with the

momentum fields given by (A43). Now we can define

H�
D (s) ≡

∫ ∞

0
dk ε(k, s) a�

B
†
(k, s)a�

D (k, s), (C40)

with ε(k, s) once again given by (C8). By construction the
DcMERA state |��

D (s)〉 is the ground state of H�
D (s), which

in position space reads as

H�
D (s) = 1

2

∫
dx [π (x)2 + (∂xφ(x))2]

+ 1

2�2

∫
dx (∂xπ (x))2

+ 1

2

∫
dx m(s)2φ(x)2, (C41)

that is, exactly as H�(s), and in particular, it is local. Of
course, the two Hamiltonians are not the same because the
fields φ(x) in each of them belong to different solution spaces
of the Klein-Gordon equation. Consequently, they have differ-
ent ground states.

The fact that |��
D (s)〉 has a cMPS-compatible UV struc-

ture follows exactly as in the previous cases since its parent
Hamiltonian and number density n(k) have exactly the same
expressions as in the case without the defect.

Finally, we proceed to find a cMPO representation for KD.
Notice that it can not be given by a translation-invariant cMPO
since the presence of the defect breaks translation invariance.
It can be seen, however, that we can write it with two A ma-
trices (each at one side of the defect) and an operator insertion
D at the position of the defect, keeping bond dimension equal
to 5. This should be understood as the continuum limit of a
tensor network of this kind:

.

Indeed, define

D ≡

⎛
⎜⎜⎜⎝

1 0 0 0 − cos 2θ

0 sin 2θ 0 0 0
0 0 sin 2θ 0 0
0 0 0 1 0
0 0 0 cos 2θ 0

⎞
⎟⎟⎟⎠. (C42)

Note D is a matrix on the virtual space of the cMPO whose
entries are numbers instead of physical operators. It thus cor-
responds to the central tensor, in the diagram, which has no
physical legs. It can then be seen that we can express KD as a

cMPO as follows:

KD = 〈1|
[
P exp

(∫ 0

−∞
dx AL(x)

)]

× D

[
P exp

(∫ ∞

0
dx AR(x)

)]
|4〉, (C43)

where AR and AL are the ones defined in Eqs. (C37)–(C39).
For totally transmitting defects, cos 2θ = 0, and we can see
that D decouples |5〉 from the rest of the virtual subspace, so
that we can effectively restrict it to span{|1〉, . . . |4〉}, where
AL(x) = AR(x) = A(x). As expected, for θ = π/4, D is triv-
ial and we are back to the usual cMERA, while for θ = −π/4,
D accounts for the sign changes when crossing the defect. On
the other hand, for totally reflecting defects, sin 2θ = 0, and
D factors as

D = (|4〉 + ξL|5〉)〈4| + |1〉(〈1| + ξR〈5|), (C44)

where ξL = 1, ξR = −1 for Neumann-Dirichlet (θ = 0) and
ξL = −1, ξR = 1 for Dirichlet-Neumann (θ = π

2 ). These are
precisely the combinations of boundary vectors for the two
half-line cMPOs that ensure

KD = 1L ⊗ KB,R + KB,L ⊗ 1R, (C45)

as required for a totally reflecting defect.
In summary, we have seen how the BcMERA and

DcMERA built from the magic entangling profile (C1) both
satisfy the most notable properties of the original magic
cMERA, namely, the existence of a local parent Hamiltonian
H�

B (k, s), H�
D (k, s) for each cMERA state |��(s)〉, the com-

patibility of such states with the UV structure of a cMPS, and
the existence of a cMPO representation for the entangling gen-
erators KB, KD. Regarding this last property, we remark that
the principle of minimal updates, while valid, is not explicitly
reflected in the individual matrices AL(x),AR(x) (which we
could call the “tensors” in the continuous tensor network),
since they are the same independently of the distance to the
boundary/defect. It would be possible, if necessary, to obtain
an approximate representation of K that satisfies the minimal
update property at the level of the “tensors” by truncating
away, whenever |x| � �−1, the components of AL(x),AR(x)
that differ from the no-defect tensor A(x), i.e., by restricting
them to the |1〉, . . . , |4〉 subspace. For instance, in the defect
case, truncating outside some interval [−x0, x0], for �x0 � 1,
would be equivalent to inserting a projector P = |1〉〈1| +
. . . + |4〉〈4| on the virtual space at the points ±x0, just as we
inserted D at the origin, and replacing AL(x),AR(x) by AK (x)
for |x| > x0. This amounts to restricting the modification to
the entangler Kdef to have support only within [−x0, x0]. Alter-
natively, a smoother truncation could be envisioned in which
the components of AL(x), AR(x) supported on span{|5〉} go
continuously to zero as x gets further away from the defect.
In either case we would, of course, give up on the translation
invariance of AL(x), AR(x).

[1] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
349, 117 (2014).

[2] J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive
dance: An introductory course on tensor networks, J. Phys. A:
Math. Theor. 50, 223001 (2017).

125131-13

https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1088/1751-8121/aa6dc3


ADRIÁN FRANCO-RUBIO PHYSICAL REVIEW B 104, 125131 (2021)

[3] G. Evenbly, tensors.net, available at https://www.tensors.net.
[4] M. Stoudenmire et al., tensornetwork.org, available at https://

tensornetwork.org/.
[5] G. Vidal, Entanglement Renormalization, Phys. Rev. Lett. 99,

220405 (2007).
[6] G. Vidal, Class of Quantum Many-Body States That Can

Be Efficiently Simulated, Phys. Rev. Lett. 101, 110501
(2008).

[7] M. Aguado and G. Vidal, Entanglement Renormalization and
Topological Order, Phys. Rev. Lett. 100, 070404 (2008).

[8] A. J. Ferris and D. Poulin, Tensor Networks and Quantum Error
Correction, Phys. Rev. Lett. 113, 030501 (2014).

[9] A. J. Ferris and D. Poulin, Branching MERA codes: A natural
extension of classical and quantum polar codes, in Proceedings
of the IEEE International Symposium on Information Theory,
2014 (IEEE, Piscataway, NJ, 2014), pp. 1081–1085.

[10] C. Bény, Deep learning and the renormalization group,
arXiv:1301.3124.

[11] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V.
Stojevic, A. G. Green, and S. Severini, Hierarchical quantum
classifiers, npj Quantum Inf. 4, 65 (2018).

[12] G. Evenbly, Number-state preserving tensor networks as classi-
fiers for supervised learning, arXiv:1905.06352 [quant-ph].

[13] D. Liu, S.-J. Ran, P. Wittek, C. Peng, R. Blázquez García, G.
Su, and M. Lewenstein, Machine learning by unitary tensor
network of hierarchical tree structure, New J. Phys. 21, 073059
(2019).

[14] F. Kong, X.-Y. Liu, and R. Henao, Quantum tensor network in
machine learning: An application to tiny object classification,
arXiv:2101.03154 [cs.CV].

[15] C. Beny, Causal structure of the entanglement renormalization
ansatz, New J. Phys. 15, 023020 (2013).

[16] G. Evenbly and G. Vidal, Tensor network states and geometry,
J. Stat. Phys. 145, 891 (2011).

[17] B. Swingle, Entanglement renormalization and holography,
Phys. Rev. D 86, 065007 (2012).

[18] B. Swingle, Constructing holographic spacetimes using entan-
glement renormalization, arXiv:1209.3304 [hep-th].

[19] H. Matsueda, M. Ishihara, and Y. Hashizume, Tensor network
and a black hole, Phys. Rev. D 87, 066002 (2013).

[20] T. Hartman and J. Maldacena, Time evolution of entanglement
entropy from black hole interiors, J. High Energy Phys. 05
(2013) 014.

[21] X.-L. Qi, Exact holographic mapping and emergent space-time
geometry, arXiv:1309.6282 [hep-th].

[22] J. Molina-Vilaplana and J. Prior, Entanglement, tensor networks
and black hole horizons, Gen. Relativ. Gravit. 46, 1823 (2014).

[23] B. Czech, L. Lamprou, S. McCandlish, and J. Sully, Tensor Net-
works from Kinematic Space, J. High Energy Phys. 07 (2016)
100.

[24] M. Miyaji and T. Takayanagi, Surface/state correspondence as a
generalized holography, Prog. Theor. Exp. Phys. 2015, 073B03
(2015).

[25] N. Bao, ChunJun Cao, S. M. Carroll, A. Chatwin-Davies, N.
Hunter-Jones, J. Pollack, and G. N. Remmen, Consistency con-
ditions for an AdS multiscale entanglement renormalization
ansatz correspondence, Phys. Rev. D 91, 125036 (2015).

[26] B. Czech, P. H. Nguyen, and S. Swaminathan, A defect in
holographic interpretations of tensor networks, J. High Energy
Phys. 03 (2017) 090.

[27] R. S. Kunkolienkar and K. Banerjee, Towards a dS/MERA
correspondence, Int. J. Mod. Phys. D 26, 1750143 (2017).

[28] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and K.
Watanabe, Liouville action as path-integral complexity: From
continuous tensor networks to AdS/CFT, J. High Energy Phys.
11 (2017) 097.

[29] G. Evenbly, Hyperinvariant Tensor Networks and Holography,
Phys. Rev. Lett. 119, 141602 (2017).

[30] A. Milsted and G. Vidal, Tensor networks as conformal trans-
formations, arXiv:1805.12524 [cond-mat.str-el].

[31] A. Milsted and G. Vidal, Tensor networks as path integral ge-
ometry, arXiv:1807.02501 [cond-mat.str-el].

[32] A. Milsted and G. Vidal, Geometric interpretation of the multi-
scale entanglement renormalization ansatz, arXiv:1812.00529
[hep-th].

[33] N. A. McMahon, S. Singh, and G. K. Brennen, A holographic
duality from lifted tensor networks, npj Quantum Inf. 6, 36
(2020).

[34] M. Ghodrati, Complexity and emergence of warped AdS3

space-time from chiral Liouville action, J. High Energy Phys.
02 (2020) 052.

[35] F. Witteveen, V. Scholz, B. Swingle, and M. Walter, Quantum
circuit approximations and entanglement renormalization for
the Dirac field in 1+1 dimensions, arXiv:1905.08821 [quant-
ph].

[36] L. Niermann and T. J. Osborne, Holographic networks for
(1+1)-dimensional de Sitter spacetime, arXiv:2102.09223
[hep-th].

[37] F. Verstraete and J. I. Cirac, Continuous Matrix Product States
for Quantum Fields, Phys. Rev. Lett. 104, 190405 (2010).

[38] J. Haegeman, T. J. Osborne, H. Verschelde, and F. Verstraete,
Entanglement Renormalization for Quantum Fields in Real
Space, Phys. Rev. Lett. 110, 100402 (2013). Note: There is a
lot of material in the appendices of arXiv:1102.5524v1, which
was not included in the second version or the published version.

[39] D. Jennings, J. Haegeman, T. J. Osborne, and F. Verstraete,
Continuum tensor network field states, path integral repre-
sentations and spatial symmetries, New J. Phys. 17, 063039
(2015).

[40] A. Tilloy and J. I. Cirac, Continuous Tensor Network States for
Quantum Fields, Phys. Rev. X 9, 021040 (2019).

[41] Q. Hu, A. Franco-Rubio, and G. Vidal, Continuous tensor
network renormalization for quantum fields, arXiv:1809.05176
[hep-th].

[42] A. Franco-Rubio and G. Vidal, Entanglement and correlations
in the continuous multi-scale entanglement renormalization
ansatz, J. High Energy Phys. 12 (2017) 129.

[43] A. Franco-Rubio and G. Vidal, Entanglement renormalization
for gauge invariant quantum fields, Phys. Rev. D 103, 025013
(2021).

[44] Q. Hu and G. Vidal, Spacetime Symmetries and Conformal
Data in the Continuous Multiscale Entanglement Renormaliza-
tion Ansatz, Phys. Rev. Lett. 119, 010603 (2017).

[45] M. Nozaki, S. Ryu, and T. Takayanagi, Holographic Geometry
of Entanglement Renormalization in Quantum Field Theories,
J. High Energy Phys. 10 (2012)193.

[46] A. Mollabashi, M. Nozaki, S. Ryu, and T. Takayanagi,
Holographic Geometry of cMERA for Quantum Quenches
and Finite Temperature, J. High Energy Phys. 03 (2014)
098.

125131-14

https://www.tensors.net
https://tensornetwork.org/
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.100.070404
https://doi.org/10.1103/PhysRevLett.113.030501
http://arxiv.org/abs/arXiv:1301.3124
https://doi.org/10.1038/s41534-018-0116-9
http://arxiv.org/abs/arXiv:1905.06352
https://doi.org/10.1088/1367-2630/ab31ef
http://arxiv.org/abs/arXiv:2101.03154
https://doi.org/10.1088/1367-2630/15/2/023020
https://doi.org/10.1007/s10955-011-0237-4
https://doi.org/10.1103/PhysRevD.86.065007
http://arxiv.org/abs/arXiv:1209.3304
https://doi.org/10.1103/PhysRevD.87.066002
https://doi.org/10.1007/JHEP05(2013)014
http://arxiv.org/abs/arXiv:1309.6282
https://doi.org/10.1007/s10714-014-1823-y
https://doi.org/10.1007/JHEP07(2016)100
https://doi.org/10.1093/ptep/ptv089
https://doi.org/10.1103/PhysRevD.91.125036
https://doi.org/10.1007/JHEP03(2017)090
https://doi.org/10.1142/S0218271817501437
https://doi.org/10.1007/JHEP11(2017)097
https://doi.org/10.1103/PhysRevLett.119.141602
http://arxiv.org/abs/arXiv:1805.12524
http://arxiv.org/abs/arXiv:1807.02501
http://arxiv.org/abs/arXiv:1812.00529
https://doi.org/10.1038/s41534-020-0255-7
https://doi.org/10.1007/JHEP02(2020)052
http://arxiv.org/abs/arXiv:1905.08821
http://arxiv.org/abs/arXiv:2102.09223
https://doi.org/10.1103/PhysRevLett.104.190405
https://doi.org/10.1103/PhysRevLett.110.100402
http://arxiv.org/abs/arXiv:1102.5524v1
https://doi.org/10.1088/1367-2630/17/6/063039
https://doi.org/10.1103/PhysRevX.9.021040
http://arxiv.org/abs/arXiv:1809.05176
https://doi.org/10.1007/JHEP12(2017)129
https://doi.org/10.1103/PhysRevD.103.025013
https://doi.org/10.1103/PhysRevLett.119.010603
https://doi.org/10.1007/JHEP10(2012)193
https://doi.org/10.1007/JHEP03(2014)098


ENTANGLEMENT RENORMALIZATION FOR QUANTUM … PHYSICAL REVIEW B 104, 125131 (2021)

[47] M. Miyaji, S. Ryu, T. Takayanagi, and X. Wen, Boundary states
as holographic duals of trivial spacetimes, J. High Energy Phys.
05 (2015) 152.

[48] J. Molina-Vilaplana, Information geometry of entanglement
renormalization for free quantum fields, J. High Energy Phys.
09 (2015) 002.

[49] M. Miyaji, T. Takayanagi, and K. Watanabe, From path in-
tegrals to tensor networks for the AdS/CFT correspondence,
Phys. Rev. D 95, 066004 (2017).

[50] S. Chapman, M. P. Heller, H. Marrochio, and F. Pastawski,
Toward a Definition of Complexity for Quantum field Theory
States, Phys. Rev. Lett. 120, 121602 (2018).

[51] G. Evenbly, R. N. C. Pfeifer, V. Picó, S. Iblisdir, L. Tagliacozzo,
I. P. McCulloch, and G. Vidal, Boundary quantum critical phe-
nomena with entanglement renormalization, Phys. Rev. B 82,
161107(R) (2010).

[52] G. Evenbly and G. Vidal, Algorithms for entanglement renor-
malization: Boundaries, impurities and interfaces, J. Stat. Phys.
157, 931 (2014).

[53] G. Evenbly and G. Vidal, A theory of minimal updates in
holography, Phys. Rev. B 91, 205119 (2015).

[54] M. Hauru, G. Evenbly, W. W. Ho, D. Gaiotto, and G. Vidal,
Topological conformal defects with tensor networks, Phys. Rev.
B 94, 115125 (2016).

[55] J. C. Bridgeman and D. J. Williamson, Anomalies and entan-
glement renormalization, Phys. Rev. B 96, 125104 (2017).

[56] S. Chapman, D. Ge, and G. Policastro, Holographic complexity
for defects distinguishes action from volume, J. High Energy
Phys. 05 (2019) 049.

[57] Y. Zou, M. Ganahl, and G. Vidal, Magic entanglement
renormalization for quantum fields, arXiv:1906.04218 [cond-
mat.str-el].

[58] C. Bachas, J. de Boer, R. Dijkgraaf, and H. Ooguri, Perme-
able conformal walls and holography, J. High Energy Phys. 06
(2002) 027.

[59] L.-Y. Hung and G. Vidal, Continuous entanglement renormal-
ization on the circle, arXiv:2101.03674 [quant-ph].

[60] K. G. Wilson, The renormalization group: Critical phenomena
and the kondo problem, Rev. Mod. Phys. 47, 773 (1975).

[61] G. Evenbly and G. Vidal, Quantum criticality with the
multi-scale entanglement renormalization ansatz, in Strongly
Correlated Systems, Numerical Methods, Springer Series in
Solid-State Sciences, Vol. 176, edited by A. Avella and F.
Mancini (Springer-Verlag, Berlin, Heidelberg, 2013).

[62] J. S. Cotler, M. R. Mohammadi Mozaffar, A. Mollabashi, and
A. Naseh, Entanglement renormalization for weakly interacting
fields, Phys. Rev. D 99, 085005 (2019).

[63] J. Cotler, M. R. Mohammadi Mozaffar, A. Mollabashi, and
A. Naseh, Renormalization group circuits for weakly inter-
acting continuum field theories, Fortsch. Phys. 67, 1900038
(2019).

[64] J. J. Fernandez-Melgarejo, J. Molina-Vilaplana, and E.
Torrente-Lujan, Entanglement renormalization for interacting
field theories, Phys. Rev. D 100, 065025 (2019).

[65] J. J. Fernandez-Melgarejo and J. Molina-Vilaplana, Non-
gaussian entanglement renormalization for quantum fields, J.
High Energy Phys. 07 (2020) 149.

[66] M. Reed and B. Simon, Methods of Modern Mathematical
Physics. Vol. II: Fourier Analysis, Self-Adjointness (Academic,
New York, 1975).

[67] M. Asorey, A. Ibort, and G. Marmo, Global theory of quantum
boundary conditions and topology change, Int. J. Mod. Phys. A
20, 1001 (2005).

[68] M. Asorey, D. García-Alvarez, and J. M. Muñoz Castañeda,
Boundary effects in bosonic and fermionic field the-
ories, Int. J. Geom. Meth. Mod. Phys. 12, 1560004
(2015).

[69] J. L. Cardy, Conformal invariance and surface critical behavior,
Nucl. Phys. B 240, 514 (1984).

[70] T. Quella, I. Runkel, and G. M. T. Watts, Reflection and trans-
mission for conformal defects, J. High Energy Phys. 04 (2007)
095.

[71] J. Haegeman, J. I. Cirac, T. J. Osborne, H. Verschelde, and F.
Verstraete, Applying the variational principle to (1+1) dimen-
sional relativistic quantum field theories, PoS (FacesQCD), 029
(2011).

[72] G. M. Crosswhite and D. Bacon, Finite automata for caching in
matrix product algorithms, Phys. Rev. A 78, 012356 (2008).

125131-15

https://doi.org/10.1007/JHEP05(2015)152
https://doi.org/10.1007/JHEP09(2015)002
https://doi.org/10.1103/PhysRevD.95.066004
https://doi.org/10.1103/PhysRevLett.120.121602
https://doi.org/10.1103/PhysRevB.82.161107
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1103/PhysRevB.91.205119
https://doi.org/10.1103/PhysRevB.94.115125
https://doi.org/10.1103/PhysRevB.96.125104
https://doi.org/10.1007/JHEP05(2019)049
http://arxiv.org/abs/arXiv:1906.04218
https://doi.org/10.1088/1126-6708/2002/06/027
http://arxiv.org/abs/arXiv:2101.03674
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevD.99.085005
https://doi.org/10.1002/prop.201900038
https://doi.org/10.1103/PhysRevD.100.065025
https://doi.org/10.1007/JHEP07(2020)149
https://doi.org/10.1142/S0217751X05019798
https://doi.org/10.1142/S021988781560004X
https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.1088/1126-6708/2007/04/095
https://doi.org/10.22323/1.117.0029
https://doi.org/10.1103/PhysRevA.78.012356

