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We study the nonequilibrium dynamics and transport of a PT-symmetric Luttinger liquid (LL) after an
interaction quench. The system is prepared in domain wall initial state. After a quantum quench to spatially
homogeneous, PT-symmetric LL, the domain wall develops into a flat central region that spreads out ballistically
faster than the conventional Lieb-Robinson maximal speed. By evaluating the current inside the regular light
cone, we find a universal conductance e2/h, insensitive to the strength of the PT-symmetric interaction. On the
other hand, by repeating the very same time evolution with a Hermitian LL Hamiltonian, the conductance is
heavily renormalized by the Hermitian interaction as e2/hK with K the LL parameter. Our analytical results are
tested numerically, confirming the universality of the conductance in the non-Hermitian realm.
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I. INTRODUCTION

An important class of systems described by non-Hermitian
Hamiltonians has emerged recently in quantum physics. Such
models exhibit several exciting new phenomena such as ex-
ceptional point [1–6], non-Hermitian skin effect with the
majority of eigenstates localized at the boundaries [7,8], topo-
logical transitions [9–11], and anomalous transport behavior
[12–14] to mention a few. In general, a non-Hermitian Hamil-
tonian can arise naturally as the backaction to continuous
monitoring and controlled post selection measurement that
suppress the quantum jump processes [15]. Examples include
inelastic one and two body losses in ultracold atomic lattices
[16–19]. As such systems are under continuous surveillance,
their state evolves in time under nonequilibrium conditions.

Among the non-Hermitian models, PT-symmetric systems
play a special role [20,21]. Such non-Hermitian Hamiltonians
remain invariant with respect to the simultaneous action of the
parity-inversion (P) and time reversal symmetry (T). These
are the closest to Hermitian quantum mechanics in terms of
having a real spectrum for unbroken PT symmetry, therefore
the conventional methods of statistical physics can be applied.

In this context, a key issue concerns the spreading of cor-
relations captured by the typical light-cone effect following a
quench [22]. It has been shown by Lieb and Robinson [23] that
in Hermitian systems with short range interactions a maximal
velocity for spreading the information does exists. On the
other hand, in the non-Hermitian realm this maximum bound-
ary is exceeded, as higher supersonic modes are developed
[24], traveling with velocities that are multiples of the regular
Lieb-Robinson sound velocity [25].

*mocap@uoradea.ro

So far, the transport and dynamics following a quantum
quench have been studied thoroughly in Hermitian models. A
variety of different models have been considered, which can
be framed into two main classes: The first consists of nonequi-
librium dynamics in spatially homogeneous systems such as
in spin- 1

2 XXZ chain [26–28] or Hubbard chains [29–31]. In
the second class the initial state is spatially inhomogeneous.
Relevant examples are domain wall structures in XXZ mod-
els [32–35] or systems featuring local impurities [36–38]. In
a previous publication [25] we have analyzed the behavior
after the quantum quench in a homogeneous PT-symmetric
Luttinger liquid (LL) and found that the typical LL behavior
is preserved in the long time limit, but at short times, the
nonunitary evolution generates supersonic modes.

Transport in a LL has long been investigated. In a clean
LL, the conductance was found to be strongly renormalized
by the interaction [39]. However, it was found later that in
an ideal LL connected to leads [40–42], the dc conductance
depends only on the properties of the leads of a quantum wire
containing a Luttinger liquid, and is given by the conductance
quantum, e2/h per spin orientation, regardless of the interac-
tions in the wire.

The purpose of this paper is to extend the previous analysis
and investigate the quench dynamics and the universality of
transport in a non-Hermitian Luttinger liquid initially pre-
pared in a domain wall state [43]. To make contact with the
conventional condensed matter settings, here we discuss the
electronic transport, but our theory applies as well to particle
transport in neutral systems [44], e.g., cold atoms [45,46]. Our
findings indicate that, similar to the homogeneous configu-
ration [25], the supersonic modes are visible in the density
n(x, t ) or the current j(x, t ) profiles as well. Surprisingly,
inside the regular light cone, at long enough times for the sys-
tem to stabilize, a nonequilibrium steady state is developing
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with a flowing current of a constant magnitude, irrespective
of the strength of the interaction, corresponding to a universal
conductance

G = e2

h
, (1)

similar to the case of noninteracting spinless fermions. This
occurs due to dissipation in much the same way as it occurs
in Hermitian LL setup due to dissipation in the leads [40].
However, the basic difference is that dissipation takes place
already within the LL due to the imaginary interaction in
our case, even in the absence of leads. As non-Hermitian
Hamiltonians naturally follow from open quantum systems,
thus exchange with some external environment, the imaginary
interaction could play the role of the reservoirs. It it important
to keep in mind that this interaction produces also LL behavior
[25] with fractional power law exponents. Furthermore, by
time evolving the same initial state with a Hermitian LL
Hamiltonian, the long time conductance of this nonequilib-
rium setting is e2/hK with K the Luttinger liquid parameter
[39], which keeps track of all interaction effects. To verify
our analytical results we investigate numerically the nonequi-
librium dynamics in a non-Hermitian lattice model using the
time evolving block decimation (TEBD) algorithm [47–49],
and we find perfect agreement with the bosonization results.

II. NON-HERMITIAN QUENCH PROTOCOL

We consider a global quench [50] in which the initial LL
state displays a domain wall density profile [32,34,51,52],
similar to the one obtained by joining two semi-infinite sys-
tems that are initially kept at different chemical potentials.
Here we consider a symmetric configuration with a position
dependent chemical potential of the form μ(x) = μ0 sgn(x).
Such a domain wall state can be realized experimentally in
cold atoms setups [53–55] by, e.g., using a magnetic field
gradient.

For such a system the ground state can be constructed ex-
actly, and in the bosonic language it corresponds to the ground
state of the shifted quantum harmonic oscillator Hamiltonian
[39]

Hinh =
∑
q �=0

ωq[b†
qbq − λq(b†

q + bq)], (2)

where ωq = v|q| is the energy of the bosonic excitations, bq

the annihilation operator for the density waves, and λq =
μq/v

√
2π |q|L is a characteristic scale for the displacement

of the ground state, with μq, the Fourier transform of the
chemical potential profile μ(x). The Hamiltonian (2) can be
diagonalized exactly in terms of the shifted bosonic operators
aq, defined as aq = bq − λq, which allows us to construct the
GS as

|�0〉 =
∏

q

e− |λq |2
2 e−λqb†

q |0〉, (3)

where |0〉 is the vacuum state for the bq operators, bq|0〉 = 0.
The vacuum state |0〉 contains no bosonic excitations and
represents the GS of the homogeneous setup. The ground
state |�0〉 represents the vacuum state for the aq operators,
aq|�0〉 = 0, and by construction it is properly normalized,

〈�0|�0〉 = 1. At t = 0, the Hamiltonian governing the evo-
lution of the system suddenly changes from Hinh to a
non-Hermitian PT-symmetric Hamiltonian H by switching on
the interaction and turning off the chemical potential, μ(x) =
μ(x)�(−t ). Following the quench, the evolution is governed
by the Hamiltonian

H =
∑
q �=0

ωqb†
qbq + igq

2
[bqb−q + b+

q b+
−q]. (4)

The Hamiltonian H is similar to an interacting LL but with
an imaginary interaction igq instead. In general we use the
parametrization gq = g2|q| to describe the strength of the in-
teraction. Although the Hamiltonian is non-Hermitian, as long
as g2 < v, the energy spectrum of H remains real as ṽ|q| with

ṽ =
√

v2 + g2
2 and H belongs to the PT-symmetrical models

[56]. For larger g2, the system develops an instability [25].

A. Density and current profile

Following the quench, the time evolution of the conven-
tional [39] density and the current profiles are[

n(x, t )
j(x, t )

]
= − 1

πN (t )
〈�(t )|

[
∂xφ(x)
∂xθ (x)

]
|�(t )〉, (5)

where |�(t )〉 = e−iHt |�0〉 describes the nonunitary time evo-
lution on the initial wave function |�0〉 with Hamiltonian
(4), and N (t ) = 〈�(t )|�(t )〉 is the norm of the wave func-
tion, while φ(x) and θ (x) are the regular LL fields, defined
in terms of the bq operators [39], and satisfying the regular
commutation relations [∂xθ (x), φ(y)] = iπδ(x − y). Equation
(5) is the conventional definition of the current and density.
In our non-Hermitian setting, they only satisfy a continuity
equation at the expense of introducing an additional source
term, arising from the non-Hermitian term in Eq. (4), i.e.,
from interaction with the environment. Details on the conti-
nuity equation are discussed in Appendix A. In general, for
a Hermitian Hamiltonian governing the dynamics, the wave
function is properly normalized to 1, i.e., N (t ) = 1, while in
the non-Hermitian realm this is no longer true, and the norm
explicitly depends on time.

B. Initial density

The time and spatial evolution of the density profile n(x, t )
is captured by Eq. (5). At t = 0, we can calculate the initial
profile of the local density as well. It can be shown that it is
modeled by the spatial dependence of the chemical potential
μ(x). To show that, we express the Luttinger field φ(x) in
terms of the aq operators as φ(x) = φa(x) + δφ(x), where
φa(x) has the usual form [39]

φa(x) = φh(x) − iπ

L

∑
q �=0

√
L|q|
2π

1

q
e−iqx(a†

q + a−q ), (6)

where φh(x) = −(NL + NR)πx
L represent the background local

field and δφ(x) is the inhomogeneity induced by the chemical
potential

δφ(x) = 2iπ

L

∑
q �=0

√
L|q|
2π

1

q
e−iqxλq. (7)
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The initial density profile can be evaluated as

ni(x) = − 1

π
〈�0|∂xφ(x)|�0〉, (8)

with the expectation value taken with respect to the ground
state of Hinh given in Eq. (2). Taking into account that |�0〉 is
the vacuum state for the aq operators, it immediately implies
that

− 1

π
〈�0|∂xφa(x)|�0〉 = − 1

π
〈�0|∂xφh(x)|�0〉 = n0, (9)

with n0 = (NL + NR)/L representing the homogeneous den-
sity background. The inhomogeneous contribution in Eq. (7)
is Fourier transformed back to the real space, and the initial
density profile is simply

ninh(x, t = 0) = 1

πv
μ(x) + n0. (10)

Equation (10) shows that the profile of the density in the initial
state is determined exclusively by the chemical potential and
follows exactly its shape. Notice that in deriving Eq. (10) no
particular shape for μ(x) has been considered so the result is
valid for any spatial distribution of the chemical potential. At
the same time, the initial current is zero.

C. Density profile following the quench

Following the strategy put forward in Ref. [25], we can
evaluate n(x, t ) and j(x, t ) using the pseudo-Heisenberg time
evolution approach. Let us illustrate the derivation in terms
of the density profile; the derivation for the current pro-
file is similar with the proper replacement φ(x) → θ (x) in
Eq. (5) and will be discussed in Sec. II D. We first introduce
the pseudo-Heisenberg time dependent fields ψ (x, t > 0) =
eiHtψ (x)e−iHt and the non-Hermitian forward and backward
time evolution operator U (t ) = eiH†t e−iHt in terms of which
n(x, t ) becomes

n(x, t ) = − 1

π

〈�0|U (t )∂xφ(x, t )|�0〉
〈�0|U (t )|�0〉 . (11)

In any typical Hermitian problem UH(t ) = 1, but since
[H, H†] �= 0, it follows that U (t ) �= 1 for the non-Hermitian
evolution. Notice that the time dependent fields are not con-
structed in the regular way as in the Heisenberg picture but in
a modified pseudo-Heisenberg way which is more suitable for
our calculations. Using this construction, U (t ) is rewritten as

U (t ) =
∏
q>0

eC+(q,t )K+(q)eC0(q,t )K0(q)eC−(q,t )K−(q), (12)

in terms of the generators for the SU (1, 1) algebra K0(q) =
1
2 (b†

qbq + b−qb†
−q ), K+(q) = b†

qb†
−q, and K−(q) = b−qbq. Us-

ing the construction in Eq. (12) and the standard Baker-
Hausdorff expressions, the time dependence of the norm of
the wave function is evaluated as

N (t ) =
∏
q>0

ω̃2
q

ω̃2
q − 2g2 sin2 ω̃qt

e
2|λq|2 gω̃q sin 2ω̃qt+2g2 sin2 ω̃qt

ω̃2
q−2g2 sin2 ω̃qt . (13)

Details on the derivation of Eq. (13) are discussed in Ap-
pendix B. To evaluate the numerator in Eq. (11) and calculate
the time dependence of the density profile, it is required to
know the time evolution of the bq(t ) operators. Their time
dependence relies explicitly on the form of the final Hamilto-
nian and can be expressed exactly in terms of two Bogoliubov

coefficients uq(t ) and vq(t ) to which the time dependence is
completely transferred. In evaluating n(x, t ) and j(x, t ) we
normal order the product of various bq and b†

q operators. The
expressions for the Bogoliubov coefficients uq(t ) and vq(t ) are
derived in Appendix C.

With the exact analytical expressions for the coefficients
uq(t ) and vq(t ) at hand we can derive exact expressions for the
time dependence of the density and current profiles following
the quench by using Eq. (5). Introducing the notation βq(x) =
−π

L e−iqxe−α|q|/2
√

L|q|
2π

, for the overall prefactor in the θ (x) and
φ(x) fields and separating the contributions coming from the
creation and annihilation operators we can write ∂xφ(x, t ) =
∂xφ−(x, t ) + ∂xφ+(x, t ), with

∂xφ+(x, t ) =
∑
q>0

(u∗
q(t ) + vq(t ))(βq(x)b†

q + β∗
q (x)b†

−q)

∂xφ−(x, t ) =
∑
q>0

(uq(t ) − vq(t ))(βq(x)b−q + β∗
q (x)bq).

In evaluating n(x, t ) we follow the same strategy as the one in
computing the norm N (t ) and normal ordering the product of
various bq and b†

q operators.
The piece ∂xφ−(x, t ) gives a partial contribution to the

regular light cone. When evaluating n−(x, t ), the norm drops
out and we obtain

n−(x, t ) = 1

2πLṽ

∑
q �=0

(uq(t ) − vq(t ))e−iqxe−α|q|/2hq

� 1

4π ṽ
(μ(x − ṽ t ) + μ(x + ṽ t )). (14)

The contribution from ∂xφ+(x, t ) is more involved. Still, it can
be brought into a compact expression of the form

n+(x, t ) = 1

2πL

∑
q>0

(u∗
p(t ) + vp(t ))

× ω̃2
q − up(t )ω̃qg sin ω̃qt

ω̃2
q − 2g2 sin2 ω̃qt

2 sin(qx)e−α|q|μq. (15)

This part contributes to the regular light cone but also the
supersonic modes. To separate the two contributions we ex-
panded n+(x, t ) in Taylor series in sin2 ω̃qt . The zeroth order
term contributes to the regular light cone while all the other
higher order terms contribute to the supersonic modes. We
then have n(x, t ) = nr (x, t ) + ns(x, t ) with

nr (x, t ) = 1

2π ṽ
(μ(x − ṽt ) + μ(x + ṽt )), (16)

showing the development of the regular light cone after the
quench and ns describing the supersonic modes

ns(x, t ) = 1

2πLṽ

∑
q>0

∞∑
n=1

(
u∗

p(t ) + vp(t )
)

×
(

1 − up(t )
g sin ω̃qt

ω̃q

)

×
(√

2g sin ω̃qt

ω̃q

)2n

2i sin(qx)e−α|q|μq. (17)
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Notice that when the model is Hermitian, all the terms
∼ sin ω̃qt cancel and the contribution ns(t ) vanishes. For a
given profile of the initial chemical potential μ(x), the various
integrals in Eq. (17) can be computed term by term in the
perturbative expansion. If we consider the simplest chemical
potential profile corresponding to a steplike function of the
form μ(x) = μ0 sgn(x), the corresponding Fourier transform
is μp ∝ μ0

2i
p , and the integrals (sums) in Eq. (17) can be

performed order by order in the perturbation theory in g2/ṽ

to reveal to supersonic modes.

D. Current profile following the quench

Once the chemical potential is turned off, and the interac-
tion is quenched, the initial domain wall induces a change in
the local density and a complementary current flows across the
domain wall. Furthermore, the domain wall extends and trans-
forms into a central region inside the light cone characterized
by a steady current. The current density can be evaluated in
terms of the θ (x, t ) field

θ (x) = iπ

L

∑
q �=0

√
L|q|
2π

1

|q|e−iqx (b†
q − b−q), (18)

as

j(x, t ) = − 1

π

〈�0(t )|∂xθ (x)|�0(t )〉
N (t )

, (19)

which allows us to compute the current profile in a similar
fashion as we computed the local density. Performing similar
steps we can express the total current as a sum j(x, t ) =
jr (x, t ) + js(x, t ) where the regular light cone contribution is

jr (x, t ) = 1

2π
(μ(x − ṽt ) − μ(x + ṽt )), (20)

and a non-Hermitian part that can be again expressed as a
power series of the form

js(x, t ) = 1

2πL

∑
q>0

∞∑
n=1

(
up(t ) + v∗

p(t )
)

×
(

1 − up(t )
g sin ω̃qt

ω̃q

)

×
(√

2g sin ω̃qt

ω̃q

)2n

2 cos(qx)e−α|q|μq, (21)

an expression that allows us to compute the current order
by order in the perturbation theory in a manner similar to
Eq. (17).

Gathering the results for the density and the current pro-
files, following the quench we can express them in a compact
form. For the regular contribution responsible for the develop-
ing of the regular light cone we have[

nr (x, t )
jr (x, t )

]
= 1

2π

[
1
ṽ

1
ṽ

1 −1

][
μ(x − ṽt )
μ(x + ṽt )

]
. (22)

The other contributions, explicitly given in Eqs. (17) and (21)
for ns(x, t ) and js(x, t ) are more involved and describe the
supersonic modes. Their time dependences are responsible
for the supersonic modes and the formation of multiple light
cones. Although it displays a strong spatial and temporal

behavior in general, it vanishes in the long time limit, t → ∞,
close to the center x ∼ 0, implying that only the regular con-
tribution jr (x, t ) controls the transport properties in the steady
state.

E. Post-quench conductance

Following the quench, the initial domain wall develops into
a central region, delimited by the boundaries of the light cone.
This region extends ballistically in time in both directions with
the light speed velocity ±ṽ. In a weak sense, in this region a
local steady state is formed as the density equilibrates, but,
due to the chemical potential drop, a particle current flows
continuously. This allows us to define the conductance that
characterizes the nonequilibrium steady state across the inter-
face

G = 1

2

d j(x, t )

d μ0

∣∣∣∣ x → 0
μ0 → 0

. (23)

The regular contribution to the current gives a contribution
to the conductance Gr = G0 with G0 = e2/h the conductance
quantum upon reinserting original units. Interestingly, the
anomalous contribution to the current from supersonic modes
vanishes in the long time limit, implying Gs = 0, and the
conductance acquires an universal value given by Eq. (1) ir-
respective of the strength of the interaction. This conductance
is the unitary conductance of a single spinless channel and, at
the same time, it corresponds to the conductance of a LL con-
nected to leads [40,41]. In both these cases, the correlations
are characterized by fractional LL exponents [25] and the
quantized conductance occurs due to dissipation. However,
dissipation occurs within the LL due to imaginary interaction
in our case, while it takes place within the leads in the con-
ventional Hermitian setting [40,41]. This is to be contrasted to
the post-quench conductance of a Hermitian LL, characterized
by the Luttinger parameter [39] K , given by GH = G0/K ,
thus in case of the unitary evolution the conductance strongly
depends on the interaction strength [57] from the ensuing
nonequilibrium state.

III. LATTICE MODEL

We corroborate our analytical results with a numerical
analysis. For that we investigate numerically all the features
that we have addressed so far, such as the formation of the
light cone, the presence of the supersonic modes, and most
importantly we calculate the conductance across the interface
following the quench in a one-dimensional spinless lattice
model. The initial state is constructed as a matrix product state
by performing density matrix renormalization group (DMRG)
calculations [58] on the noninteracting spinless Hamiltonian

H (lat)
inh =

N∑
m=1

μmc+
mcm +

N∑
m=1

J

2
(c+

m+1cm + H.c.), (24)

subject to a site dependent chemical potential of the form
μm = μ0 sgn(m − N/2), realizing a domain wall. Here c†

m
are the creation operators at site m along the chain. In our
calculations we fixed the chain length to N = 100, while J ,
the nearest neighbor hopping, represents the energy unit.
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FIG. 1. (a) Formation of the regular light cone as well as the su-
personic modes in the density profile n(x, t ) for Jz = −0.3J . (b) Cuts
at a given time along the chain, displaying particles accumulation
between the regular and supersonic light cones. (c) Density plot for
the current j(x, t ). (d) Evolution of the current along the chain. In
panels (a) and (c) the white dashed lines represent the world lines for
the light cones.

The MPS wave function is then evolved in time using
the TEBD algorithm [48,49], with a non-Hermitian evolution
operator constructed from the Hamiltonian

H (lat) =
N∑

m=1

J + iJz

2
(c+

m+1cm + H.c.) − i
Jzπ

2
nm+1nm, (25)

where Jz is real and denotes the nearest neighbor interaction.
This model possesses a complex spectrum and is not PT
symmetric, but the low energy part of its spectrum can be
considered real, which influences the early time dynamics
[25]. When Jz is turned imaginary, Jz → −iJz, the model be-
comes the regular XXZ Hermitian Heisenberg model, which
is Bethe-Ansatz solvable [39] with a sound velocity vH ≈
J + (1 − π2/8)J2

z /J . It has a BKT [39] phase transition at
Jz/J = −2/(2 + π ). On the other hand, the low energy ex-
citations for the non-Hermitian version are sound waves with
sound velocity ṽ ≈ J + (π2/8 − 1)J2

z /J . Figure 1(a) displays
the density plot for the occupation n(x, t ) along the chain as a
function of time. The regular light cone is clearly visible but
also the formation of the second and third supersonic modes
that propagates at velocities vn = nṽ, n = 2, 3. The world
lines for the light cones are displayed with dashed lines.

The formation of various fronts is also visible in the den-
sity plot displaying the current j(x, t ) as well. Furthermore,
Figs. 1(b) and 1(d) present several cuts at fixed times along
the chain for the density and current profiles. In the cuts
representing j(x, t ) the formation of the plateau inside the
light cone, displaying the region with the constant currents
are clearly visible.

We compute the conductance numerically by using
Eq. (23). For that, we find the stationary current at the in-
terface in the long time limit, tJ ∼ 20, for various initial

FIG. 2. The universal conductance of the PT non-Hermitian Lut-
tinger model indicating the universal behavior predicted in Eq. (1)
(blue symbols). The red symbols correspond to the conductance of
the Hermitian interacting LL model, consisting in replacing Jz →
−iJz in Eq. (25). The red dashed line represents the fit with the
analytical expressions displayed in the legend. The initial state cor-
responds to a noninteracting model.

chemical potentials drops μ0 and then take the derivative
numerically. We perform an average over a time interval of
the order of 2–3/J to remove the local oscillations sometimes
visible in the current. For small enough μ0’s the stationary
currents depend linearly on the μ0, which allows us to extract
the conductance as the slope of the current. The final result
for the non-Hermitian conductance is displayed in Fig. 2.
Irrespective of the value of the coupling strength Jz, the
conductance remains universal and equal to the conductance
quantum in perfect agreement with bosonization from Eq. (1).
We note that Eq. (25) contains many other terms compared to
Eq. (4), nevertheless gives the very same quantized conduc-
tance. We also display the results for the Hermitian evolution,

FIG. 3. Conductance of the PT non-Hermitian Luttinger model,
when the initial state is a Hermitian interacting Luttinger liquid. The
conductance remains universal when the system is quenched from
an interacting state to a non-Hermitian model irrespective on the
strength of the initial and post-quench interactions.
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by replacing Jz → −iJz in Eq. (25) where the analytical pre-
diction from Ref. [57] fits also perfectly.

Our analysis extends as well to the case where the initial
state is the ground state of a Hermitian, interacting Luttinger
liquid. Using TEBD we found that the conductance inside
the light cone depends exclusively on the post-quench Hamil-
tonian and remains quantized when the system is quenched
to the non-Hermitian Hamiltonian. The results for the con-
ductance, when the system is quench from an interacting
initial state, are displayed in Fig. 3 and indicates that the
initial state has no effect on the conductance. Furthermore,
irrespective of the strength of the initial or final interactions,
the non-Hermitian dynamics following the quench displays a
conductance that remains always universal.

IV. CONCLUSIONS

We study the nonequilibrium dynamics and transport of a
PT-symmetric Luttinger liquid when the model is quenched
from a domain wall initial state. Due to nonunitary time
evolution, we identify the formation of supersonic modes on
top of the regular light cone both in the density and cur-
rent profiles after the quench. Most importantly, we find the
universal value, e2/h for the conductance at the interface,
which is a very robust analytical result, benchmarked by the
numerical simulations. The quantized conductance occurs due
to dissipation within the LL from the PT-symmetric interac-
tion. Moreover, for a unitary time evolution with a Hermitian
Luttinger liquid Hamiltonian, the resulting nonequilibrium
conductivity gets heavily renormalized by the interaction as
e2/hK . Our setup can in principle be realized in dissipative
lattices [59,60] for which our predictions can be tested exper-
imentally.
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APPENDIX A: ON THE CONTINUITY EQUATION

The continuity equation states that the local density can
only change when local current flows or some external source
or sink is present. A non-Hermitian system usually arises
from some interaction with the environment, therefore the
last terms are also expected in the continuity equation. A
non-Hermitian Hamiltonian can always be written as H =
H0 + iV with both H0 and V being Hermitian. The expectation
value of the local density n is

〈n〉 = 〈�(t )|n|�(t )〉
〈�(t )|�(t )〉 , (A1)

where |�(t )〉 = e−iHt |�0〉. Then, the time derivative of this
expectation value reads as [61]

∂t 〈n〉 = i
〈�(t )|H+n − nH |�(t )〉

〈�(t )|�(t )〉

− i
〈�(t )|n|�(t )〉
〈�(t )|�(t )〉

〈�(t )|H+ − H |�(t )〉
〈�(t )|�(t )〉

= i〈[H, n]〉 + 〈{V, n}〉 − 2〈n〉〈V 〉, (A2)

where [, ] and {, } stand for the commutator and anticom-
mutator, respectively. The first term on the right hand side
represents the conventional term for Hermitian systems, the
second term with the anticommutator stems from the non-
Hermitian contribution, namely from the interaction with the
environment, while the very last term originates from the
explicit normalization of the wave function in Eq. (A1).

Putting all this together, the continuity equation in one
dimension for a non-Hermitian system reads as

∂t 〈n〉 + ∂x〈 j〉 = 〈{V, n}〉 − 2〈n〉〈V 〉, (A3)

where the source term on the right hand side accounts for in-
teraction with the environment [13]. This equation is satisfied
by the density and current in Eq. (5).

APPENDIX B: NORM OF THE WAVE FUNCTION

The evaluation of the norm N (t ) in Eq. (13) is done by
using the expression for the evolution operator U (t ) from
Eq. (12). Keeping in mind that λq = −λ−q is an antisymmetric
function, the norm is cast in the following form

N (t ) =
∏
q>0

e−2|λq|2〈0|e−λ∗
q (bq−b−q )eC+(q,t )K+(q)

× eC0(q,t )K0(q)eC−(q,t )K−(q)e−λq (b†
q−b†

−q )|0〉. (B1)

Here we need to compute the expectation value with respect
to the initial state |�0〉 given in Eq. (3). In evaluating (B1),
the strategy is to normal order the exponentials with the anni-
hilation operators bq to the right and the creation operators b†

q
to the left. Let us discuss here the reordering of the last two
exponents in (B1), as the rest of the calculation is conceptually
the same. For that, we first expand the last exponential into
Taylor series

e−λq (b†
q−b†

−q ) =
∞∑

n=1

1

n!
(−λp)n(b†

q − b†
−q )n. (B2)

Next, keeping in mind that K−(q, t ) = b−qbq, it can be readily
shown using the Baker-Hausdorff formula that

eC−(q,t )K−(q)b†
p = (b†

q + C−(q, t )b−q )eC−(q,t )K−(q)

eC−(q,t )K−(q)b†
−p = (b†

−q + C−(q, t )bq )eC−(q,t )K−(q).

Performing the rotation for the whole series and reshaping the
result back into an exponential form we obtain

N (t ) =
∏
q>0

e(C−(q,t )−2)|λq|2〈0|e−λ∗
q (bq−b−q )eC+(q,t )K+(q)

× eC0(q,t )K0(q)e−λq (b†
q−b†

−q )|0〉. (B3)
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Performing similar transformations to fully normal order the
expression we obtain for the norm factor

N (t ) =
∏
q>0

e
C0(q,t )

2 e(C+(q,t )+C−(q,t )−2+2e
C0 (q,t )

2 )|λq|2 . (B4)

The exact expressions for the coefficients C±,0(q, t ) can be
obtained following the strategy discussed in Sec. II C. The
final expressions are

C0(q, t ) = −2 ln
ω̃2

q − 2g2 sin 2ω̃qt

ω̃2
q

C+(q, t ) = g(iωq sin ω̃qt + ω̃q cos ω̃qt ) sin ω̃qt

ω̃2
q − 2g2 sin2 ω̃qt

C−(q, t ) = C∗
+(q, t ), (B5)

which allows us to recover the expression for N (t ) in Eq. (13).
At t = 0, obviously N = 1 and the wave function is properly
normalized.

APPENDIX C: TIME DEPENDENCE
OF THE EVOLUTION OPERATORS

In this section we discuss the pseudo-Heisenberg time
evolution of the annihilation/creation operators. Their time
dependence is governed by bq(t ) = eiHt bq e−iHt , which

results in a Heisenberg equation of the form

∂t bq(t ) = i[H, bq(t )], ∂t b
†
q(t ) = i[H, b†

q(t )]. (C1)

Notice that the equation for b†
q(t ) is not recovered from the

one for bq(t ) simply by Hermitian conjugation. Computing
the commutators with the Hamiltonian (4), we obtain

∂t bq(t ) = −i ωqbq(t ) + gb†
−q(t )

∂t b
†
−q(t ) = i ωqb†

−q(t ) − gbq(t ). (C2)

To solve this set of equations we start by searching for a
general solution of the form[

bq(t )
b†

−q(t )

]
=

[
uq(t ) vq(t )

−v∗
q (t ) u∗

q(t )

][
bq

b†
−q

]
. (C3)

Such a solution is useful since time dependence is transferred
to the Bogoliubov coefficients uq(t ) and vq(t ) entirely. Us-
ing the commutativity relation [bq, b†

q] = 1, it follows that
|uq(t )|2 + |vq(t )|2 = 1 and that they satisfy a differential
equation similar to (C2). Finally the solution is captured by
the expressions

uq(t ) = cos ω̃qt − i
ωq

ω̃q
sin ω̃qt, vq(t ) = g

ω̃q
sin ω̃qt,

(C4)

in terms of the renormalized excitation energy of the quasi-
particles.
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