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We analyze quantum fluctuation effects at the onset of charge or spin-density wave order in two-dimensional
metals with an incommensurate nesting (2kF ) wave vector connecting two pairs of hot spots on the Fermi
surface. We first compute the momentum and frequency dependence of the fermion self-energy near the hot
spots to leading order in a perturbation expansion (one loop). Non-Fermi liquid behavior with a linear (in
energy) quasiparticle decay rate and a logarithmically vanishing quasiparticle weight is obtained. The momentum
dependence of the self-energy entails only finite renormalizations of the Fermi velocity and the Fermi-surface
curvature at the hot spots. The perturbative one-loop result is not self-consistent and casts doubt on the stability of
the 2kF quantum critical point. We construct a self-consistent solution of the one-loop equations with self-energy
feedback, where the quantum critical point is stabilized rather than being destroyed by fluctuations, while the
non-Fermi liquid behavior as found in the perturbative one-loop calculation is confirmed.
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I. INTRODUCTION

Quantum critical fluctuations at the onset of charge or
spin-density wave order in two-dimensional metals destroy
Fermi-liquid behavior and lead to unconventional dependen-
cies on temperature and other control parameters [1]. The
theory of such systems is difficult due to a complex interplay
of the critical order parameter fluctuations and the gapless
excitations of the electrons. A purely bosonic order parameter
theory as developed by Hertz [2] and Millis [3] may describe
some features, but it is not generally applicable since the
electronic excitations lead to singular interactions of the order
parameter fluctuations [4–6]. Secondary instabilities gener-
ated by the fluctuations, especially pairing instabilities, are
almost unavoidable and further complicate the analysis.

The most intensively studied case is the quantum critical
point (QCP) at the onset of Néel-type antiferromagnetic order
[7]. Non-Fermi-liquid behavior is obtained already at leading
order in perturbation theory, but new features appear at higher
orders [8]. Impressive analytical [9] and numerical [10] efforts
have led to substantial progress, but a complete theory of this
important universality class has not yet been constructed.

A special and particularly intricate situation arises when
the density wave vector is a nesting vector of the Fermi sur-
face, that is, when it connects Fermi points with antiparallel
Fermi velocities [11]. Charge and spin-correlation functions
exhibit a singularity at such wave vectors due to an enhanced
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phase space for low-energy particle-hole excitations. In inver-
sion symmetric crystals with a valence band dispersion εk,
nesting vectors Q are determined by the condition ε(Q+G)/2 =
εF , where G is zero or a reciprocal lattice vector, and εF is the
Fermi energy. Since nesting vectors in isotropic continuum
systems are determined by the Fermi-surface radius kF via the
simple relation |Q| = 2kF , we refer to nesting vectors also as
“2kF vectors”.

Nesting singularities are particularly pronounced in metals
with reduced spatial dimensionality. Charge and spin suscep-
tibilities in low-dimensional metals exhibit peaks at nesting
vectors, so that these vectors are natural charge or spin-density
wave vectors. For example, the ground state of the two-
dimensional Hubbard model undergoes a continuous quantum
phase transition into a spin-density wave state with a wave
vector satisfying the nesting condition, at least within mean-
field theory [12,13]. Also d-wave bond charge order generated
by antiferromagnetic fluctuations in spin-fermion models for
cuprates [14,15] occurs naturally with nesting wave vectors
[16,17].

Quantum criticality in a two-dimensional metal at the onset
of density wave order with a nesting wave vector was first ana-
lyzed by Altshuler et al. [18]. They obtained non-Fermi-liquid
power laws for the electron self-energy and the susceptibility
for the special case where the wave vector Q is not only a
nesting vector, but also half a reciprocal lattice vector. Later it
was shown that due to additional umklapp processes Landau
quasiparticles actually survive, albeit with an enhanced decay
rate, for the particular case where Q is the antiferromagnetic
wave vector (π, π ) [19,20]. For generic, that is, incommen-
surate [21] nesting vectors instead, Altshuler et al. [18] found
strong infrared divergences in two-loop contributions to the
susceptibility and concluded that the order-parameter fluc-
tuations destroy the QCP, replacing the second-order by a
first-order phase transition.

2469-9950/2021/104(12)/125123(18) 125123-1 Published by the American Physical Society

https://orcid.org/0000-0001-7585-6127
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.125123&domain=pdf&date_stamp=2021-09-15
https://doi.org/10.1103/PhysRevB.104.125123
https://creativecommons.org/licenses/by/4.0/


JÁCHYM SÝKORA AND WALTER METZNER PHYSICAL REVIEW B 104, 125123 (2021)

The analysis of non-Fermi-liquid behavior at the onset of
charge and spin-density wave order with an incommensurate
nesting vector in two-dimensional metals was initiated more
recently. The fermion self-energy was calculated to first order
(one loop) in the order parameter fluctuation propagator [22].
The fluctuation propagator was computed from a one-loop
approximation with bare particle-hole bubbles. A breakdown
of Landau Fermi-liquid theory was obtained at hot spots on
the Fermi surface, that is, Fermi points connected by the
ordering wave vector Q. Two qualitatively distinct cases arise
according to the number of hot spots connected by Q.

In the simplest case, Q connects only a single pair of
hot spots, and points typically in a high-symmetry direction
(axial or diagonal). The frequency dependence of the one-loop
fermion self-energy at the hot spots follows a power law with
an exponent 2

3 in this case [22]. The decay rate of fermionic
excitations is thus larger than their excitation energy in the
low energy limit. The momentum dependence yields a sin-
gular renormalization of the Fermi velocity and a flattening
of the Fermi surface near the hot spots [23]. An important
issue is the self-consistency of these results, or whether the
non-Fermi-liquid self-energy destroys the 2kF density wave
QCP, since it has a tendency to wipe out the 2kF peak in
the density wave susceptibility. It was shown that the 2kF

QCP can survive only with the assistance of a sufficiently
strong Fermi surface flattening around the hot spots [23].
This scenario was subsequently supported by a systematic ε

expansion around the critical dimension dc = 5/2, at least to
leading order in ε [24].

In the second case, the density wave vector Q connects two
pairs of hot spots. The Fermi velocities are collinear within
each pair, but not between the pairs. In Fig. 1 we show various
possible geometries, with Fermi surfaces and hot spot pairs on
the left, and the lines of all nesting vectors Q satisfying the
condition ε(Q+G)/2 = εF on the right. These lines are obtained
by backfolding the line consisting of all doubled Fermi wave
vectors 2kF into the first Brillouin zone. Wave vectors Q con-
necting two pairs of hot spots correspond to crossing points
of the lines of nesting vectors. The geometry in the top row
of Fig. 1 is realized by the spin-density wave QCP in the two-
dimensional Hubbard model, while the d-wave bond charge
order instability mentioned above provides an example for the
geometry in the second row. In the former case there is no
competing instability on the mean-field level, and fluctuation
induced pairing may set in only as a secondary instability at a
low energy scale. On the other hand, the d-wave bond charge
instability discovered by Metlitski and Sachdev [14] competes
with d-wave pairing on equal footing. For two hot spot pairs,
the imaginary part of the one-loop self-energy at the hot spots
was found to be a linear function of frequency, with a distinct
prefactor for positive and negative frequencies [22]. Hence,
the decay rate of fermionic excitations is proportional to their
excitation energy, implying a marginal breakdown of Fermi-
liquid theory.

In this paper we extend the analysis of fluctuation effects
at the onset of 2kF density wave order with two pairs of
hot spots. Our aim is not to establish the existence of a
2kF density wave QCP in a specific microscopic model, but
rather to investigate its universal properties under the assump-
tion that the density wave instability is not competing with

FIG. 1. Left: Fermi surfaces with two pairs of hot spots con-
nected by a density wave vector Q. Right: Lines of nesting vectors
and their crossing point corresponding to Q in the left panel. Top:
Q = (π, Q) with an incommensurate y-component Q. Center: Di-
agonal wave vector Q = (Q, Q) with incommensurate Q. Bottom:
Wave vector Q with two distinct incommensurate components.

other instabilities at comparable energy scales. We compute
the frequency dependence of the one-loop self-energy on the
imaginary frequency axis and show that the results are consis-
tent with the real frequency self-energy obtained previously
[22]. We also compute the momentum dependence near the
hot spots. Unlike the case of a single hot spot pair, [23] the
momentum dependence of the self-energy entails only a finite
renormalization of the Fermi velocity, and the renormalized
Fermi surface maintains a finite curvature at the hot spots.

The perturbative one-loop results are not self-consistent.
Incorporating the one-loop self-energy in the fermion prop-
agator can lead to a shift of the peak in the susceptibility
away from the nesting vector, which spoils the 2kF quantum
critical point. To include the self-energy feedback self-
consistently, we explore two distinct routes. First, we compute
the fluctuation propagator and the fermion self-energy from a
renormalization group flow. Due to a peculiar cutoff depen-
dence of the fermion self-energy, the self-energy feedback is
incomplete in this approach and the shift of the susceptibil-
ity peak persists. Second, we obtain a fully self-consistent
solution by solving the coupled integral equations for the
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particle-hole bubble and the fermion self-energy with self-
energy feedback. Here the peak at the nesting vector survives.

The paper is structured as follows. In Sec. II we derive the
order parameter susceptibility and effective interaction at the
quantum critical point in one-loop approximation with bare
fermion propagators. In Sec. III we evaluate the frequency and
momentum dependence of the one-loop fermion self-energy
near the hot spots. In Sec. IV we show that the perturbative
one-loop results are not self-consistent. In Sec. V we discuss
our renormalization group analysis of the quantum critical
point, and in Sec. VI we present the self-consistent solution
of the one-loop equations with self-energy feedback. A con-
clusion in Sec. VII closes the article.

II. RPA SUSCEPTIBILITY AND
EFFECTIVE INTERACTION

We consider a one-band system of interacting fermions
with a bare dispersion relation εk. Our calculations are based
on the standard quantum many-body formalism with an imag-
inary frequency representation of dynamical quantities [25].
The bare fermion propagator is given by

G0(k, ik0) = 1

ik0 − ξk
, (1)

where k0 is the frequency variable, and ξk = εk − μ is the
single-particle energy relative to the chemical potential μ. At
zero temperature the Matsubara frequency k0 is a continuous
variable.

We assume that, in mean-field theory, the system un-
dergoes a charge or spin-density wave instability with an
incommensurate and nested (2kF ) modulation vector Q at a
QCP, which can be reached by tuning a suitable parameter
such as electron density or interaction strength. We further
assume that on the mean-field level there is no competing
instability (such as pairing). Approaching the QCP from the
normal metallic regime, the instability is signalled by a di-
verging RPA susceptibility

χ (q, iq0) = χ0(q, iq0)

1 + gχ0(q, iq0)
, (2)

where g < 0 is the coupling constant parametrizing the bare
interaction in the instability channel, and χ0 is the bare sus-
ceptibility

χ0(q, iq0) = − N
∫

d2k
(2π )2

∫
dk0

2π
f 2
k−q/2 G0(k, ik0)

× G0(k − q, ik0 − iq0). (3)

N is the spin multiplicity (N = 2 for spin- 1
2 fermions), and

fp is a form factor related to the internal structure of the
density-wave order parameter. For an order parameter with
s-wave symmetry, fp is symmetric under rotations and reflec-
tions. In the following we assume fp = 1 for definiteness. A
generalization to form factors with other symmetries such as
d-wave symmetry is straightforward. Equation (2) holds also
for the spin susceptibility in the normal (symmetric) phase of
spin-rotation invariant systems, where all components of the
spin susceptibility are equal.

FIG. 2. Left: Normal and tangential momentum coordinates for
momenta near a density wave vector Q on the 2kF line. Right:
Normal and tangential coordinates for momenta near Q at a crossing
point of two 2kF lines.

The bare susceptibility χ0(q, iq0) exhibits a square-root
singularity on the 2kF line defined by all 2kF vectors in q
space. To parametrize momenta near a 2kF momentum Q,
we introduce relative coordinates normal and tangential to the
2kF line at Q, which we denote by qr and qt , respectively (see
Fig. 2). For momenta near Q and low frequencies, the bare
susceptibility can be expanded as [18,22]

χ0(q, iq0) = χ0(Q, 0) − N[a h(eq, q0) − b eq − c qt ], (4)

where a and b are positive constants, c is a real constant, and

h(eq, q0) = √
eq + iq0 + √

eq − iq0 =
√

2

√√
e2

q + q2
0 + eq.

(5)
The energy-momentum relation eq is given by

eq = vF qr + q2
t

4m
, (6)

where vF is the Fermi velocity at the hot spots on the
Fermi surface ±kH connected by Q, and m parametrizes the
Fermi-surface curvature at these points (mvF is the radius of
curvature). Hence, eq/vF is the oriented distance of q from the
2kF line. The prefactor of the square-root term is determined
by the Fermi velocity and curvature near ±kH as

a =
√

m

4πvF
, (7)

while the other constants b and c receive contributions from
everywhere. For fermions with a parabolic dispersion in the
continuum and a constant form factor, b and c vanish, as can
be seen from Stern’s exact analytic formula for χ0 in this case
[26]. The constant c vanishes also at high-symmetry points
for lattice fermions, especially if kH points along an axis or
a diagonal in the Brillouin zone. In this case a correction of
order q2

t may become relevant [23].
Throughout this paper we consider the case where the

ordering wave vector Q connects two pairs of hot spots ±kH

and ±k′
H on the Fermi surface. The wave vector Q is then

a crossing point of two 2kF lines, as shown in Fig. 1 (right
panel). Let qr and qt be the normal and tangential coordinates
relative to the first of the 2kF lines as introduced above. The
normal and tangential coordinates relative to the second 2kF
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line, q′
r and q′

t , respectively, are related to the former by

q′
r = qr cos θ + qt sin θ,

q′
t = qt cos θ − qr sin θ, (8)

where θ is the angle between the Fermi-surface normal vec-
tors at kH and k′

H , which is also the angle between the two
2kF lines crossing at Q (see Fig. 2). The 2kF singularities on
these two 2kF lines need to be added, such that [22]

χ0(q, iq0) = χ0(Q, 0) − N[a h(eq, q0)

+ a′h(e′
q, q0) − b eq − c qt ], (9)

where eq and qt are defined relative to the first 2kF line, while
e′

q = v′
F q′

r + 1
4m′ q′

t
2 is defined relative to the second 2kF line.

The last two terms in Eq. (9) describe the leading regular
momentum dependence near Q. We have chosen the variables
eq and qt to parametrize this dependence [27]. The hot spots
are often related by a point group symmetry of the lattice, as
in the first two examples in Fig. 1, so that vF = v′

F , m = m′,
and a = a′. The bare susceptibility exhibits a peak at Q if and
only if c θ > 0. In the following we assume that this is the
case.

At the QCP one has gχ0(Q, 0) = −1, so that the RPA
susceptibility assumes the singular form

χ (q, iq0) = − g−1χ0(Q, 0)

N[a h(eq, q0) + a′h(e′
q, q0) − b eq − c qt ]

.

(10)

To deal with the critical order parameter fluctuations, the
perturbation expansion has to be organized in powers of a
dynamical effective interaction. This arises naturally as a
boson propagator by decoupling the bare interaction in the
instability channel via a Hubbard-Stratonovich transformation
[2,3]. Alternatively it can be obtained by an RPA resummation
of particle-hole bubbles or ladders. In the simplest case of a
charge-density wave instability in a spinless fermion system,
the RPA effective interaction can be written as

D(q, iq0) = g

1 + gχ0(q, iq0)
. (11)

For a charge-density wave instability in a spin- 1
2 fermion sys-

tem, the effective interaction has the diagonal spin structure

Dσ ′
1σ

′
2σ1σ2 (q, iq0) = δσ1σ

′
1
δσ2σ

′
2
D(q, iq0), (12)

where σ1, σ2 (σ ′
1, σ

′
2) are the spin indices of the ingoing

(outgoing) fermions. For a spin-density wave, the effective
interaction acquires a nondiagonal spin structure. In a spin-
rotation invariant system of spin- 1

2 fermions, it can be written
as

Dσ ′
1σ

′
2σ1σ2 (q, iq0) = τσ1σ

′
1
· τσ2σ

′
2

D(q, iq0), (13)

where τ = (τ x, τ y, τ z ) is the vector formed by the three Pauli
matrices τ x, τ y, τ z [28].

Expanding the bare susceptibility as in Eq. (9), the effective
interaction at the QCP assumes the asymptotic form

D(q, iq0) = − 1

N[a h(eq, q0) + a′h(e′
q, q0) − b eq − c qt ]

.

(14)

It thus features the same singularity as the RPA susceptibility.
In case that the coupling g has a (regular) momentum depen-
dence for q near Q, the coefficients b and c are not determined
by χ0(q, 0) only, but receive additional contributions from the
expansion of g−1(q) around Q.

III. ONE-LOOP FERMION SELF-ENERGY

To leading order in the effective interaction, the fermion
self-energy is given by the one-loop expression


(k, ik0) = − M
∫

d2q
(2π )2

∫
dq0

2π
D(q, iq0)

× G0(k − q, ik0 − iq0), (15)

with M = 1 for a charge density and M = 3 for a spin-density
instability. We evaluate 
(k, ik0) for low frequencies k0 and
momenta k near one of the hot spots, say kH . The dominant
contributions come from momentum transfers q near Q, such
that k − q is situated near the antipodal hot spot −kH .

In our derivations we assume that the Fermi surface is
convex at the hot spots. Results for the case of a concave
Fermi surface follow from a simple particle-hole transfor-
mation. Using normal and tangential coordinates for k near
kH , we expand the dispersion relation to leading order as
ξk = vF kr + 1

2m k2
t , and ξk−q = −vF (kr − qr ) + 1

2m (kt − qt )2

for q near Q.
Inserting Eq. (14) into Eq. (15), the one-loop self-energy is

thus given by the integral


(k, ik0) = M

N

∫
dqt

2π

∫
dqr

2π

∫
dq0

2π

× 1

i(k0 − q0) + vF (kr − qr ) − 1
2m (kt − qt )2

× 1

a h(eq, q0) + a′h(e′
q, q0) − b eq − c qt

. (16)

Note that we have not yet introduced an ultraviolet cutoff for
the momentum integral. We will do so at a later stage of the
evaluation, whenever needed.

A. Frequency dependence at hot spot

For finite frequencies (k0 �= 0) the self-energy is complex.
The imaginary part of the integral in Eq. (16) diverges loga-
rithmically for large momenta, such that an ultraviolet cutoff
is needed. In the low-frequency limit, the imaginary part of
the self-energy at a hot spot can be computed analytically (see
Appendix A), and behaves as

Im
(kH , ik0) = − Mk0

πNα
ln

α�

|k0| + O(k0), (17)

where

α = 8πvF |c|, (18)

and � is an ultraviolet momentum cutoff. In the evaluation
of Im
(kH , ik0), a cutoff limiting the geometric mean of |eq|
and q2

t /4m turned out to be sufficient and convenient (see
Appendix A). Other choices of a cutoff would merely amount
to a different factor in the argument of the logarithm.
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FIG. 3. The function R(α).

Subtracting the zero frequency constant, the real part of the
self-energy is finite, that is, it does not require any ultraviolet
cutoff. A simple rescaling of variables yields

Re
(kH , ik0) − 
(kH , 0) = −M|k0|
πNα

R(α) (19)

for k0 → 0, where R(α) is a real function depending only
on the parameter α. The function R(α) is given by a double
integral, which does not seem to be elementary [see Eq. (A15)
in Appendix A]. However, we could show analytically that
R(α) → 1 for α → ∞. In Fig. 3 we plot R(α) as obtained
from a numerical integration of Eq. (A15).

The leading low-frequency behavior of the one-loop self-
energy, Eqs. (17) and (19), exhibits a remarkable cancellation.
Although the tangential momentum dependence of ξk and the
corresponding Fermi-surface curvature were crucial in deriv-
ing these results, the mass m, which determines the curvature
radius, drops out. Moreover, the parameters characterizing the
fermion dispersion near k′

H do not appear in the asymptotic
expressions.

In Ref. [22] the one-loop self-energy was evaluated on the
real frequency axis. The result obtained in that paper can be
written in the following form [29]

Im
(kH , ω + i0+) = −M

N
Csω

(α)|ω|, (20)

where sω is the sign of ω, and

Csω
(α) = sω

π

∫ 1

0
dω̃

∫ ∞

0

d κ̃√
κ̃

Im[
√

(2ω̃ − 1)sω + i0+ − κ̃

+
√

sω − i0+ − κ̃ + α
√

κ̃]−1. (21)

For large α, these coefficients have the simple form C+ =
( 1

2 − 1
π

) 1
α

and C− = ( 1
2 + 1

π
) 1
α

. We can relate these results
for the one-loop self-energy to our results on the imaginary
frequency axis by using the Kramers-Kronig-type relation for
the self-energy in the complex frequency plane


(kH , z) = − 1

π

∫ ∞

−∞
dω

Im
(kH , ω + i0+)

z − ω
, (22)

where z is an arbitrary complex number (but not real), and
we have dropped the momentum argument. Inserting the real-

frequency behavior (20), one finds

Re
(kH , ik0) − 
(kH , 0) = M

2N
[C+(α) − C−(α)]|k0|. (23)

For large α, this implies Re
(kH , ik0) − 
(kH , 0) =
− M

πNα
|k0| in agreement with Eq. (19). For z = ik0,

the imaginary part of the integral in Eq. (22) diverges
logarithmically. Restricting the frequency integration by an
ultraviolet cutoff |ω| < �ω one obtains

Im
(kH , ik0) = − M

πN
[C+(α) + C−(α)] k0 ln

�ω

|k0| + O(k0).

(24)

This is consistent with Eq. (17) if C+(α) + C−(α) = 1
α

. In
Ref. [22] this latter relation was reported only for the limit
α � 1, while it is actually true for any α. Note that the
momentum cutoff � in Eq. (17) is not equivalent to the
frequency cutoff �ω. Comparing Eqs. (17) and (24) suggests
that a momentum cutoff � corresponds to a frequency cutoff
�ω = α�. Anyway, numerical prefactors such as α in the
argument of the logarithm can also be absorbed in the sub-
leading correction of order k0.

The above results have been derived for the case where
the Fermi surface is convex at the hot spots. For a concave
Fermi surface, Eq. (17) for Im
(kH , ik0) remains the same, in
Eq. (19) for Re
(kH , ik0) − 
(kH , 0) there is a sign change
(from minus to plus) on the right-hand side, and the expres-
sions for C+(α) and C−(α) in Eq. (21) are exchanged.

The logarithm in Eq. (17) implies a logarithmic diver-
gence in the one-loop contribution to the inverse quasi-
particle weight, Z = 1 − ∂
(kH , ik0)/(∂ik0) ∼ ln(α�/|k0|)
[30]. Hence, Landau quasiparticles do not seem to exist at the
hot spots. Moreover, the self-energy exhibits an anomalous
real part proportional to |k0|. This contribution is directly
related to the asymmetry of the real frequency self-energy
with respect to a sign change of ω.

An asymmetric real frequency dependence of the imagi-
nary part of the self-energy on the Fermi surface, and the
related large real part of the Matsubara self-energy, is unusual.
Interestingly, a similar asymmetry, albeit with a nonlinear
power law, has been obtained for the (momentum indepen-
dent) self-energy of the complex Sachdev-Ye-Kitaev (SYK)
model [31,32] and, most recently, also for the Yukawa-SYK
model [33].

B. Momentum dependence near hot spot

We now discuss the momentum dependence of the one-
loop self-energy near the hot spot kH at zero frequency, which
we denote by 
(kr, kt ), where kr and kt are the normal and
tangential momentum coordinates, respectively, relative to the
hot spot, and the frequency argument has been dropped. The
leading normal momentum dependence for small kr has the
form


(kr, 0) − 
(0, 0) = M

N
ar,skr

(α) vF kr, (25)

where ar,±(α) are positive numbers depending on α and on
the sign of kr . The derivation of this result and an expression
for ar,±(α) in the form of a two-fold integral is provided in
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FIG. 4. The coefficients ar,+ and ar,− as a function of the parameter α. On the right we plot αar,± to show the behavior for large α.

Appendix A. No ultraviolet cutoff is needed here. In Fig. 4
we show the dependence of ar,±(α) on α. One can see that
ar,−(α) > ar,+(α) for all α. For small α, one finds ar,+ ∼
const and ar,− ∼ log(1/α), while for large α both coefficients
ar,± are of order log(α)/α. Due to the positive sign of ar,±(α),
the self-energy enhances the bare Fermi velocity of the sys-
tem. The enhancement is stronger for kr < 0 than for kr > 0,
leading to a kink in the dispersion relation at the hot spot. The
above results have been derived for a convex Fermi surface.
For a concave Fermi surface one obtains the same results with
ar,+(α) and ar,−(α) exchanged.

The leading tangential momentum dependence for small kt

has the form


(0, kt ) − 
(0, 0) = M

N
at (α)

√
�/m kt + O

(
k2

t

)
, (26)

where at (α) is a dimensionless function of α, and � is an
ultraviolet cutoff on eq and q0. The derivation of this result
is provided in Appendix A. The linear kt dependence of the
self-energy entails a tilt of the Fermi surface at the hot spot.
A deformation of the Fermi surface due to interactions is a
generic phenomenon, not restricted to critical behavior. Since
the hot spots and their antipodes on the Fermi surface are
related by point group symmetries, the tilt does not spoil the
2kF nesting condition of collinear Fermi velocities. Hence, the
critical behavior is not affected by this tilt.

To analyze the contribution of order k2
t , we have evaluated

the second tangential momentum derivative of the self-energy
∂2

kt

(0, kt ) at kt = 0. Applying this derivative to Eq. (16) and

pulling it under the integral leads to an ill-defined expression
due to multiple poles for zero frequency and momenta on the
Fermi surface. The singularity can be regularized by intro-
ducing an infrared frequency cutoff �IR. Qualitatively, this
regularization corresponds to a finite temperature T , since the
lowest fermionic Matsubara frequencies are given by ±πT
for T > 0. The resulting integral is convergent for any kt ,
including kt = 0, and it does not require any ultraviolet cut-
off. A numerical evaluation of the integral shows that the
regularized integral converges to a finite number even in the
limit �IR → 0 (taken after integration). Hence, there is only
a finite renormalization of the quadratic kt dependence of
the fermionic dispersion. The mass m and the Fermi-surface
curvature thus remain finite.

IV. SELF-CONSISTENCY CHECK

The self-energy obtained from the perturbative one-loop
calculation modifies the fermion propagator substantially at
the hot spots. Since the effective interaction D and the fermion
self-energy were computed with bare fermion propagators,
we need to check whether the results remain qualitatively the
same when the bare propagator is replaced by the interacting
propagator with the non-Fermi-liquid form

G(k, ik0) = 1

Z (k0)ik0 + Z ′|k0| − ξ̄k
(27)

for low frequencies k0 and momenta k near a hot spot. From
the Dyson equation G−1 = G−1

0 − 
 and Eqs. (17) and (19)
one can read off the renormalization factors

Z (k0) = 1 + M

πNα
ln

α�

|k0| , (28)

Z ′ = M

πNα
R(α). (29)

The dispersion relation ξ̄k in Eq. (27) has a renormalized
Fermi velocity following from the momentum dependence of
the self-energy in Eq. (25),

v̄F,skr
= vF + M

N
ar,skr

vF , (30)

with a distinct renormalization for momenta inside and out-
side the Fermi surface, and a renormalized mass m̄.

Equation (27) describes the frequency dependence for
k0 → 0 only for hot spot momenta. For momenta near a
hot spot the frequency dependence is the same only above a
momentum-dependent crossover scale, below which Fermi-
liquid behavior with a large finite Z and a vanishing Z ′ is
recovered. The crossover scale is of order kr in the normal
direction, and of order k2

t in the tangential direction. Approx-
imating the fermion propagator by Eq. (27) in quantities that
involve momentum integrals of G(k, ik0) will lead to quan-
titative errors, but it is not expected to affect the qualitative
behavior.

In a self-consistent one-loop calculation, the effective in-
teraction D is still given by the RPA form

D(q, iq0) = g

1 − g�(q, iq0)
(31)
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FIG. 5. Singular part of the static particle-hole bubble �(q, 0)
as a function of eq as obtained from fermion propagators with Z
factors resulting from the frequency dependence of the one-loop
self-energy. The various curves correspond to distinct choices of Z̄ ′,
while Z̄ = 2/π is fixed. The UV cutoff � has been set to one. The
other parameters are N = m = vF = 1.

as in Eq. (11), where the particle-hole bubble

�(q, iq0)=N
∫

d2k
(2π )2

∫
dk0

2π
G(k, ik0) G(k− q, ik0− iq0),

(32)

is now being computed with the interacting propagator G
instead of the bare one. Vertex corrections do not play an
important role here, since there are no singular one-loop ver-
tex corrections for incommensurate density waves [18]. For
ordering wave vectors distinct from half a reciprocal lattice
vector, there is no coalescence of divergences of propagators
in the vertex correction.

To extract the leading momentum and frequency depen-
dence of �(q, iq0) for momenta near Q and low frequencies,
we expand the dispersion ξ̄k to linear order in kr and to
quadratic order in kt as previously. We first discard the (fi-
nite) renormalizations of the dispersion and replace ξ̄k by the
bare dispersion ξk, focusing thus on the changes imposed by
the frequency dependence of the self-energy. The momentum
integrals in Eq. (32) can then be computed analytically. In
Appendix B we derive the result

δ�(q, iq0) = �(q, iq0) − �(Q, 0)

= −N

√
m

4πvF

[∫
dk0

|�(k0 − q0) − �(−k0)|√−eq + {k0} + {k0 − q0}

−
∫

dk0√
2{k0}

]
, (33)

where {k0} = Z (k0)ik0 + Z ′|k0|. For a numerical evaluation of
the frequency integral in Eq. (33), we extend Eq. (27) to large
frequencies by the ansatz Z (k0) = 1 + Z̄ ln (1 + �/|k0|) and
Z ′ = Z̄ ′/(1 + |k0|/�), where Z̄ and Z̄ ′ are constants, and �

is an arbitrary ultraviolet cutoff. In this way the propagator
has the correct large frequency asymptotics G ∼ (ik0)−1 for
k0 → ∞. Equations (28) and (29) imply that the ratio Z̄ ′/Z̄ is
given by R(α). In Fig. 5 we plot the static (q0 = 0) particle-
hole bubble δ�(q, 0) as a function of eq for Z̄ = 2/π and
various choices of Z̄ ′. One can see that δ�(q, 0) exhibits a
peak at q = Q only if Z̄ ′ > 1. Since the behavior for small
eq is determined by low-frequency contributions, the criterion

FIG. 6. Singular part of the static particle-hole bubble �(q, 0)
as a function of qr at qt = 0 as obtained from fermion propagators
with renormalizations resulting from the momentum and frequency
dependence of the one-loop self-energy. The various curves corre-
spond to distinct choices of the parameter α. The other parameters
are M = N = m = vF = 1.

for a peak is independent of the choice of � and depends only
on the ratio Z̄ ′/Z̄ . Hence, a peak is obtained if and only if
this ratio is larger than π/2. However, the perturbative result
yields Z̄ ′/Z̄ = R(α), which is smaller than one. The one-loop
fermion self-energy computed with bare propagators thus re-
moves the peak in the particle-hole bubble at the nesting
vector, and thus the corresponding peak in the susceptibility
and in the effective interaction D. The 2kF quantum critical
point seems thus spoiled by the self-energy feedback, and the
perturbative calculation is not even qualitatively consistent.

We now analyze the effect of the Fermi-velocity renor-
malization (30) generated by the momentum dependence of
the self-energy. Although this is a finite renormalization, it
leads to a qualitative change since the renormalization fac-
tors differ for particles inside and outside the Fermi sea. We
compute δ�(q, iq0) for momenta near Q and low frequencies
as previously, but now with the renormalized Fermi velocity
as obtained from the one-loop self-energy. We still ignore the
finite renormalization of the mass. In this case only the kt inte-
gration in Eq. (32) can be performed analytically by residues,
but the remaining two integrals can be easily carried out nu-
merically. In Fig. 6 we show the resulting static particle-hole
bubble δ�(q, 0) as a function of qr for various choices of the
parameter α. The Z factors in the fermion propagators assume
the α-dependent values described by Eqs. (28) and (29) at
low frequencies. The renormalized Fermi velocity is given by
Eq. (30) for all momenta. One can see that that �(q, 0) now
exhibits a sharp peak at Q for sufficiently large values of α.
The peak at Q is again destroyed for small α, but this time
due to a change of slope for positive qr . The critical value for
the stability of the peak at Q is αc ≈ 0.03. Note that this value
depends on the choice of M and N . For M = 1 and N = 2 we
find αc ≈ 1. In any case, the Fermi velocity renormalization
with a larger renormalization factor for particles inside the
Fermi sea helps in stabilizing the QCP with a nested wave
vector. Indeed, taking only the Fermi-velocity renormalization
into account, and ignoring the frequency dependence of the
self-energy, we found that the peak at Q is stabilized for any
choice of α.
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While the QCP seems stabilized at least for sufficiently
large α, the one-loop self-energy feedback leads to a steeper,
nonlinear momentum dependence of �(q, 0) for negative
qr . This, in turn, reduces the singular contributions to the
self-energy, so that the perturbative one-loop result with bare
propagators is not self-consistent anyway.

In the following two sections we try to incorporate the
self-energy feedback self-consistently, first by a renormal-
ization group flow, and then by a self-consistent solution of
the coupled integral equations for the particle-hole bubble
and the fermion self-energy. In both sections we focus on
the frequency dependence of the self-energy, discarding its
momentum dependence for simplicity.

V. RENORMALIZATION GROUP ANALYSIS

A systematic way of dealing with low-energy singu-
larities and the corresponding divergences in perturbation
theory is provided by the renormalization group, where self-
consistency can in principle be achieved by solving a set of
flow equations, that is, ordinary differential equations, instead
of solving nonlinear integral equations. In this section we
derive and solve a flow equation for the fermion self-energy
with self-energy feedback on the right-hand side, and we
compare the results to those from perturbation theory. To
access the full frequency dependence of the self-energy, we
use a functional renormalization group (fRG) framework [34].
Flow equations based on the fRG have already been applied to
other quantum critical points in two-dimensional interacting
fermion systems, for example, at the onset of nematic [35]
and (non-nested) antiferromagnetic [36] order in metals, and
at the onset of superfluidity in semimetals [37].

A. Flow equation

To capture order parameter fluctuation effects efficiently,
it is convenient to decouple the two-fermion interaction by
introducing a bosonic order parameter field via a Hubbard-
Stratonovich transformation [38,39]. The system is then
described by a coupled fermion-boson theory with a bare
fermion propagator G0(k, ik0) = [ik0 − ξk]−1, a bare boson
progagator D0(q, iq0) = g, and a constant Yukawa interaction,
which couples the fermionic charge or spin density linearly to
the boson field. The bare Yukawa coupling is equal to one.

The fRG is based on a scale-by-scale evaluation of the
functional integral representing the partition function and cor-
relation functions of the system [34]. A flow is generated by
letting the bare propagator depend on a flow parameter �,
usually an infrared cutoff. The corresponding scale-dependent
effective action �� interpolates smoothly between the bare
action of the system and the final effective action � =
lim�→0 ��, from which the grand canonical potential, the
self-energy, and higher order vertex functions can be obtained.
The flow of �� is governed by an exact functional flow
equation [40].

We impose a sharp frequency cutoff on the fermion propa-
gator, that is,

G�
0 (k, ik0) = �(|k0| − �)

ik0 − ξk
. (34)

This suppresses all contributions to the functional integral at
the initial cutoff �0 = ∞, and it regularizes the Fermi-surface
singularity at k0 = ξk = 0 until � → 0. No cutoff is needed
for the bare boson propagator D0, since it is bounded, and also
the full boson propagator remains finite as long as � > 0.

The exact functional flow equation for �� leads to an
infinite hierarchy of flow equations for the self-energies (for
fermions and bosons) and vertex functions of any order [34].
We truncate this hierarchy at the leading order, that is, we
keep only the self-energies and the Yukawa vertex. For in-
commensurate density waves, the Yukawa vertex receives no
singular contributions because of the absence of coalescent
divergences in the vertex correction [18]. Neglecting its flow
altogether does therefore not affect the qualitative behavior of
the self-energies. We thus fix the Yukawa coupling at its initial
value (one).

The scale-dependent self-energies are related to the full
and bare propagators by the usual Dyson equations, that is
G� = [(G�

0 )−1 − 
�]−1 and D� = [(D0)−1 − ��]−1, where

� and �� are the fermionic and bosonic self-energies,
respectively. The flow equation for the fermion self-energy
reads

∂�
�(k, ik0)

= −M
∫

d2q
(2π )2

∫
dq0

2π
D�(q, iq0) S�(k − q, ik0 − iq0),

(35)

where S� is the single-scale propagator [34]

S�(k, ik0) = ∂G�(k, ik0)

∂�

∣∣∣∣

�=const

= − δ(|k0| − �)

ik0 − ξk − 
�(k, ik0)
. (36)

The flow equation for the boson self-energy has the form

∂���(q, iq0)

= N
∫

d2k
(2π )2

∫
dk0

2π
[S�(k, ik0) G�(k − q, ik0 − iq0)

+ G�(k, ik0) S�(k − q, ik0 − iq0)]. (37)

These flow equations can be derived by inserting the trunca-
tion described above into the exact hierarchy of flow equations
[34]. Note that they have the same form as a � derivative
of the perturbative expressions Eqs. (15) and (32), with full
and scale-dependent propagators, and the proviso that on the
right-hand sides the derivative acts only on the explicit cutoff
dependence of G�.

Due to the δ function in the single-scale propagator S�,
the frequency integral in Eq. (35) can be easily carried out,
leading to

∂�
�(k, ik0)

= M

2π

∑
s=±1

∫
d2q

(2π )2

D�(q, ik0 − is�)

is� − ξk−q − 
�(k − q, is�)
.

(38)

We focus on the frequency dependence of the self-energy
at a hot spot as described by the function 
�

H (ik0) =
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�(kH , ik0) − 
�(kH , 0). Neglecting the q dependence of
the self-energy on the right-hand side of the flow equation, and
absorbing the constant 
�(kH , 0) by a shift of the chemical
potential (keeping the Fermi surface fixed), we obtain the
simplified flow equation

∂�
�
H (ik0)

= M

2π

∑
s=±1

∫
d2q

(2π )2

D�(q, ik0 − is�) − D�(q,−is�)

is� − ξkH −q − 
�
H (is�)

.

(39)

The singular contributions to the fermion self-energy are due
to momentum transfers q near Q. We therefore can use the
coordinates qr and qt as in the perturbative calculation, and ex-
pand ξkH −q = vF qr + 1

2m q2
t . An ultraviolet cutoff �q restricts

the momentum integral to |qr | � �q and |qt | � �q.
To compute the boson self-energy ��, we partition the

k-integration domain in Eq. (37) in regions close to the hot
spots kH and k′

H (so that k − q is close to −kH and −k′
H ,

respectively), and regions far from the hot spots. The singular
part of �� is entirely due to the former regions. We denote the
contribution from k near kH as ��

H and the contribution from
k near k′

H as ��
H ′ . The total self-energy can thus be written as

�� = ��
H + ��

H ′ + ��
reg, where the last contribution comes

from momenta k far from kH and k′
H and is regular even

for � → 0. For q near Q, the regular part can be expanded
to linear order in eq and qt as ��

reg(q, iq0) = ��
reg(Q, 0) −

N (b�eq + c�qt ). Its frequency dependence is irrelevant com-
pared to the singular terms.

The flow equations for ��
H and ��

H ′ containing the singular
contributions can be simplified by expanding the dispersion ξk
around the hot spots. For example, for k near kH , we expand
ξk = vF kr + 1

2m k2
t and ξk−q = −vF (kr − qr ) + 1

2m (kt − qt )2.
Inserting this expansion, the momentum integral in the flow
equation (37) is convergent without the need of an ultraviolet
cutoff. For a momentum-independent self-energy, the momen-
tum integral can be performed analytically. Extending the
integration region of kr and kt to infinity does not affect the
low-frequency behavior, and allows for an easy evaluation via
the residue theorem. The calculation is basically the same as
the one leading to Eq. (B2) in Appendix B, and yields

∂���
H (q, iq0)

= N

√
m

4πvF

∫
dk0

|�(k0 − q0) − �(−k0)|√−eq + {k0} + {k0 − q0}
× [δ(|k0| − �)�(|k0 − q0| − �)

+�(|k0| − �)δ(|k0 − q0| − �)]

= N

√
m

4πvF

∑
s=±1

1√−eq + {s�} + {s(� + |q0|)}
, (40)

where {k0} = ik0 − 
�
H (k0). The flow equation for

��
H ′ (q, iq0) has the same form with eq replaced by e′

q.
For large �, the flow generates only smooth contributions.

Hence, we do not start the flow at �0 = ∞, but rather at
some finite �0. In the regular part of �� we discard the con-
tributions from � < �0 and insert fixed (scale-independent)
parameters for ��

reg(Q, 0), b�, and c�. By this procedure

we just miss some finite renormalizations. Hence, the scale-
dependent boson propagator has the final form

D�(q, iq0) = [
ḡ−1 − ��

H (q, iq0) − ��
H ′ (q, iq0)

+ N (b eq + c qt )
]−1

, (41)

where ḡ−1 = g−1 − �reg(Q, 0), and the flow of ��
H (q, iq0)

and ��
H ′ (q, iq0) is determined by Eq. (40). To tune to the

quantum critical point, the renormalized coupling ḡ has to be
chosen such that

ḡ−1 = lim
�→0

[
��

H (Q, 0) + ��
H ′ (Q, 0)

]
. (42)

B. Results

We now show results for the fermion self-energy and the
boson propagator as obtained from a numerical solution of the
flow equations. We choose a fixed set of parameters M = N =
vF = v′

F = m = m′ = 1, and b = c = 1/(8π ). The angle θ

between the Fermi-surface normal vectors at kH and k′
H is

chosen as π/2, such that q′
r = qt and q′

t = −qr [41]. For the
initial value of the frequency cutoff we choose �0 = 10, and
the momentum integrals for the fermion self-energy are cut
off by �q = 1. Other choices of the cutoffs lead to the same
qualitative behavior.

The coupling constant ḡ is tuned to the quantum criti-
cal point, that is, we try to choose it such that Eq. (42) is
satisfied at the end of the flow. However, it turns out that
the effective interaction diverges at a wave vector Q̄ slightly
away from the nesting vector Q (see below). Hence, we show
results where lim�→0 [D�(Q̄, 0)]−1 = 0. The corresponding
coupling constant is ḡc = −1.00535. In Fig. 7 we show the
result for the fermion self-energy at a hot spot as a function of
frequency. We plot the ratio 
H (k0)/k0 to reveal the deviations
from a linear frequency dependence. We also show the result
obtained from flow equations with bare fermion propagators,
that is, without fermion self-energy feedback (here the order-
ing wave vector remains Q), as well as the result from plain
one-loop perturbation theory. The latter can be obtained from
the flow equation for the fermion self-energy by neglecting the
self-energy feedback and by inserting the fully integrated bare
particle-hole bubble into the flow equation for the fermion
self-energy.

The perturbative result agrees with the asymptotic low-
frequency analysis presented in Sec. III. The real part of

H (k0) is linear in frequency at low frequencies, and the
imaginary part is proportional to k0 log k0, in agreement with
Eqs. (17) and (19). For k0 → 0 the ratio Re
H (k0)/k0 tends
to a finite value near −0.2 in agreement with the asymp-
totic result −R(α)/(πα) = −0.209 for α = 8πvF c = 1. The
asymptotic behavior of the real part is approached rather
slowly, because subleading corrections to the leading low-
frequency behavior are suppressed only by a low power of
frequency.

The self-energy obtained from the flow equation (with
self-energy feedback) does not exhibit any simple scaling
behavior, neither at intermediate nor at the lowest accessible
frequencies. The imaginary part is only roughly proportional
to k0 log k0, where the prefactor is significantly smaller than
in perturbation theory, and it starts decreasing for frequencies
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FIG. 7. Real (top) and imaginary (bottom) parts of the fermion
self-energy at a hot spot, divided by k0, as a function of the Matsubara
frequency k0. The result from the flow equations is compared to the
result from simplified flow equations without self-energy feedback,
and to the result from one-loop perturbation theory.

below k0 ≈ 10−4 instead of tending to a constant.
Re
H (k0)/k0 exhibits a pronounced frequency dependence
both at high and low frequencies. There is a minimum at
k0 ≈ 10−4. We have checked that the change of trends in both
real and imaginary parts at k0 ≈ 10−4 is not an artifact of the
final infrared cutoff � f = 10−8 at which we have to stop the
flow before running into numerical instabilities.

Discarding the self-energy feedback on the right-hand side
of the flow equations has a significant effect on the fre-
quency dependence. Both real and imaginary parts of the
self-energy obtained from such a simplified flow are propor-
tional to k0 log k0 over a wide frequency range down to the
lowest accessible frequencies. Hence, the change of trend at
k0 ≈ 10−4 observed above is obviously due to the self-energy
feedback. In Fig. 8 we show the momentum dependence of
the inverse fluctuation propagator [D�(q, 0)]−1 at three stages
of the flow (� = 10−4, 10−5, and � f = 10−8) for qt = qr

as a function of qr . One can see that [D� f (q, 0)]−1 vanishes
at a small negative value of qr = qt ≈ −0.014, while it is
negative everywhere else. It is negative also for momenta with
qr �= qt (not shown in the figure). The fluctuation propaga-
tor thus diverges at a wave vector Q̄ �= Q. The 2kF QCP is
thus spoiled, and the low energy behavior will ultimately be
governed by a different universality class with a non-nested
ordering wave vector. Since the shift of the ordering wave
vector is very small, its effect on the fermion self-energy will

FIG. 8. Inverse fluctuation propagator [D�(q, 0)]−1 at three
stages of the flow for qt = qr as a function of qr . The data have been
obtained from the flow equations with self-energy feedback.

be visible only at very low frequencies. We do not explore
this in more detail, since there are reasons to believe that the
shift of Q is an artifact of the approximate flow equations, as
we will now explain. The real part of the self-energy exhibits
a very peculiar cutoff dependence. In Fig. 9 we show how
the self-energy evolves in the course of the flow. Im
�

H (ik0)
converges to its final value (for � → 0) at a scale � of order
k0. By contrast, Re
�

H (ik0) converges much slower, roughly at
scales � ∼ 10−3k0. For � ∼ k0 the real part of the self-energy
is very far from lim�→0 Re
�

H (ik0), it even has the opposite
sign.

FIG. 9. Real (top) and imaginary (bottom) parts of the fermion
self-energy at a hot spot, divided by k0, as a function of the Matsubara
frequency k0. The results from the flow equation (with self-energy
feedback) are shown at various stages of the flow.
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On the right-hand side of the flow equations the self-energy
is evaluated for frequencies at or near �. Hence, the real part
of the self-energy inserted on the right-hand side of the flow
equations differs drastically from the real part of the final
self-energy (for � → 0), it even has the wrong sign. This
is a very unusual situation, and it seems that such a self-
energy feedback works against self-consistency rather than
implementing it. Choosing a smooth instead of a sharp cutoff
does not help. At present we do not know how to improve
the truncation of the exact fRG flow equation to avoid this
problem.

VI. SELF-CONSISTENT SOLUTION

We now present a self-consistent solution of the cou-
pled one-loop equations for the fermion and boson self-
energies. Momentum dependencies will be approximated in
a similar spirit as in the previous section. We will also
introduce an infrared frequency cutoff � as in the fRG
approach. Here, this cutoff is not used for setting up dif-
ferential flow equations. It is merely a technical device to
achieve a self-consistent solution by iteration. We will see
that the 2kF nesting QCP persists in the self-consistent
solution.

A. Self-consistent equations

The self-consistent one-loop equations are given by


(k, ik0) = − M
∫

d2q
(2π )2

×
∫

dq0

2π
D(q, iq0) G(k − q, ik0 − iq0), (43)

where G(k, ik0) is the full propagator, and Eq. (31) for the
effective interaction D(q, iq0) with the particle-hole bubble
�(q, iq0) from Eq. (32). Together these equations form a cou-

pled set of nonlinear integral equations, which are very hard to
solve with the accuracy needed to resolve the low-frequency
behavior. We therefore focus on the momentum region near
the hot spots, and we simplify the equations by expanding the
momentum dependencies in close analogy to what we did in
the previous sections.

We define 
H (ik0) = 
(kH , ik0) − 
(kH , 0), neglect the
q dependence of the self-energy on the right-hand side of
Eq. (43), and absorb the constant 
(kH , 0) by a shift of the
chemical potential. Introducing a sharp infrared frequency
cutoff �, we then obtain


�
H (ik0) = − M

∫
dk′

0

2π
�

�0
� (k′

0)

×
∫

d2q
(2π )2

D�(q, i(k0 − k′
0)) − D�(q,−ik′

0)

ik′
0 − ξkH −q − 
�

H (ik′
0)

,

(44)

where �
�0
� (k0) = 1 for � � |k0| � �0 and zero else. An

ultraviolet momentum cutoff �q restricts the momentum
integration to |qr | � �q and |qt | � �q. The dispersion is
expanded as previously around the hot spot, that is, ξkH −q =
vF qr + 1

2m q2
t .

The particle-hole bubble is again decomposed as � =
�H + �H ′ + �reg, where the first two contributions come
from momenta close to kH and k′

H , respectively, and the last
(regular) contribution from momenta far from kH and k′

H . For
q near Q, the regular part can be expanded to linear order
in eq and qt as �reg(q, iq0) = �reg(Q, 0) − N (beq + cqt ). Its
frequency dependence is irrelevant compared to the singular
terms.

The singular contributions �H and �H ′ are computed by
expanding the dispersion around the hot spots and extending
the momentum integrals to infinity. Equation (B2) yields

��
H (q, iq0) = − N

√
m

vF

∫ �0

�

dk0

2π
Re

1√
−eq + 2ik0 + i|q0| − 
�

H (ik0) − 
�
H (ik0 + i|q0|)

. (45)

��
H ′ (q, iq0) has the same form with eq replaced by e′

q. The
boson propagator D�(q, iq0) is then given by Eq. (41) as in
the fRG approach.

It is instructive to compare the integral equations (44) and
(45) to the flow equations (39) and (40), respectively. The
latter could be obtained from the former by applying a �

derivative, which acts only on the integration boundary im-
posed by � on the right-hand side, not on the �-dependent
integrands.

We solve the coupled integral equations by reducing �

gradually from �0 to the smallest accessible values, and up-
dating the fermion self-energy at each step. Due to the gradual
adaption of the self-energy in this procedure a converged
solution can be achieved, while by a direct iteration without
infrared cutoff it is difficult to reach the self-consistent attrac-
tor. The frequency cutoff � is thus a useful device to obtain a
self-consistent solution. Ideally one would like to reduce it to

zero at the end of the calculation. We managed to reduce it to
10−7.1 before running into numerical instabilities.

B. Results

We now show results for the fermion self-energy and the
fluctuation propagator as obtained from a numerical solution
of the self-consistent equations. We choose the same fixed
set of parameters as in the fRG calculation in the previous
section, that is, M = N = vF = m = 1, θ = π/2, and b =
c = 1/(8π ) [41]. The ultraviolet cutoffs are also the same:
�0 = 10 and �q = 1. The coupling constant ḡ is tuned to the
QCP, that is, it is chosen such that D�(Q, 0) diverges for � →
0, but not earlier. The critical coupling is ḡc = −1.00338,
which differs only slightly from the critical coupling obtained
from the fRG. In Fig. 10 we show the self-consistent result
for the fermion self-energy at a hot spot as a function of
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FIG. 10. Real (top) and imaginary (bottom) parts of the fermion
self-energy at a hot spot, divided by k0, as a function of the Matsubara
frequency k0. The various curves represent self-consistent solutions
for various choices of the infrared cutoff �.

frequency, plotting the ratio 
H (k0)/k0, for various choices
of the infrared cutoff �. At first sight the results look similar
to the fRG results (see Fig. 9), except for the overall size of
the real part, which is smaller by a factor of four compared to
the self-energy obtained from the flow equations. The conver-
gence of 
�

H (k0) for fixed k0 and � → 0 is again very slow
for the real part. However, in contrast to the fRG flow, the
self-energy feedback now involves all frequencies, not only
those near the scale �. Hence, in the limit � → 0, the cutoff
dependence of the feedback disappears.

The converged imaginary part Im
�→0
H (k0) is proportional

to k0 log k0 in a broad frequency range k0 < 10−2. It is not
clear whether the decreasing slope at the lowest frequencies
(below k0 ≈ 10−5) is exclusively due to the finite cutoff. The
real part Re
�→0

H (k0) also seems proportional to k0 log k0

in a certain frequency range, which is however limited to
frequencies above 10−3. For each �, Re
�

H (k0)/k0 exhibits
a minimum at a frequency k∗

0 (�) much larger than �. The
position of the minimum decreases with decreasing �, but the
ratio k∗

0 (�)/� increases. Hence, it is not clear whether k∗
0 (�)

approaches zero or a finite value for � → 0. In other words,
we do not know whether the minimum of Re
�

H (k0)/k0 per-
sists for � → 0. In view of the slow convergence of the
real part for � → 0, and our limitation to cutoffs � > 10−7,
we believe that our results for the real part are converged
only for frequencies k0 � 10−3, while for the imaginary part
the results seem converged for k0 � 10−5. In Fig. 11 we
show the momentum dependence of the inverse fluctuation
propagator [D�(q, 0)]−1 for qt = qr as a function of qr , for
various choices of the infrared cutoff �. One can see that a
well defined minimum is formed at qr = 0 for � → 0. The

FIG. 11. Inverse fluctuation propagator [D�(q, 0)]−1 for qt = qr

as a function of qr for small qr < 0. The various curves have been
obtained from a self-consistent solution for various choices of the
infrared cutoff �.

point qr = qt = 0 is a minimum with respect to deviations
in all directions. For qr = qt > 0 (not shown) the curves
are much steeper than for qr = qt < 0. Hence, the 2kF QCP
with a nested ordering wave vector Q is stabilized by self-
consistently computed one-loop fluctuations. The slope of the
inverse fluctuation propagator as a function of qr increases for
small qr and small �. The data in Fig. 11 suggest that the slope
actually diverges for qr,� → 0. In any case it is dominated
by the hot spot contributions �H and �H ′ to the fluctuation
propagator, while the regular contribution beq + cqt is com-
paratively small for small qr . Hence, it looks as if the latter
becomes irrelevant in the low-energy, low-momentum limit.
The self-consistent solution thus seems to exhibit a higher
degree of universality than the perturbative one-loop result,
since the asymptotic behavior is determined entirely by the
hot spot region, and the dependence on the parameters b and
c disappears.

VII. CONCLUSION

We have analyzed quantum fluctuation effects at the onset
of charge or spin-density wave order with an incommensurate
2kF wave vector Q in two-dimensional metals—for the case
where Q connects two pairs of hot spots on the Fermi surface.
This type of QCP is realized, for example, by the spin-density
wave instability of the Hubbard model at finite doping [12,13],
and by the onset of d-wave bond charge order generated
by antiferromagnetic fluctuations in spin-fermion models for
cuprates [14–16].

We first computed the effective fluctuation propagator and
the fermion self-energy at the QCP in a one-loop approxi-
mation without self-energy feedback. The marginal violation
of Fermi-liquid theory discovered in Ref. [22] was thereby
confirmed. As a function of the imaginary (Matsubara) fre-
quency k0, the real part of the self-energy at the hot spots
is proportional to |k0| for small k0, while the imaginary part
is proportional to |k0| log |k0|. This corresponds to an asym-
metric linear frequency dependence of the imaginary part
of the self-energy on the real frequency axis, with distinct
coefficients for positive and negative frequencies. A similar
asymmetric real frequency dependence of the self-energy,
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albeit with a nonlinear power-law, has also been obtained for
the complex SYK model [31,32] and for the Yukawa-SYK
model [33]. Unlike the case of the 2kF QCP with a single
hot spot pair [23], the momentum dependence of the self-
energy at the hot spots leads only to finite renormalizations
of the Fermi velocity and the Fermi-surface curvature. The
Fermi velocity is enhanced by distinct renormalization fac-
tors for momenta inside and outside the Fermi sea, leading
to a kink in the renormalized fermion dispersion at the hot
spots.

Going beyond the leading order perturbation expansion we
found that the one-loop result computed with bare propagators
is not self-consistent. The particle-hole bubble with propa-
gators dressed by the one-loop self-energy differs strongly
from the bare particle-hole bubble. Taking only the singular
frequency dependence of the self-energy into account, the
peak of the particle-hole bubble at the 2kF vector Q is shifted
away from the 2kF line to a generic incommensurate wave
vector. Hence, the QCP with a nested ordering wave vector,
which is naturally favored in mean-field theory, seems to be
spoiled by fluctuations. Including also the kink in the fermion
dispersion generated by the momentum dependence of the
self-energy, the peak remains pinned at the nesting vector at
least for some choices of parameters, but its shape in the vicin-
ity of Q always differs qualitatively from the peak of the bare
bubble.

We attempted to achieve self-consistency by performing
a one-loop functional renormalization group calculation with
self-energy feedback on the propagators. In this approach the
ordering vector again turned out to be shifted away from the
nesting vector Q, albeit only by a small amount. We believe
that this result is an artifact of the extremely slow convergence
of the fermion self-energy as a function of the flow parameter
(an infrared frequency cutoff), which prevents a proper feed-
back of the self-energy in the flow equations.

Obtaining a fully self-consistent solution of the coupled
one-loop integral equations with self-energy feedback and a
high resolution at low energies is numerically challenging.
Fortunately, the fRG calculation provided valuable hints on
how to expand around the singular points, and how to use
a slowly decreasing infrared cutoff as a technical device to
converge to a self-consistent solution. In this solution the
2kF QCP is not destroyed by fluctuations, at least for our
choice of parameters. The peak in the fluctuation propaga-
tor (and the susceptibility) is even getting more pronounced,
and its low-energy structure is determined exclusively by
low energy fluctuations in the hot spot region. While we
cannot reach arbitrarily low frequencies, we get converged
results over three frequency decades for the real part of the
fermion self-energy, and five decades for the imaginary part
(for imaginary frequencies). In that regime the real part is
close to the result from one-loop perturbation theory, while
the imaginary part follows the same |k0| log |k0| behavior, but
with a significantly reduced prefactor. The marginal violation
of Fermi-liquid theory with a logarithmically vanishing quasi-
particle weight obtained from the plain one-loop expansion is
thus confirmed by the self-consistent calculation. The results
on the imaginary frequency axis are consistent with a roughly
linear frequency dependence of the imaginary part of the
self-energy on the real frequency axis, with a steeper slope for

negative (positive) frequencies, if the Fermi surface is convex
(concave) at the hot spots.

In summary, we have established a new universality class
for quantum critical behavior in two-dimensional metals—
at the onset of density wave order with an incommensurate
nesting vector connecting two pairs of hot spots on the
Fermi surface. It is worthwhile to further explore the crit-
ical behavior at and near this QCP. While we could reach
rather low-energy scales by our numerical solution of the
self-consistent equations, one may try to extract the ultimate
low-energy behavior analytically. There are no relevant one-
loop vertex corrections, but the role of higher order (two loop
and beyond) corrections remains to be analyzed. One could
also extend the analysis to the quantum critical regime at finite
temperatures, look for secondary instabilities such as pairing,
and study transport properties.
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APPENDIX A: COMPUTATION OF ONE-LOOP
SELF-ENERGY

In this Appendix we derive the asymptotic results for
the fermion self-energy, starting from the one-loop integral
Eq. (16). To simplify the equations we set the global prefactor
M/N equal to one in the course of the derivation, and restore
it in the results presented in the main text.

1. Frequency dependence at hot spot

For k = kH , that is, at the hot spot, one has kr = kt = 0
and Eq. (16) reduces to


(kH , ik0) =
∫

dqt

2π

∫
dqr

2π

∫
dq0

2π

× 1

i(k0 − q0) − vF qr − 1
2m q2

t

× 1

ah(eq, q0) + a′h(e′
q, q0) − beq − cqt

. (A1)

The form of the fermion propagator indicates the following
scaling of the integration variables in the low-frequency limit
k0 → 0:

q0 ∼ k0, qr ∼ k0, qt ∼
√

|k0|. (A2)

Hence, qr/qt � 1, such that e′
q ≈ v′

F sin θ qt . The contri-
butions to the denominator of the effective interaction in
Eq. (A1) thus scale as follows: ah(eq, q0) ∼ √|k0|, beq ∼
k0, cqt ∼ √|k0|, a′h(e′

q, q0) ∼ |k0|1/4 for sin θ qt > 0 and
a′h(e′

q, q0) ∼ |k0|3/4 for sin θ qt < 0. Hence, contributions
from sin θ qt > 0 are subleading compared to the contribu-
tions from sin θ qt < 0. In the latter region the largest terms
in the denominator are of order

√|k0|, and the terms of higher
order in k0 are negligible. Assuming θ > 0 for definiteness,
and keeping only the leading terms, the self-energy can be
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written as


(kH , ik0) =
∫

qt <0

dqt

2π

∫
dqr

2π

∫
dq0

2π

× 1

i(k0 − q0) − eq − 1
4m q2

t

1

ah(eq, q0) − cqt
.

(A3)

Note that we have expressed the kinetic energy in the fermion
propagator in terms of eq and qt instead of qr and qt . It is now
convenient to use eq as integration variable instead of qr . The
Jacobian for this substitution is 1/vF .

Introducing dimensionless variables via q0 = |k0|q̃0, eq =
|k0|ẽq, and qt = √

4m|k0|q̃t , and using a = √
m/(4πvF ) one

obtains


(kH , ik0)

= |k0|
π2

∫
q̃t <0

dq̃t

∫
dẽq

∫
dq̃0

1

i(s0 − q̃0) − (
ẽq + q̃2

t

)
× 1

√
2
[(

ẽ2
q + q̃2

0

) 1
2 + ẽq

] 1
2 − αq̃t

, (A4)

where s0 = sgn(k0). The integrand depends only on a single
dimensionless parameter,

α = 8πvF c. (A5)

We recall that c needs to be positive to have a peak in the
susceptibility and effective interaction, if θ > 0. For θ < 0, c
needs to be negative and the self-energy has the same form
with α = −8πvF c = 8πvF |c|.

a. Imaginary part

The imaginary part of the integral in Eq. (A4) diverges
logarithmically. The divergence is due to contributions from
the regime ẽq < 0 with |ẽq| � |q̃0|, where

√
2[(ẽ2

q + q̃2
0 )

1
2 +

ẽq]
1
2 ≈ |q̃0|/|ẽq| 1

2 . The leading contribution to the imaginary
part of the self-energy can thus be written as

Im
(kH , ik0)

= |k0|
π2

∫
q̃t <0

dq̃t

∫
ẽq<0

dẽq

∫
dq̃0

× q̃0 − s0

(q̃0 − s0)2 + (
ẽq + q̃2

t

)2

1

|q̃0|/
√|ẽq| − αq̃t

. (A6)

Introducing new momentum space variables x = α

√
|ẽq|q̃2

t

and y = ẽq + q̃2
t , and using

√|ẽq| dẽq d̃qt = 1

2α
(1 − y/

√
y2 + 4x2/α2)dxdy, (A7)

one finds

Im
(kH , ik0)

= |k0|
2π2α

∫
x>0

dx
∫

dy
∫

dq̃0

(
1 − y√

y2 + 4x2/α2

)

× q̃0 − s0

(q̃0 − s0)2 + y2

1

|q̃0| + x
. (A8)

The second term in the bracket is odd in y and therefore
yields no contribution to the integral. The remaining integral
is elementary. The integrations over y and q̃0 are convergent
(without any UV cutoff), yielding

Im
(kH , ik0) = |k0|
2π2α

∫
x>0

dx
∫

dq̃0

∫
dy

× q̃0 − s0

(q̃0 − s0)2 + y2

1

|q̃0| + x

= |k0|
2πα

∫
x>0

dx
∫

dq̃0
sgn(q̃0 − s0)

|q̃0| + x

= − k0

πα

∫
x>0

dx ln(1 + x−1). (A9)

The x integral diverges logarithmically for large x. Restricting
[|eq|q2

t /(4m)]
1
2 by a UV cutoff � leads to a cutoff α�/|k0| for

the variable x. With this cutoff, the x integral yields

Im
(kH , ik0) = − k0

πα
ln

α�

|k0| + O(k0) (A10)

for k0 → 0.

b. Real part

To evaluate the real part of the self-energy at the hot spot,
Re
(kH , ik0), we start from the expression (A4). The integral
for the real part diverges linearly in the ultraviolet regime.
To obtain a finite result one needs to subtract the self-energy
at k0 = 0, which is given by the same expression with s0

replaced by zero.
The q̃t integration can be carried out analytically by a

keyhole contour integration around the negative real axis. To
this end, we rewrite Eq. (A4) in the form


(kH , ik0) = |k0|
π2α

∫
dẽq

∫
dq̃0

∫ 0

−∞
dq̃t

1

q̃2
t − A2

1

q̃t − B
,

(A11)
where

A = √−ẽq + i(s0 − q̃0), B =
√

2

α

√√
ẽ2

q + q̃2
0 + ẽq.

(A12)
The contour integration yields∫ 0

−∞
dq̃t

1

q̃2
t − A2

1

qt − B

= ln(A)

2A(A − B)
+ ln(−A)

2A(A + B)
− ln(B)

A2 − B2
. (A13)

The real part of the self-energy at the hot spot can thus be
written as

Re
(kH , ik0) = −|k0|
πα

R(α), (A14)

where the function R(α) is given by the double integral

R(α) = − 1

π

∫
dẽq

∫
dq̃0

× Re

[
ln(A)

2A(A − B)
+ ln(−A)

2A(A + B)
− ln(B)

A2 − B2

]
.

(A15)
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The remaining two integrations seem to be difficult to
handle analytically. However, a simple analytic result can be
obtained for the real part in the limit of large α. In this limit, B
in Eq. (A13) can be set to zero except in the argument of the
logarithm in the last term.

For B = 0, the real parts of the first two terms in Eq. (A13)
integrate to zero. To see this, we temporarily introduce ultra-
violet cutoffs ±�̃ for the integration variables ẽq and q̃0. The
ẽq integration of the first term yields

I1(s0) = 1

2

∫ �̃

−�̃

dq̃0

∫ �̃

−�̃

dẽq Re
ln[

√−ẽq + i(s0 − q̃0) ]

−ẽq + i(s0 − q̃0)

= π

8

∫ �̃

−�̃

dq̃0

∫ �̃

−�̃

dẽq
|q̃0 − s0|

ẽ2
q + (q̃0 − s0)2

= π

4

∫ �̃

−�̃

dq̃0 arctan
�̃

|q̃0 − s0| . (A16)

Obviously I1(s0) diverges linearly for �̃ → ∞. However, this
divergence is canceled upon subtracting I1(0), corresponding
to the subtraction of the self-energy at k0 = 0, and the dif-
ference I1(s0) − I1(0) even vanishes in the limit �̃ → ∞. For
example, for s0 = 1 one finds

I1(1) − I1(0) = π

8

∫ �̃+1

�̃

dq̃0 arctan
�̃

|q̃0|

− π

8

∫ �̃

�̃−1
dq̃0 arctan

�̃

|q̃0| ∼ �̃−1 → 0.

(A17)

By the same reasoning, the second contribution I2(s0) − I2(0)
vanishes, too.

The real part of the third contribution has the form

I3(s0) =
∫ ∞

−∞
dq̃0

∫ ∞

−∞
dẽq ln

(√
2

α

√√
ẽ2

q + q̃2
0 + ẽq

)

× Re
1

ẽq − i(s0 − q̃0)

= 1

2

∫ ∞

0
dq̃0

∫ ∞

0
dẽq ln

⎛
⎝

√
ẽ2

q + q̃2
0 + ẽq√

ẽ2
q + q̃2

0 − ẽq

⎞
⎠

×
(

ẽq

ẽ2
q + (q̃0 − s0)2

+ ẽq

ẽ2
q + (q̃0 + s0)2

)
(A18)

for large α. Substituting q̃0 by u = q̃0/ẽq, and subtracting the
zero frequency constant yields

I3(s0) − I3(0)

= 1

2

∫ ∞

0
du ln

(√
1 + u2 + 1√
1 + u2 − 1

) ∫ ∞

0
dẽq

×
(

ẽ2
q

ẽ2
q + (uẽq − 1)2

+ ẽ2
q

ẽ2
q + (uẽq + 1)2

− 2

1 + u2

)
.

(A19)

The integral over ẽq can be extended to the entire real axis
(with a compensation by a factor 1

2 ), since the integrand is

symmetric in ẽq. The ẽq integration can then be easily evalu-
ated by the residue theorem, yielding∫ ∞

0
dẽq

(
ẽ2

q

ẽ2
q + (uẽq − 1)2

+ ẽ2
q

ẽ2
q + (uẽq + 1)2

− 2

1 + u2

)

= π
u2 − 1

(u2 + 1)2
. (A20)

The u integral can now be performed using an integration by
parts, yielding

I3(s0) − I3(0) = −π. (A21)

Inserting this into Eq. (A11) we obtain

Re
(kH , ik0) − 
(kH , 0) = −|k0|
πα

(A22)

for large α.

2. Momentum dependence near hot spot

We now evaluate the momentum dependence of the self-
energy near the hot spot at zero frequency. The momentum is
parametrized by the normal and tangential coordinates relative
to the hot spot, kr and kt , respectively.

We first analyze the normal momentum dependence for
kt = 0, which we denote by 
(kr, 0), where the frequency
argument has been dropped. Eq. (16) yields


(kr, 0) =
∫

dqt

2π

∫
dqr

2π

∫
dq0

2π

1

−iq0 − vF (qr − kr ) − 1
2m q2

t

× 1

ah(eq, q0) + a′h(e′
q, q0) − beq − cqt

. (A23)

The form of the fermion propagator indicates the following
scaling of the integration variables in the limit kr → 0:

q0 ∼ kr, qr ∼ kr, qt ∼
√

|kr |. (A24)

Following the same arguments as for the frequency depen-
dence, the expression (A23) can be approximated by


(kr, 0) = vF |kr |
π2

∫
q̃t <0

dq̃t

∫
dẽq

∫
dq̃0

× 1

skr − iq̃0 − (
ẽq + q̃2

t

)
× 1

√
2
[(

ẽ2
q + q̃2

0

) 1
2 + ẽq

] 1
2 − αq̃t

, (A25)

for small kr , where skr = sgn(kr ), and α is the same as in
Eq. (A5). The dimensionless integration variables are defined
by q0 = vF |kr | q̃0, eq = vF |kr |ẽq, and qt = √

4mvF |kr | q̃t . The
q̃t integral can now be performed by a keyhole contour inte-
gration around the negative real axis, yielding


(kr, 0) = vF |kr |
π2α

∫
dẽq

∫
dq̃0

×
(

ln(A)

2A(A − B)
+ ln(−A)

2A(A + B)
− ln(B)

A2 − B2

)
,

(A26)
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where

A = √
sk − ẽq − iq̃0, B =

√
2

α

√√
ẽ2

q + q̃2
0 + ẽq. (A27)

After subtracting the constant 
(0, 0), the remaining integra-
tions are convergent, that is, no ultraviolet cutoff is needed.
One thus obtains


(kr, 0) − 
(0, 0) = ar,skr
(α) vF kr, (A28)

where ar,±(α) are positive numbers depending only on α and
the sign of kr . An analytic evaluation of the remaining two
integrations in Eq. (A26) seems difficult, but a numerical
evaluation can be done with high accuracy.

We now turn to the tangential momentum dependence of
the self-energy for kr = 0. Eq. (16) yields


(0, kt ) =
∫

dqt

2π

∫
dqr

2π

∫
dq0

2π

× 1

−iq0 − vF qr − 1
2m (qt − kt )2

× 1

ah(eq, q0) + a′h(e′
q, q0) − beq − cqt

. (A29)

The form of the fermion propagator indicates the following
scaling of the integration variables in the limit kt → 0:

q0 ∼ k2
t , qr ∼ k2

t , qt ∼ kt . (A30)

Following the same arguments as for the frequency depen-
dence, the expression (A29) can be approximated by


(0, kt ) =− k2
t

4π2m

∫
q̃t <0

dq̃t

∫
dẽq

∫
dq̃0

× 1

iq̃0 + ẽq + (q̃t − st )2

× 1
√

2
[
(ẽ2

q + q̃2
0 )

1
2 + ẽq

] 1
2 − αq̃t

, (A31)

for small kt , where st = sgn(kt ), and α is the same as in
Eq. (A5). The dimensionless integration variables are defined

by q0 = k2
t

4m q̃0, eq = k2
t

4m ẽq, and qt = |kt | q̃t . The q̃t integral can
again be performed by a keyhole contour integration around
the negative real axis, yielding


(0, kt ) = k2
t

4π2mα

∫
dẽq

∫
dq̃0

(
ln(st + A)

2A(st + A − B)

+ ln(st − A)

2A(A + B − st )
+ ln(B)

(st − B)2 − A2

)
, (A32)

where

A = √−ẽq − iq̃0, B =
√

2

α

√√
ẽ2

q + q̃2
0 + ẽq. (A33)

The integral in Eq. (A32) remains ultraviolet divergent even
after subtracting 
(0, 0). Restricting eq and q0 by an ultravi-
olet cutoff �, a numerical evaluation of the integrals yields


(0, kt ) − 
(0, 0) = at (α)
√

�/m kt + O
(
k2

t

)
, (A34)

where at (α) ∼ log(α) for small α and at (α) ∼ log(α)/α for
large α. Note that a cutoff � on the variables eq and q0 entails
a cutoff �̃ = 4m

k2
t
� on the rescaled variables ẽq and q̃0. The

square-root-type UV divergence of the integral in Eq. (A32)
thus yields a factor proportional to

√
�/kt , which reduces the

nominally quadratic kt dependence of 
(0, kt ) − 
(0, 0) to a
linear dependence.

APPENDIX B: COMPUTATION OF PARTICLE-HOLE
BUBBLE

In the following we evaluate the particle-hole bubble
�(q, iq0) defined in Eq. (32) with a propagator of the form
(27). Using radial and tangential momentum coordinates and
expanding the fermion dispersion yields

�(q, iq0) = N
∫

d2k
(2π )2

∫
dk0

2π

1

{k0} − vF kr − k2
t

2m

× 1

{k0 − q0} + vF (kr − qr ) − (kt −qt )2

2m

. (B1)

Here we have introduced the short-hand notation {k0} = ik0 −

H (ik0), where 
H (ik0) = 
(kH , ik0) − 
(kH , 0). The kr

and kt integrations can be performed via the residue theorem,

�(q, iq0) = N
i

vF

∫
dk0

2π

dkt

2π

× �(−k0) − �(k0 − q0)

{k0} + {k0 − q0} − vF qr − k2
t

2m − (kt −qt )2

2m

= N
i

vF

∫
dk0

2π

∫
dkt

2π

× �(k0 − q0) − �(−k0)
(kt −qt /2)2

m + eq − {k0} + {k0 − q0}

= −N

√
m

4πvF

∫
dk0

|�(k0 − q0) − �(−k0)|√−eq + {k0} + {k0 − q0}
.

(B2)

Subtracting �(Q, 0) one thus obtains

δ�(q, iq0) = − N

√
m

4πvF

[ ∫
dk0

|�(k0 − q0) − �(−k0)|√−eq + {k0} + {k0 − q0}

−
∫

dk0√
2{k0}

]
. (B3)

The remaining integral can be easily carried out numerically.
For the bare bubble one obtains the same expression with

{k0} = ik0. The k0 integration is then convergent (without UV
cutoff) and elementary, yielding the familiar singular contri-
bution

δ�0(q, iq0) = N

√
m

4πvF
(
√

eq + iq0 + √
eq − iq0). (B4)
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