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We provide a comprehensive theoretical investigation of the Fermi liquid quasiparticle description in
two-dimensional electron gas interacting via the long-range Coulomb interaction by calculating the electron
self-energy within the leading-order approximation, which is exact in the high-density limit. We find that the
quasiparticle energy is larger than the imaginary part of the self-energy up to very high energies, implying
that the basic Landau quasiparticle picture is robust up to far above the Fermi energy. We find, however,
that the quasiparticle picture becomes fragile in a small discrete region around a critical wave vector where
the quasiparticle spectral function strongly deviates from the expected quasiparticle Lorentzian line shape
with a vanishing renormalization factor. We show that such a non-Fermi liquid behavior arises due to the
coupling of quasiparticles with the collective plasmon mode. This situation is somewhat intermediate between
the one-dimensional interacting electron gas (i.e., Luttinger liquid), where the Landau Fermi liquid theory
completely breaks down since only bosonic collective excitations exist, and three-dimensional electron gas,
where quasiparticles are well-defined and more stable against interactions than in one and two dimensions.
We use a number of complementary definitions for a quasiparticle to examine the interacting spectral function,
contrasting two-dimensional and three-dimensional situations critically.
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I. INTRODUCTION

Landau Fermi liquid theory is one of the greatest triumphs
of solid-state physics since it drastically simplifies interacting
many fermion problems into the much simpler single-particle
Fermi gas problems [1–4]. Landau’s idea is that the low-
energy excitations of the interacting system have a one-to-one
correspondence to their noninteracting counterparts, and thus
behave as quasiparticles, which are similar to noninteracting
particles in many ways but with renormalized effective mass
and finite lifetime [5–9]. As long as the lifetime is long, quasi-
particles are stable, long-lived, and well-defined. This enables
us to continue to use, even in the presence of interactions, the
concept of the energy band theory to describe the properties
of metals and semiconductors, even for the excited states as
long as the quasiparticle picture and the Landau Fermi liquid
theory apply. In fact, much of the electronic solid-state physics
is based on the validity of the Fermi liquid theory where
the properties of metals and semiconductors are described in
terms of quasielectrons and quasiholes, which, for all practical
purposes, behave as noninteracting electrons and holes of a
Fermi gas.

There is a subtle point about the Fermi liquid theory which
is not often emphasized. The basic idea underlying the Fermi
liquid theory is that the Fermi surface in the form of a discon-
tinuity in the momentum distribution function survives in the
interacting ground state, thus creating a one-to-one correspon-
dence between the interacting Fermi liquid ground state and
the noninteracting Fermi gas ground state, i.e., the Fermi liq-
uid ground state is a fixed point of the interacting system. This,

however, is a statement on the ground state and does not say
anything about quasiparticles except to imply that there must
be zero energy gapless excitations around the Fermi surface
even in the interacting Fermi liquid. Thus finite energy long-
lived quasiparticles, carrying a renormalized effective mass
and behaving like noninteracting particle-hole excitations, is
a stronger statement than just the mere existence of a Fermi
liquid fixed point as the interacting ground state. Our interest
in the current paper is the nature of the quasiparticles at finite
excitation energies, not just the existence of an interacting
Fermi liquid fixed point, which has already been rigorously
established [10–12].

A question about the regime of validity of the Landau
Fermi liquid theory has always been of central importance
in condensed matter theory. The obvious condition for the
Landau Fermi liquid to work is that the interacting ground
state should be adiabatically connected to the noninteracting
ground state so that the one-to-one correspondence between
the interacting and noninteracting eigenstates holds. An ex-
ample of the breakdown of the Landau Fermi liquid theory
is an interacting one-dimensional electron gas (i.e., Luttinger
liquid), where all the elementary excitations have bosonic
collective nature because of the dimensionality of the system
and there are no low energy particle-hole type single-particle
excitations, thus destroying the Fermi surface as a stable
fixed point of the interacting system [13,14]. Because of the
central importance of the Fermi liquid theory in condensed
matter physics, its possible breakdown is of great fundamental
interest, and a terminology called “non-Fermi liquids” has
developed in describing interacting fermionic systems where
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the Fermi liquid paradigm may break down. Some exam-
ples of such non-Fermi liquids are one-dimensional fermions,
fractional quantum Hall liquids, spin liquids, Mott insulators,
and quantum critical systems. Our goal in the current work is
focused not on the question of a non-Fermi liquid, but on the
question of the regime of validity (in energy and momentum)
of the quasiparticle picture for a two-dimensional electron
system interacting via the long-range Coulomb interaction.
The ground state of this system is certainly a Fermi liquid for
weak interactions, but we want to know the extent to which
the quasiparticle picture applies, i.e., how far from the Fermi
surface can we still describe the interacting system in terms of
quasiparticles?

The key condition for the Fermi liquid theory to apply
is that quasiparticles should have long enough lifetime not
to decay during the adiabatic switching process [see Eq. (1)
in Sec. II A]. It is well known that quasiparticles are in-
finitely long lived at the Fermi surface (i.e., gapless zero
energy excitations) with the inverse of its lifetime scaling as
∼E2

QP ln EQP [15] and ∼E2
QP for two-dimensional (2D) and

three-dimensional electron gas (3DEG), respectively, where
EQP is the quasiparticle energy measured from the Fermi
surface. In fact, this perturbative result for the behavior of
quasiparticle decay at the Fermi surface can be formalized
into a renormalization group flow argument to establish the
perturbative existence of a Fermi liquid fixed point in 2D
and 3D systems, with similar arguments also establishing the
nonexistence of the Fermi liquid fixed point in 1D interacting
systems [16,17]. Thus quasiparticles are usually considered to
be well-defined only in the immediate vicinity of the Fermi
surface, and become ill-defined at high energies away from
the Fermi surface. In fact, it is universally assumed that
the validity of the quasiparticle picture necessarily requires
EQP � EF , i.e., quasiparticles exist only at low excitation
energies and, consequently, at momenta not too far from the
Fermi momenta. A natural question that arises is then: what
is the energy range of validity of the Fermi liquid theory?
How far away from the Fermi surface can we go and still
use long-lived and well-defined quasiparticles as the dom-
inant excitations of the interacting system? This question,
to the best of our knowledge, has not been addressed with
the level of quantitative seriousness it deserves despite the
importance of the concept of quasiparticle in condensed mat-
ter theory. In fact, quasiparticles far away from the Fermi
surface are often assumed to be well-defined purely on empir-
ical basis without any theoretical justification. There is also
a widespread counter-opinion that the quasiparticle picture
absolutely necessitates the low energy condition, EQP � EF ,
and quasiparticles do not exist at high energies.

In this work, we directly address this issue by explicitly
calculating the self-energy and the spectral function of in-
teracting electrons up to high energies of several orders of
the Fermi energy. We use the leading-order dynamical ap-
proximation in the many-body perturbation theory for the
Coulomb interacting electron systems [18], which has been
widely successful in describing quasiparticle properties in
various materials. The theory is well-controlled and exact in
the high-density limit, where the Coulomb interaction is per-
turbatively weak. Even though the leading-order dynamical
screening theory is exact in the weakly interacting limit, the

theory has been shown to be reasonably valid even in the
metallic range of density [6].

The main goal of this paper is to provide a comprehensive
study on the Fermi liquid theory for long-range Coulomb
interactions with an in-depth discussion of its validity at high
energies, extending substantially the previous Fermi liquid
studies which are limited only to low energy regime near the
Fermi surface [1–4]. Our results show that the quasiparticle
picture is robust up to high energies, explaining why the
single-particle framework has been so successful in metals
and semiconductors. However, we find some clear signals of
fragile 2D quasiparticles in a small region around a certain
critical wave vector because of the coupling of quasiparticles
with the collective plasmon excitations, which are often ne-
glected in the discussion of the validity of the Fermi liquid
theory in the existing literature. Plasmons are specific features
of long-range Coulomb interactions, and they are gapped (un-
gapped) in 3(2)D, making their coupling to the quasiparticles
of particular importance in 2D electron systems, making 2D
quasiparticles more fragile than their 3D counterparts.

The paper is organized as follows. In Sec. II, we briefly
review the Landau quasiparticle theory and introduce the for-
malism for the self-energy calculations within the random
phase approximation (RPA) for the interacting self-energy. In
Sec. III, we investigate the validity of the quasiparticle picture
for interacting 2DEG up to high energies of the order of sev-
eral Fermi energies by explicitly comparing the quasiparticle
energy with the imaginary part of the self-energy defining
the quasiparticle decay rate. In Sec. IV, we present the cal-
culated self-energy and spectral functions, showing that the
spectral quasiparticle peak exhibits a non-Fermi-liquid-like
behavior around a certain critical wave vector kc where the
quasiparticle picture becomes suspect and fragile. In Sec. V,
we provide further analysis of the anomalous quasiparticle be-
havior around the critical wave vector kc by evaluating several
many-body quantities such as the renormalization factor Zk ,
the effective mass mk . We demonstrate that the fragility of
quasiparticles is due to the coupling between quasiparticles
and plasmon collective excitations. In Sec. VI, we compare
the obtained 2DEG results with those for 3DEG. We show that
the non-Fermi liquid features we find for 2DEG also appear
similarly in 3DEG, but are much less prominent. Section VII
contains the discussion and a summary. We use h̄ = 1 in the
figures so that momentum/wave vector and energy/frequency
are the same in our notations. Also, we characterize the
system by the Coulomb interaction strength rs throughout
with rs small (large) being high-density weakly (low-density
strongly) interacting system, and our theory is perturbatively
exact in the high-density limit. Additional results for more rs

values are provided in Appendix.

II. THEORY

A. Quasiparticle

The Landau quasiparticle theory was originally conceived
based on phenomenological approach. Later on, a further
development was made using the diagrammatic perturbative
many-body formalism, reproducing the main results obtained
on the phenomenological basis [7]. Here, we briefly re-
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view the key concepts of the Landau quasiparticle theory in
the perturbative many-body scheme. Landau’s original work
focused on short-range interactions as appropriate for 3D neu-
tral fermions, e.g., normal He3. Our focus is on 2D electrons
interacting via the long-range Coulomb interaction in a posi-
tive jellium charge background maintaining charge neutrality.

Consider a quantum system of noninteracting fermions in
the ground state characterized by a set of occupation numbers
nk = �(kF − k). Suppose we add a fermion above the Fermi
surface. The key idea of the Landau quasiparticle theory is
that even in the presence of interactions the added fermion
continues to behave as a single-particle excitation dressed
by interactions, i.e., a quasiparticle, which is not an exact
eigenstate of the interacting system, but is an almost eigen-
state with a very long lifetime. It is clear that close to the
Fermi surface, the quasiparticle decay is severely restricted
because of the Pauli principle, and in fact, right on the Fermi
surface the quasiparticles are infinitely stable, preserving the
Fermi surface in the interacting system. The question that
still remains open, however, is how large the momentum k
can be for such a quasiparticle to be well-defined. This is the
issue we address. Landau described the quasiparticle picture
through the adiabatic process: if one turns on interactions
infinitely slowly through V (t ) = Ve− η

h̄ |t | from t = −∞, where
η is infinitesimally small, then the noninteracting states would
evolve smoothly into the real interacting states, establishing
one to one correspondence between the eigenstates of the
interacting system and those of the original noninteracting
counterpart. During the adiabatic evolution, the ground state
is stable unless there is a level crossing between states, which
leads to a phase transition of the system. The quasiparticle
(i.e., the added fermion dressed by interactions), however, un-
dergoes a decay due to its interaction with other particles, and
thus has a finite lifetime. The adiabatic process is irreversible
if the interaction is not fully turned on before the quasiparticle
decays because of its finite lifetime. Thus, for the quasiparticle
picture to make sense, the quasiparticle lifetime should be
much longer than the time taken for the interaction to be fully
turned on, i.e., h̄

τ
� η, where τ denotes the quasiparticle life-

time. It is also required that interaction grows slowly enough
so that the excited quasiparticle state is not mixed with other
states during the adiabatic process, i.e., η � EQP, where EQP

is the quasiparticle energy. These two requirements together
give the condition for the quasiparticle picture to make sense:

h̄

τ
� EQP, (1)

which is the standard Landau criterion for the existence of
well-defined quasiparticles [7]. There are, however, alternate
criteria for defining quasiparticles which are extensively used,
and the equivalence of various criteria for quasiparticles are
not necessarily quantitatively equivalent although they all
provide the same result on the Fermi surface where the quasi-
particles are infinitely stable as gapless excitations.

Another criterion often used to determine the validity of
the quasiparticle picture is to look at the shape of the spec-
tral function and its broadening induced by interactions. The
spectral function is written as

A(k, ω) = − 1

π
ImG(k, ω) (2)

and can be directly measured by experiments such as
angle-resolved photoemission spectroscopy (ARPES). Here,
G(k, ω) is the interacting Green’s function given by

G−1(k, ω) = G−1
0 (k, ω) + �(k, ω) (3)

where G−1
0 (k, ω) is the bare noninteracting Green’s function

and �(k, ω) denotes the self-energy, encoding all the effects
arising from interactions. For noninteracting systems, Green’s
function is given by

G0(k, ω) = 1

h̄ω − ξk + iη
(4)

with η = |η|sgn(εk ) being infinitesimally small, where ξk =
εk − EF is the usual parabolic energy dispersion measured
from the Fermi energy EF . Thus the noninteracting spec-
tral function is given by a δ-function A0(k, ω) = δ(h̄ω − ξk ).
The δ-function shape for the noninteracting spectral function
means that when one adds a fermion, it occupies an exact
eigenstate of the system with a precise relationship between
energy and momentum since the noninteracting stationary
states are also momentum eigenstates for the noninteracting
free particle wave functions. Rather amazingly, the interact-
ing ground state with k = kF also has a δ-function piece,
reflecting the preservation of the Fermi surface in the presence
of interactions. On the other hand, a quasiparticle state for
k > kF in an interacting system is not an exact eigenstate,
thus decaying over a finite lifetime. This results in uncertainty
in the quasiparticle energy due to the time-energy uncertainty
principle, which simply means that a quasiparticle state does
not have a sharp well-defined energy. Thus quasiparticles typ-
ically appear (except for k = kF ) as a Lorentzian peak in the
spectral function with a finite width determined through η ∼
h̄/τ in Eq. (4) and its center being around the renormalized
quasiparticle energy EQP. It is worth emphasizing that in this
context Eq. (1) can be interpreted as requiring the uncertainty
in energy (h̄/τ ) to be larger than the quasiparticle energy
itself (EQP). Basically, Eq. (1) asserts that a quasiparticle is ill-
defined when the energy-broadening of the state is larger than
the energy of the state itself, which is precisely what one infers
also from the interacting spectral function. Thus the quasipar-
ticle spectral peak becomes more broadened (and suppressed)
as the corresponding quasiparticle becomes more fragile,
and eventually the spectral peak vanishes when the Landau
quasiparticle picture breaks down. Another consequence of
quasiparticles becoming fragile is that the spectral quasi-
particle peak becomes increasingly non-Lorentzian, strongly
deviating from the single-particle spectral function, which is
Lorentzian as discussed above. We emphasize that a strong
deviation from the Lorentzian shape for the interacting spec-
tral function implies that the quasiparticle picture cannot
solely describe the whole system even in the case where the
spectral function exhibits a sharp but non-Lorentzian peak
structure. In the literature, one sometimes loosely refers to
the sharp Lorentzian (or δ-function)-like spectral peak with
small level broadening as the “coherent” peak representing
the well-defined quasiparticle, and the rest of the broadened
featureless spectral function as “incoherent” representing the
nonquasiparticle part of the interacting excitations. As long
as the interacting system manifests a well-defined and sharp
Lorentzian spectral peak (with the broadening less than the
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peak energy), one can talk about quasiparticles. On the Fermi
surface, this coherent quasiparticle peak becomes perfectly
coherent with infinite lifetime since the broadening η vanishes
leading to a δ function describing the quasiparticle spectral
function with zero excitation energy. For any finite EQP, there
must always be a finite broadening η (and hence a finite life-
time τ ∼ h̄/η), and quasiparticles are stable and well-defined
as long as EQP � η.

B. Leading-order theory

Having reviewed the concept of the Fermi liquid theory,
in this section we introduce how we obtain the interacting
spectral function given by Eq. (2). In this work, we use
the leading-order dynamical approximation to evaluate the
self-energy [7]. The leading-order theory for Coulomb inter-
action involves an expansion of the interacting self-energy
in terms of the dynamically screened Coulomb interaction
where an infinite series of ring diagrams is inserted in
the Coulomb propagator allowing vacuum polarization by
electron-hole bubbles. This ring diagram series includes the
leading Coulomb divergence in each order, and is convergent
upon resummation. The theory is known to be exact in the
high-density limit, and is the only controlled analytical theory
available for the electron liquid interacting via the long-range
Coulomb interaction. The pure Hartree tadpole diagrams van-
ish by virtue of charge neutrality, and one needs to resum the
infinite ring diagrams. This is often called RPA in the litera-
ture, a terminology we use extensively in this paper from now
on—all it means in our context is that the self-energy keeps
the exchange energy and the infinite series of ring diagrams
in the dynamically screened Coulomb interaction. The theory
is exact in the high-density limit, and is thus a well-defined
many-body approximation. This theory is sometimes dubbed
as “G0W0 approximation” in the Hedin’s GW framework [19]
with G0 indicating the noninteracting Green’s function and W0

the dynamically screened Coulomb interaction within RPA.
Within the GW scheme, one can go beyond the leading order
approximation by using the full interacting Green’s func-
tion G, solving the fully self-consistent GW equations. The
fully self-consistent GW approximation, however, is rarely
used since it is numerically demanding and generally gives
results worse than the leading order approximation because
it badly mixes perturbative orders in an uncontrolled way
with the vertex correction neglected. Thus, in the following,
we use the terminology “RPA” instead of ‘‘GW ” to em-
phasize the leading order nature of our calculations, which
are exact in the high density limit. We emphasize that in
spite of its widespread use in band structure calculations, the
so-called ‘‘GW approximation” is not a consistent pertur-
bative many-body approximation because of mixing orders,
and what we use, the so-called “G0W0” approximation or the
RPA theory is the appropriate leading order approximation.
Strictly speaking, the RPA approximation is valid only in
the weakly interacting limit where rs � 1 and rs is the in-
teraction strength (i.e., the dimensionless Wigner-Seitz radius
providing the average interelectron separation in units of the
effective Bohr radius—a high or low density system with
rs < 1 or rs > 1 is weakly or strongly interacting respectively)
defined through n−1 = π (rsaB)2 where aB is the Bohr radius

and n is the electron density [20]. In 3D, rs is defined by
n−1 = 4π (rsaB)3/3 where n is now the 3D electron density.
We note that rs is simply the interparticle average separation
measured in the atomic Bohr radius units so that large (small)
rs is respectively the small (large) density limit. Thus rs is ob-
tained by knowing the carrier density of the system. However,
it has been empirically shown that even for large rs up to 6
the leading-order dynamical approximation is highly success-
ful in predicting quasiparticle properties of various systems
including 2DEG and 3DEG. Thus, in this work, we present
results obtained for both small and large rs and show that the
important qualitative features remain the same regardless of
the value of rs. We emphasize, however, that our results are
strictly valid only for small rs(<1) where our leading-order
dynamically screened RPA theory is perturbatively exact, and
our large rs results in the strongly interacting regime are
given only for the sake of completeness. We note that, as
is well-known, the interacting electron liquid Hamiltonian,
containing the noninteracting kinetic energy and the Coulomb
interaction, can be easily cast into the dimensionless form
containing only rs, with the kinetic energy being O(1/r2

s ) and
the interaction energy being O(1/rs), showing that the system
is weakly interacting for rs < 1 [5–8].

Within the leading-order dynamical approximation, the
electron self-energy is given by

�(k, iωn) = −
∫

d2q

(2π )2

1

β

∑
i�n

W (q, i�n)

× G0(k + q, iωn + i�n), (5)

where ωn and �n are Matsubara frequencies, G0 = (ih̄ωn +
i�n − ξk+q)−1 is the noninteracting Green’s function, β =
(kBT )−1, T is the temperature, kB is the Boltzmann constant
and

W (q, i�n) = vc(q)/ε(q, i�n) (6)

denotes the RPA dynamically screened Coulomb interac-
tion where vc(q) = 2πe2/|q| is the two-dimensional bare
Coulomb interaction, and the denominator in Eq. (6) arises
from the summing of the infinite series of electron-hole ring
diagrams forming a geometric series. Here the dielectric func-
tion

ε(q, ω) = 1 − vc(q)0(q, ω) (7)

is obtained within the RPA with 0(q, ω) being the noninter-
acting polarization function given by [21]

0(q, ω) = − m

π
+ m2

πq2

⎡⎣√(
ω + q2

2m

)2

− 2E0
F q2

2m

−
√(

ω − q2

2m

)2

− 2E0
F q2

2m

⎤⎦, (8)

where E0
F is the bare Fermi energy.

The self-energy given by Eq. (5) can be decomposed into
the static exchange and correlation parts: � = �ex + �corr,
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where �ex is the exchange self-energy given by

�ex(k) = −
∫

d2q

(2π )2
�(−ξk+q)vc(q) (9)

in the zero-temperature limit. �corr is the dynamical cor-
relation part containing all contributions beyond exchange
interaction written as

�corr (k, iωn) = −
∫

d2q

(2π )2

1

β

∑
i�n

[
1

ε(q, i�n)
− 1

]
× G0(k + q, iωn + i�n). (10)

It is useful to express the correlation self-energy as a sum
of two terms: �corr = �line + �res. The line part �line is
obtained by first performing an analytic continuation (i.e.,
iωn → ω + iη) and then doing the Matsubara summation. In
the zero-temperature limit, we obtain

�line(k, ω) = −
∫

d2q

(2π )2

∫ ∞

−∞

d�

2π

vc(q)

ξk+q − h̄ω − i�

×
[

1

ε(q, i�)
− 1

]
. (11)

Note that the Matsubara summation is supposed to be done
before performing an analytic continuation, and thus �line is
not the entire correlation self-energy. �res gives the remaining
part of the correlation self-energy, written as

�res(k, ω) =
∫

d2q

(2π )2
[�(h̄ω − ξk+q) − �(−ξk+q)]

× vc(q)

[
1

ε(q, ξk+q − h̄ω)
− 1

]
. (12)

It is easy to see that �line is always real since ε∗(q, iν) =
ε(q,−iν) = ε(q, iν). As �ex ia real, which can be obviously
seen from from Eq. (9), the imaginary part of the self-energy
is entirely determined by �res, thus

Im�(k, ω) =
∫

d2q

(2π )2
[�(h̄ω − ξk+q) − �(−ξk+q)]

× vc(q)Im

[
1

ε(q, ξk+q − h̄ω)

]
. (13)

III. VALIDITY OF THE QUASIPARTICLE PICTURE

The quasiparticle energy can be obtained by finding the
poles of the interacting Green’s function. From Eq. (3), we
can write the equation for the quasiparticle energy as

EQP(k) − εk + EF = Re�[k, EQP(k)], (14)

where EF is the renormalized Fermi energy defined as

EF = εkF + Re�(kF , 0). (15)

Equation (14) is called Dyson’s equation, and should be
solved self-consistently. The corresponding quasiparticle scat-
tering rate, i.e., the inverse of the quasiparticle lifetime, is
given by h̄/τk = 2Im�[k, EQP(k)].

In some cases, there are multiple solutions to the Dyson’s
equation. To avoid ambiguity, in the following, we choose

EQP to be the solution with the longest lifetime τk . Assum-
ing that interaction strength is sufficiently weak (rs � 1), we
can approximate the quasiparticle energy as the first iterative
solution to the Dyson’s equation

EQP(k) = εk + Re�(k, ξk) (16)

with the quasiparticle scattering rate given by h̄/τk =
2Im�(k, ξk). This is called the on-shell approximation, which
is in good agreement with the off-shell self-consistent solution
defined in Eq. (14) in the weak interaction limit (rs � 1).
Obviously, the off-shell approximation provides the correct
results if the exact self-energy is used. Within the leading-
order dynamical RPA theory, which is used in this work,
however, the off-shell approximation is considered worse in
some cases since it mixes the perturbative orders solving
Eq. (14) self-consistently [22–27]. The question of which
approximation yields more accurate results when the leading-
order RPA self-energy is used is not obvious and remains
open. In this work, we present results obtained using both
approximations, and show that the same conclusion is reached
regardless of which approximation is used as far as the va-
lidity of the quasiparticle picture is concerned although there
are substantial quantitative differences between the results
obtained from on-shell and off-shell solutions of Dyson’s
equation.

The standard way to verify the validity of the quasiparticle
picture is to compare the quasiparticle energy with the scat-
tering rate (the imaginary part of the self-energy): if Eq. (1)
is satisfied, the quasiparticle picture is valid. For example,
the imaginary part of the self-energy must vanish faster than
EQP itself at low energies (EQP ∼ 0) to ensure that the Fermi
surface exists in the presence of interactions, and indeed this
happens in 2D and 3D but not in 1D [28]. To quantify the
robustness of the quasiparticle picture, it is useful to introduce
the ratio of the quasiparticle energy to the imaginary part of
the self-energy, defined as

r = EQP(k)/Im�(k, ξk ) (17)

for (a) the on-shell and

r = EQP(k)/Im�[k, EQP(k)] (18)

for (b) the off-shell results. Here the quasiparticle energy EQP

is measured (as an excitation energy) from the interacting
Fermi energy [i.e., EQP(kF ) = 0]. For k = kF , the ratio r is
infinite by definition since the zero energy quasiparticles on
the Fermi surface are stable with infinite lifetime as the imag-
inary part of the self-energy vanishes on the Fermi surface.
Our goal is to obtain r (EQP) as a function of k/kF to see how
far from the Fermi surface the quasiparticles remain stable.
We can rewrite the quasiparticle validity condition Eq. (1)
as r � 1. Note that the better quasiparticles are defined, the
larger the ratio our calculated r should be. An equivalent
statement is that larger the value of r is compared with unity,
more stable is the quasiparticle. Figure 1 presents the plot of r
as a function of the momentum k up to high energies far above
the Fermi energy (k ∼ 4kF ). Near the Fermi surface, the imag-
inary part of the self-energy vanishes as Im�[k, EQP(k)] ∼
EQP(k)2 ln EQP(k) [15], and thus r diverges approaching the
Fermi surface (k → kF ) satisfying the quasiparticle condition
given by Eq. (1). As one moves away from the Fermi surface,
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FIG. 1. The ratio between the quasiparticle energy and the imag-
inary part of the self-energy within the (a) on-shell and (b) off-shell
approximations for various values of rs = 0.1, 0.2, 0.5, and 2.0.

the quasiparticle scattering rate increases with increasing k
because the volume of the phase space into which quasipar-
ticles can decay increases. Thus r exhibits a monotonically
decreasing behavior near the Fermi surface. The decreasing
behavior continues until k increases up to a certain critical
wave vector kc, where r starts increasing with increasing k.
Note that this is in sharp contrast to the common intuition
that the scattering rate keeps on increasing as one moves
away from the Fermi surface, and becomes eventually much
larger than the quasiparticle energy (i.e., r → 0 as k → ∞),
violating the quasiparticle condition Eq. (1). For small rs =
0.1, where the theory is almost exact, it is obvious that the
ratio r even at large k is comparable to that near the Fermi
surface, showing that quasiparticles are well-defined in a wide
range of energy, even very far from the Fermi surface, when
the interaction strength is small. For a strongly interacting
situation with a larger rs = 2.0, however, quasiparticles are
not as robust as those for small rs, since the ratio r at large
k is much smaller than that near the Fermi surface. But even
for rs = 2, the ratio r > 1 for k/kF = 4 (and even for larger k
values) although the condition r � 1 is no longer satisfied for
large k � kF . Our results imply that the quasiparticle picture
remains robust at high energies than has been thought and

FIG. 2. The calculated [(a) and (b)] quasiparticle energy and
[(c) and (d)] imaginary part of the self energy obtained within the
[(a) and (c)] on-shell and [(b) and (d)] off-shell approximations for
various values of rs = 0.1, 0.2, 0.5, and 2.0.

the quasiparticle robustness at high energies is sensitive to
the interaction strength. With increasing interaction strength
(i.e., rs) the quasiparticle stability characterized by the ratio r
becomes weaker, but r > 1 minimal condition for the validity
of the quasiparticle picture applies even for large rs and large
k/kF . Our qualitative conclusion on the robust validity of the
quasiparticle picture applies equally well to both on-shell and
off-shell approximations, as is obvious from the two panels
in Fig. 1, although there are quantitative differences between
the two approximations. Our conclusion based on the on-shell
approximation is consistent with the recent analytical results
in Ref. [29] where the self-energy was calculated in a series
expansion in rs and E/EF using the on-shell approximation.

A noteworthy feature of Fig. 1 is the sharp minimum in the
ratio r at the intermediate k = kc, where the 2D quasiparticle
picture is the least stable (or most fragile) with the quasipar-
ticles being more stable for both k < kc and k > kc. Around
this critical momentum kc, the 2D quasiparticles are fragile
(or the least stable) with kc being relatively small: kc ∼ 1.5kF

(i.e., meaning, not much larger than kF ). The existence of this
“critical” momentum kc characterizing maximal 2D quasipar-
ticle fragility would be further analyzed later in this article.

In Fig. 2, we show for completeness the actual 2D quasi-
particle energy and the quasiparticle decay rate or broadening
for both on-shell and off-shell approximations leading to the
calculated r in Fig. 1. The existence of the critical kc is
apparent in these results already with a local maxima in the
decay rate in the quasiparticles.

IV. SPECTRAL FUNCTION

Figure 3 presents calculated self-energies (first row) and
the corresponding spectral functions (second row). The in-
tersection between the dashed straight-line and the real part
of the self-energy represents the self-consistent off-shell solu-
tions to the Dyson’s equation. It is well known that the spectral
function appears as a δ-function at the Fermi surface (k = kF )
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FIG. 3. The upper five figures show the calculated real and imaginary part of self-energies for several fixed momenta k/kF = 1.1, 1.55,
1.65, 1.75, and 1.4. For visual clarity, |Im�| is plotted instead of Im�. The straight dashed lines are given by h̄ω − εk + EF , whose intersection
with Re� corresponds to the solutions of the Dyson’s equation giving sharp peaks of the spectral functions plotted below. The figures in the
third row show the zoom-in of the spectral peak along with the best fit curve by a Lorentzian distribution (dahsed red). Here we set rs = 0.5,
and ω is measured from the interacting Fermi energy (see Appendix for results for different values of rs).

since the imaginary part of the self-energy vanishes as k → kF

behaving as Im� ∼ ω2 ln ω [15]. This establishes the per-
turbative preservation of the interacting 2D Fermi surface as
postulated in the Landau Fermi liquid theory. As one moves
away from the Fermi surface, the quasiparticle decays through
the creation of electron-hole pairs, and the spectral function
evolves into a single broadened Lorentzian type peak with a
finite linewidth as shown in the result for k = 1.1kF . Whether
the spectral shape is precisely Lorentzian or not depends cru-
cially on the detailed energy dependence of the self-energy.
The spectral peak continues to broaden with increasing k due
to the increasing Im�. As we approach the critical wave vec-
tor kc = 1.8kF , however, the spectral peak corresponding to
the solution closest to ω = 0 indicated by black arrows in the
figure becomes sharper despite the increasing imaginary part
of the self-energy with increasing k. Note that there are mul-
tiple solutions to the Dyson’s equation for the results around
the critical wave vector kc (k = 1.55kF , 1.65kF , and 1.8kF ),
giving rise to overlapped damped peaks in the spectral func-
tion. These multiple solutions of Dyson’s equation already
indicate a nominal failure of the quasiparticle picture around
kc since a quasiparticle should be a unique well-defined spec-
tral peak. This spectral structure around kc is not obviously
quasiparticle-like since it is nonLorentzian and very broad due
to a large imaginary part of the self-energy. Thus we ignore
them in the following discussion, and only refer to the solution
(peak) with the smallest imaginary part of the self-energy (i.e.,
the lowest energy solution or the one closest to the Fermi

surface ω = 0) as quasiparticle solution (peak). The figures
in the third row zoom on the quasiparticle peaks indicated by
black arrows in the second row. Note that the quasiparticle
peak deviates more from the Lorentzian shape as k → kc. In
particular, at the critical wave vector (k = 1.8kF ), the spectral
function exhibits a completely arbitrary shape that does not
fit to the Lorentzian curve at all. Thus, for k ∼ kc, the 2D
quasiparticle is fragile, as inferred already in Sec. II based
on the calculated r values (Fig. 1). For k > kc, the spectral
function eventually recovers the Lorentzian shape, but with a
large spectral width-to-height ratio compared to those near the
Fermi surface, meaning that the quasiparticle picture is less
robust than near the Fermi surface. Thus the quasiparticles are
generally more stable for k < kc than for k > kc since their
spectral functions are typically much broader above kc. The
quasiparticle picture at large k > kc will be discussed further
in the following sections.

Such an anomalous behavior of the quasiparticle peak also
occurs in the momentum dependence of the spectral function
at fixed energy. Figure 4 shows the plot of the self-energy
and spectral function as a function of momentum. Note that
the momentum-dependent spectral function shows a similar
behavior as the energy spectral function plotted in Fig. 3:
The spectral function near the Fermi surface exhibits a typical
Lorentzian quasiparticle peak with a small broadening. As
one moves away from the Fermi surface with increasing ω

approaching the critical energy (Ec = 1.9EF ), the broadening
of the peak rapidly decreases, becoming much sharper than

125118-7



SEONGJIN AHN AND SANKAR DAS SARMA PHYSICAL REVIEW B 104, 125118 (2021)

FIG. 4. Plot of self-energy (first row) and spectral function (second row) as a function of momentum for several values of energies h̄ω =
1.1EF , 1.5EF , 1.9EF , and 2.3EF . For visual clarity, |Im�| is plotted instead of Im�. The straight dashed lines are given by h̄ω − εk + EF ,
whose intersection with Re� corresponds to the solutions of the Dyson’s equation giving sharp peaks of the spectral functions. Here we set
rs = 0.5.

the one near the Fermi surface (E = 1.1EF ), but the spec-
tral shape becomes highly non-Lorentzian with considerable
incoherent spectral weight. Above the critical energy (E =
2.3EF ), the spectral peak recovers its Lorentzian shape with
a very large broadening, similarly to the energy-dependent
spectral function discussed previously.

Our calculated results for the self-energy and spectral func-
tion show that quasiparticles are fragile in a small discrete
region around the critical wave vector kc, where the spec-
tral function is highly non-Lorentzian and mostly incoherent.
In the next section, we further investigate the quasiparticle
fragility, revealing its origin to be the coupling of quasipar-
ticles with the plasmon collective excitations, which become
important at higher momenta. We mention that our calcu-
lated spectral function can be directly explored experimentally
by carrying out either energy-resolved spectroscopy at fixed
momentum or by momentum resolved spectroscopy at fixed
energy. It is also, in principle, possible to directly measure the
momentum and energy dependent spectral function by using
tunneling spectroscopy.

V. RENORMALIZATION FACTOR

We can decompose the spectral function into the coherent
quasiparticle AQP and incoherent Ainc parts:

A(k, ω) = AQP(k, ω) + Ainc(k, ω), (19)

where AQP(k, ω) = − 1
π

ImGQP(k, ω) with

GQP(k, ω) = Zk

h̄ω − EQP(k) − iZkIm�(k, ω)
(20)

being the single-particle Green’s function for the quasi-
particle. Ainc(k, ω) = A(k, ω) − AQP(k, ω) absorbs all the
incoherent contribution to the spectral function. Zk is the

renormalization factor defined as [6,9,20]

Zk =
(

1 − ∂Re�(k, ω)

h̄∂ω

∣∣∣∣
h̄ω=EQP (k)

)−1

. (21)

The renormalization factor Zk determines the transfer of
interaction-induced spectral weight from the coherent quasi-
particle to the incoherent nonquasiparticle part, and thus
should be a positive number between 0 and 1 if the quasi-
particle picture is valid. Zk can also be equivalently thought to
be the effective wavefunction overlap between the interacting
quasiparticle and the noninteracting particle as the interaction
is turned on adiabatically, again implying that the quasipar-
ticle picture applies only when 0 < Z < 1, with Z providing
the “renormalization” of the noninteracting electron into be-
coming the interacting “quasiparticle.”

Figure 5 shows the plot of Zk and the spectral function
decomposition into the coherent (blue) and incoherent (red)
parts. Near the Fermi surface, Zk decreases as one moves
away from the Fermi surface with increasing k. As k → kc,
Zk rapidly drops down to almost zero, which is not surpris-
ing given that the spectral peak shape in this regime loses
the coherent Lorentzian structure as shown in the previous
section. It is worth noting that such an anomalous behavior
of Zk → 0 also occurs in one-dimensional electron system
where even the low energy excitations have a collective na-
ture [13,14] except that in 1D this happens at all momenta
destroying the Fermi surface, thus converting the 1D inter-
acting system into a Luttinger liquid with no Fermi surface.
Since Zk represents the relative weight of the quasiparticle
part to the incoherent background, a small value of Zk implies
that the incoherent background completely dominates over
the quasiparticle coherent structure. The quasiparticle picture
is then fragile. This can be more clearly seen in Figs. 5(b)
and 5(c): the spectral peak near the Fermi surface [Fig. 5(b)]
consists only of the coherent quasiparticle part of the spectral
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FIG. 5. (a) Plot of the renormalization factor Zk as a function
of momentum k. (b), (c), (d) spectral function decomposed into the
coherent part AQP (red) and incoherent part Ainc (blue) at a wave
vector (b) below kc, (c) near kc, and (d) above kc. For convenience,
we indicate the corresponding value of Zk with arrows in (a). Here
rs = 0.5 is used.

function, i.e., AQP, with the small background contributed by
the incoherent part AQP. For k ∼ kc, however, the spectral peak
is contributed by both coherent and incoherent components
and the spectral function is highly non-Lorentzian with no
obvious quasiparticle peak anymore although there is a spec-
tral peak. This indicates that even though the spectral peak is
sharp, much of it comprises of the incoherent part being of
nonquasiparticle nature, and thus the quasiparticle picture in
the regime around the critical wave vector kc is inapplicable
or in other words, the 2D quasiparticle is fragile around kc.
Even though here we present the spectral results only for
rs = 0.5, the same conclusion about fragility around a critical
momentum applies regardless of the value of rs, even for very
small weakly interacting rs � 1 where our leading-order dy-
namical approximation is exact (see Fig. 15 in Appendix). As
we go above kc, Zk suddenly increases up to the value larger
than unity (approximately 1.02), and gradually decreases with
increasing k, approaching unity from above as k approaches
infinity. This anomalous behavior of Zk being larger than
unity occurs due to the positive slope of the real part of the
self-energy [see the inset of Fig. 5(d)]. Note that Zk > 1 is
pathological, and is not consistent with the physical interpre-
tation of the renormalization factor in the quasiparticle theory
(e.g., the wave-function overlap between the noninteracting
and interacting states), and thus is a sign for the breakdown of
the quasiparticle picture. In strongly correlated lattice models,
where the physics is very different from our continuum in-
teracting electron liquid jellium model, the finding of Zk > 1
is sometimes associated with the complete breakdown of the
Fermi liquid behavior (and hence, the quasiparticle picture),
as for example, in the 2-channel Kondo lattice problem [30],
but whether our finding of Zk > 1 for k > kc signals such a
breakdown of the Fermi liquid theory is doubtful. The fact that
our calculated Zk eventually approaches unity at sufficiently

FIG. 6. Renormalization factor Zk plotted as a function of the
momentum k for several values of rs = 0.2, 0.5, 1.0, and 2.0.

high energies indicates that the very slightly larger than unity
(Z ∼ 1.02) value of the renormalization factor for the interact-
ing 2DEG in our theory for k > kc is just an indirect signature
of the existence of the critical momentum kc where the Fermi
liquid description breaks down at a set of measure zero (i.e.,
just at one momentum away from kF ). We note that Zk ap-
proaching unity at very high energies is expected because at
extremely high energies, the interacting system should behave
as noninteracting.

Figure 6 shows the plot of Zk for various values of rs. Zk at
the Fermi surface (k = kF ) represents the Fermi surface dis-
continuity in the interacting system through the relation ZkF =
nkF −ε − nkF +ε , which decreases with increasing interaction
strength (rs), implying that the Fermi surface is suppressed
as interaction strength increases. For all values of rs, Zk also
decreases with increasing k up to the critical wave vector kc.
However, it is important to note that the range of k below kc

where Zk is smaller than a certain small value (e.g., Zk = 0.1),
is much broader for large rs (e.g., rs = 2.0) than that for small
rs (e.g., rs = 0.2). This shows that the quasiparticle picture
is much more fragile in the strongly interacting regime, as
expected. For all values of rs, Zk jumps to a value larger
than unity just above kc as is obvious from Zk becoming
close to unity above kc. Note that the maximum of Zk , which
occurs at k = kc, is larger as rs increases. This shows that the
quasiparticle behavior at large k above the critical wave vector
kc becomes more fragile as the interaction strength increases.
It is also important to note that Zk decreases with increasing
k for k > kc for all values of rs. These results imply that the
quasiparticle picture becomes more robust with increasing k
regardless of the interaction strength. This is also consistent
with the interacting system having a Zk approaching unity for
very large k, which implies almost free-electron type behavior
at very high momenta. These results are consistent with the
2D quasiparticles being fragile for all rs around k ∼ kc, and
being reasonably stable at all other momenta away from kc.
In particular, Fig. 6 for Zk as a function of k suggests that the
quasiparticles become continuously less stable as k increases
from kF to kc, reaching the least robust character at k = kc,
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FIG. 7. Spectral functions A(k, ω) at large momenta k = 1.5kc,
2.0kc, and 2.5kc are plotted together as a function of the energy
ω for various values of rs = 0.1, 0.2, 0.5, and 2.0. γ (as labeled
on each curve of the spectral function in each panel) indicates the
dimensionless ratio of the spectral height to the spectral width.

where Zk almost vanishes, but for k > kc, the quasiparticles
are again very robust, and are essentially like free particles
with Zk ∼, 1. Thus the fragile quasiparticles reside at k = kc,
and just below it. This is also consistent with the calculated
r given in Fig. 1. Last, we emphasize that Zk vanishes at the
critical wave vector kc regardless of the value of rs even in
the weakly interacting limit (rs = 0.2) where our RPA theory
is exact. This indicates that the vanishing Zk is not just a
mere artifact of the leading order approximation even though
including higher order terms may slightly change the results
(e.g., the precise value of kc) quantitatively.

To further investigate quasiparticle fragility versus stabil-
ity, we plot in Fig. 7 the calculated spectral functions at
various values of k > kc for different values of rs. Here the
broadening of the spectral peak is quantified by γ , which is
the ratio between the height and width of the spectral peak,
defined as

γ = A(k, EQP)EF

�h̄ω/EF
, (22)

where �ω is the width of the spectral peak defined through
A(k, EQP ± �h̄ω) = A(k, EQP)/2. (Changing the factor of 2
some other number does not change any conclusion.) Dimen-
sionalizing by EF converts both the height and the width of
the spectral function into natural dimensionless numbers, en-
abling a direct comparison between the height and the width.
Two remarks are in order. First, all the spectral peaks have a
Lorentzian shape for all values of rs despite Zk > 1 and the
broadening of the spectral peak increases as the interaction
strength rs increases. Second, with increasing k, the spectral
peak becomes sharper, indicating that the quasiparticle picture
becomes more robust with increasing k. This is consistent
with Fig. 1 where r increases with increasing k in the regime
k > kc, and also with the calculated renormalization factor Zk

in Fig. 6. It should be noted that even though γ increases with

increasing k, the quasiparticle peak does not become infinitely
sharp even at a reasonably large k > kc. This is because there
is always available phase space into which quasiparticles can
decay unless they are located exactly at the Fermi surface
(where the spectral function has a perfectly sharp δ-function
quasiparticle peak), and thus the spectral peak always has
a finite width corresponding to a finite lifetime. Note that
for large rs, γ is very small (less than unity), and thus the
quasiparticle peak is very broad. Whether such broad peaks
can be construed to represent quasiparticles or not is basi-
cally a matter of semantics as they satisfy the requirement of
EQP being larger than the imaginary part of the self-energy,
but at the same time are very broad with short quasiparticle
lifetimes. There is no sharp criterion distinguishing between
quasiparticles and nonquasiparticles based on the broadening
of the spectral peak compared with the peak height. However,
for small rs = 0.1, γ is of the order of 103 at large k, which is
comparable to γ of the well-defined quasiparticle peak at low
energies near the Fermi surface. Thus our results imply that
for small rs, the quasiparticle concept is valid even at high
energies far away from the Fermi surface, and this conclusion
most likely remains valid for large rs also although the quasi-
particles are less sharply defined in this case (and additionally,
our theory is less accurate)

Figure 8 shows the imaginary part of the self-energy at
large k > kc within both on-shell and off-shell approxima-
tions. Near the Fermi surface, the imaginary part of the
self-energy manifests the expected quasiparticle behavior,
Im�[k, EQP(k)] ∼ EQP(k)2 ln EQP(k). As we move away from
the Fermi surface, the imaginary part of the self-energy
increases due to the decay process through electron-hole emis-
sion. At the critical wave vector kc, the imaginary part of
the self-energy exhibits an abrupt jump. Within the on-shell
approximation, it is well understood that this abrupt jump
occurs because an additional decay channel via plasmon emis-
sions is turned on [31] as energy-momentum conservation
creates a sharp threshold for plasmon emission at k = kc. This
shows that the fragility of the quasiparticle picture around kc

arises from the collective plasmon mode. For large k > kc, the
imaginary part of the self-energy decreases with increasing k.
This explains why the quasiparticle peak is better defined in
the interacting spectral function as k increases.

The renormalization factor Zk is defined only in the
off-shell approximation. The equivalent quasiparticle quan-
tity defined in the context of the on-shell approximation is
the momentum-dependent effective mass m∗(k). Using the
Eq. (16), it is easy to obtain the effective mass:

m∗(k) =
{

1 + m

h̄2k

∂Re[�(k, ξk )]

∂k

}−1

. (23)

In Fig. 9, we plot the renormalized effective mass for vari-
ous values of rs. The effective mass is well defined near the
Fermi surface. The effective mass rapidly grows, eventually
diverging as approaching the critical wave vector kc and then
suddenly drops to a negative value just above kc. Such an
unphysical behavior of the effective mass is not consistent
with the quasiparticle theory, thus implying that the quasi-
particle picture is suspect around the critical wave vector kc.
We mention that such a divergence of the effective mass has
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FIG. 8. The imaginary part of the self-energy within the (a) on-
shell and (b) off-shell approximations for various values of rs = 0.1,
0.2, and 0.5.

FIG. 9. Calculated on-shell effective mass m∗ as a function of the
momentum k/kF for various values of rs = 0.2, 0.5, 1.0, and 2.0.

earlier been reported in strongly interacting electron systems
at large rs and is considered a sign of the breakdown of the
Fermi liquid quasiparticle theory [27]. As we move further
away from the critical wave vector kc with increasing k, the
effective mass recovers to a physical positive value from be-
low, exhibiting a typical quasiparticle behavior for k > kc.
Note the range of k where the renormalized effective mass
has a nonphysical behavior is wider for larger rs, and thus the
interaction strength strongly affects the range of validity of the
Fermi liquid theory. We emphasize that all these results based
on the on-shell approximation are consistent with the off-shell
results discussed above in the sense that both show that the
quasiparticles become fragile with a potential breakdown of
the Fermi liquid picture for k ∼ kc.

So far, we have seen that the quasiparticle picture is frag-
ile in a regime around kc. Interestingly, this happens for all
values of rs regardless of the strength of the interaction. In
the following we reveal the underlying origin for the fragility
of the quasiparticle for k ∼ kc, showing that it is actually due
to the coupling of quasiparticles with the collective plasmon
mode. Figure 10 presents two-dimensional plots of the spec-
tral function and the imaginary part of the self-energy as a
function of momentum and energy for various values of rs.
The plasmon satellite band indicated by the white arrow arises
due to the coupling between electrons and plasmons, which
are the collective modes of charge density oscillation. Near
the Fermi surface (i.e., h̄ω � EF and k ≈ kF ), the plasmon
satellite band disperses as ω(k) ∼ √

k − kF , and thus is well
separated from the quasiparticle band dispersion going lin-
early in k − kF . As we move away the Fermi surface, however,
the plasmon satellite band disperses toward the renormalized
quasiparticle band, eventually merging with it at the critical
wave vector kc, where quasiparticles are most fragile. This
leads to a coupling between the plasmon collective mode and
quasiparticles, and a nonanalytic kink structure appears in
the renormalized energy band at the critical wave vector kc,
accompanying a rapid increase of the imaginary part of the
self-energy as shown in the lower figures of Fig 10. Such
an increase arises because of the triggering of an additional
decay channel via the plasmon emission, which is absent at
low energies near the Fermi surface. This interpretation is
consistent with the previous results where Zk is suppressed
to a very small value as it approaches the critical wave vector
kc. We also emphasize that the results of Fig. 10 show why the
quasiparticles are most fragile around the critical wave vector
kc, and better defined as we move to higher energies away
from kc.

In the weakly interacting limit (rs � 1), the plasmon satel-
lite band simply behaves as a pure plasmon, whose energy
dispersion can be obtained by finding the poles of the dielec-
tric function [Eq. (7)], i.e.,

ε[q, ωp(q)] = 0, (24)

where ωp(q) is the plasmon dispersion. Since the plasmon
satellite band starts from the Fermi surface (i.e., k = kF ) as
shown in Fig. 10, the actual dispersion for the plasmon satel-
lite band should be written as kF , i.e., ωp(k − kF ). Similarly,
the quasiparticle energy dispersion can be approximated by
the noninteracting quadratic energy band dispersion given by
E (k) = h̄2k2/2m (see Fig. 16 in Appendix). Thus, by solv-
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FIG. 10. Two-dimensional plot of the spectral function (top) and the imaginary part of the self-energy (bottom) for various values of rs.
The black and red dashed line represents the renormalized quasiparticle band dispersion obtained within the off-shell approximation and the
bare noninteracting energy dispersion given by E (k)/EF = (k/kF )2 − 1, respectively. The white arrow indicates the plasmon satellite band,
which disperses as ω ∼ √

k − kF at small wave vectors and merges into the quasiparticle energy band at the critical wave vector kc. Here all
the energies are measured from the interacting Fermi energy.

ing the equation h̄ωp(q − kF ) = h̄2k2/2m, we can analytically
find the critical wave vector kc in the weakly interacting limit,
which is readily obtained as [32]

(̃kc − 1)2

√
2rs

+ (̃kc − 1)3

4r2
s

= 1, (25)

Here k̃ = k/kF . Using Eq. (25), we find kc = 1.269kF and
kc = 1.405kF for rs = 0.1 and rs = 0.2, respectively, which
are in good agreement with kc obtained from the direct numer-
ical results in Fig. 1. Equation (25) is exactly solvable because
it is a simple third degree polynomial equation. However,
since Eq. (25) is correct only for small rs, it is useful to obtain
the asymptotic form of kc in the limit of rs � 1, which helps
us to understand the relation between the critical wave vector
kc and interaction strength rs:

k̃c = (2rs)2/3 − 2
√

2rs

3
+ 1 + O

(
r4/3

s

)
. (26)

This analysis also manifestly clarifies the connection between
the fragility of the quasiparticles around k ∼ kc with the
threshold triggering of the coupling between 2D plasmons and
the electron-hole excitations.

VI. COMPARISON TO 3DEG

The validity of the Landau quasiparticle theory signifi-
cantly depends on dimensionality. (For example, there is no
Fermi liquid in 1D where any interaction destroys the Fermi
surface.) In 3D, the quasiparticle picture is known to work

well, and may become fragile only in the very low density
limit where the kinetic energy is strongly suppressed by the
Coulomb interaction. In this section, we investigate the valid-
ity of 3D quasiparticle picture.

Figure 11 shows the calculated spectral function of 3DEG,
and the result of a fit to the Lorentzian line shape right below,
using the same leading-order dynamical RPA theory as em-
ployed for the 2DEG above. For k < kc, the spectral function
manifests the typical quasiparticle behavior, well fitted by a
Lorentzian curve. With increasing k, we find that there exists
a critical wave vector kc, similar to 2DEG, where the shape
of the spectral function deviates from the Lorentzian curve.
Note, however, that the distortion is nowhere as dramatic as in
the 2DEG case, where the spectral peak becomes extremely
sharp with an almost arbitrary shape as k → kc. For k > kc,
the spectral function recovers its Lorentzian shape, but with a
large width compared to its height, which is again similar to
the 2DEG result. It is worth noting that the spectral evolution
as a function of k from k < kc to k > kc is quite similar to that
of the 2DEG: the spectral function has a Lorentzian line shape
except in the small region around k = kc. This shows that the
quasiparticle coupling with plasmons occurs also in 3DEG,
and thus 3D quasiparticles are somewhat fragile around the
critical wave vector kc where the quasiparticles are coupled
with collective plasmon excitations. It is important to note,
however, that the coupling is much weaker in 3D than in
2DEG, which can be seen by the small deviation from the
Lorentzian line shape, and thus 3D quasiparticles are more
stable than 2D quasiparticles. The difference between 2D and
3D situations is, however, quantitative, and not qualitative,
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FIG. 11. The spectral functions for 3DEG plotted as a function of ω for three different values of k: k = 1.2kF < kc, k = 1.2kF ∼ kc, and
k = 1.2kF > kc. The figures in the second row present a zoom in of the spectral peak along the best Lorentzian fit indicated by red dashed
lines. Here rs = 1.0 is used.

with the 3D case showing quantitatively less singular be-
havior around k ∼ kc, but both 2D and 3D manifest fragile
quasiparticles around k ∼ kc with the fragility being stronger
for 2DEG. Thus 3D and 2D interacting Fermi liquids are
similar qualitatively while differing strongly quantitatively.

Figure 12 presents the calculated renormalization factor for
3DEG plotted as a function of the wave vector for various
values of rs. For all values of rs, Zk decreases with increasing

FIG. 12. Results for 3D: (a) the renormalization factor Zk as a
function of the momentum k for various values of rs = 1.0, 1.5, 2.0,
and 3.0. [(b)–(d)] the spectral functions at the critical wave vector kc

plotted as a function of the energy ω for various values of rs = 1.0,
1.5, and 3.0. The red dashed line are the best Lorentzian fits to the
spectral peak.

k, reaching the minimum value at a certain critical wave vector
kc like the 2D Zk results. Note, however, that Zk is reduced to a
finite value as k → kc instead of vanishing to almost zero as in
the 2D results. We note that the minimum of the renormaliza-
tion factor, i.e., Zkc , becomes smaller with increasing rs unlike
the 2D results where the minimum of the renormalization
factor is always near zero for any values of rs. In a moderate
range of rs, therefore, we expect the quasiparticle picture to
work well in 3D at all energies even in the region around
the critical wave vector since Zk does not become particularly
small unless rs is large (where our theory is not accurate). In
Figs. 12(b)–12(d), we plot the spectral function as a function
of energy at the critical wave vector k = kc. Note that with
increasing rs, the spectral function deviates strongly from the
Lorentzian shape. However, even for a very large rs = 3.0, the
deviation of the spectral function from the Lorentzian shape is
much less dramatic compared to that of 2DEG, showing that
3D quasiparticles are much better defined than 2D quasipar-
ticles although the difference is quantitative. As we go across
k = kc, the renormalization factor exhibits an abrupt jump.
Unlike 2DEG, Zk < 1 even for k > kc in 3DEG, which is in
contrast to the 2DEG result where the renormalization factor
is greater than unity for k > kc. This again shows that the
quasiparticle picture is quantitatively more robust in 3DEG
than in 2DEG.

Comparing the 2DEG and 3DEG results, we conclude
that 2D quasiparticles have both the 1D collective and
the 3D quasiparticle aspects: 3D quasiparticles are gener-
ally well-defined at all energies, whereas one-dimensional
quasiparticles vanish for infinitesimal very small interaction.
For 2DEG, the system is governed by collective excitations
around the critical wave vector kc where the renormalization
factor is greatly reduced, while remaining nonzero, and thus, it
approaches almost 1D type behavior at kc, but not quite. Thus
2D is similar to 3D, while quantitatively the quasiparticles
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are more fragile in 2D than in 3D, but in both systems the
quasiparticles exist (except perhaps just at kc in 2D where
Zk ∼ 0 at k = kc) unlike in 1D where no quasiparticles survive
at any momentum, including k = kF , for any interaction.

VII. DISCUSSION AND CONCLUSION

We have theoretically studied the zero-temperature quasi-
particle properties of an interacting 2DEG using the leading-
order expansion in the RPA-screened dynamical Coulomb
interaction, a theory which is exact in the high-density rs � 1
limit, and have compared our results to the corresponding
3DEG case, also commenting on how the 2D situation differs
from the 1D Luttinger liquid system. We have obtained the
real and imaginary parts of the dynamical self-energy, the
quasiparticle energies in the on-shell and off-shell approxi-
mations, the energy and momentum-dependent quasiparticle
spectral function, the quasiparticle renormalization factor, and
the effective mass for various values of rs, commenting on
both the weakly interacting rs < 1 and the strongly interact-
ing rs > 1 regimes. The qualitative results are the same for
all values of rs, giving confidence that, although our results
are strictly valid only for the rs � 1 regime, our qualitative
conclusions are valid for all rs unless there is an rs-driven
quantum phase transition. In fact, 3D metals have rs ∼ 4–
6, and it is well-known that the RPA many-body theory
used in the current work provides a reasonable description
at metallic densities [6,7]. The focus has been investigating
the extent to which the interacting 2DEG is a Fermi liquid
with well-defined stable quasiparticles. We find that not only
the 2DEG has well-defined quasiparticles at all values of rs,
these quasiparticles are stable at all values of momentum and
energy, even very far above the Fermi surface, except perhaps
a critical momentum kc where the quasiparticles are extremely
fragile and may actually be suppressed. We also find that at
very high energies, the 2D quasiparticles become essentially
like noninteracting free particles (i.e., renormalization factor
∼1), but this approach to the noninteracting limit curiously
happens in a rather intriguing manner with the renormal-
ization factor being slightly above unity at momentum well
above kc.

We emphasize that the critical wave vector kc, where the
quasiparticles are most fragile, has been obtained throughout
the paper using the following different definitions which are
completely independent of each other: kc is defined as a wave
vector where the followings are true.

(1) EQP/|Im�| is the minimum both in off-shell and on-
shell approximations.

(2) The renormalization factor Zk vanishes.
(3) The spectral function is most non-Lorentzian with

multiple solutions of Dyson’s equation.
(4) The plasmon dispersion just crosses into the single-

particle dispersion enabling strong quasiparticle decay
through plasmon emission so the imaginary part of the self-
energy has a sudden increase.

Each of these definitions is closely and equivalently re-
lated to the validity condition for the quasiparticle picture.
Definition 1 is from the most fundamental condition for the
quasiparticle concept to be valid according to the Landau
Fermi liquid theory as discussed in Sec. II A. The phys-

FIG. 13. Plot of the critical 2D wave vector kc obtained using
different independent definitions listed in the main text.

ical meaning of definition 2 is that at the critical wave
vector kc, most of the spectral weight is incoherent so the
coherent quasiparticle weight is entirely suppressed leading
to a breakdown of the quasiparticle picture, but just at a set
of measure zero, i.e., only at k = kc. Definition 3 implies that
the interacting spectral function cannot be approximated by a
coherent single-particle spectral function, which is Lorentzian
in the form of A ∼ η/(E2

QP + η2), and thus a strong devia-
tion from the Lorentzian shape implies that the interacting
excitations cannot be described as quasiparticles. Remarkably,
the alternate definitions 1, 2 and 3 give exactly the same
critical wave vector in our theory as shown in Fig. 13. This
consistency shows that 2D quasiparticles are fragile in a small
regime around kc or more likely, just at k = kc, the momentum
threshold for plasmon emission by quasiparticles. Definition
4 reveals why the Fermi liquid description becomes inappli-
cable at the critical wave vector kc. The black line in Fig. 13
represents the critical wave vector given by definition 4, which
is in good agreement with those from the three definitions
1–3 in the weakly interacting limit (up to rs ∼ 0.2) where our
theory is essentially exact.

Other than the criteria discussed above, it is quite common
in the literature to use only the broadening of the spectral peak
to ascertain the validity of the quasiparticle picture. According
to this criterion, if the broadening is large enough, the quasi-
particle picture breaks down. In this context, we can define,
using a fifth independent criterion, the critical wave vector kc

as
(5) the smallest wave vector where where the spectral

width is larger than the spectral height in the natural unit of
EF , i.e., AEF

�h̄ω/EF
> 1.

In Fig. 13, the critical wave vectors kc obtained using
height versus width criterion 5 (red squares) for various values
of rs are plotted as red squares. For small rs, since the broad-
ening of the spectral function is very small at all energy scales,
as shown in Fig. 7, there exists no critical wave vector kc (at
low rs) following definition 5. For rs larger than ∼0.8, there
exists a kc where the spectral peak becomes broad enough
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so that criterion 5 is satisfied. Although criterion 5 has a
different context (and is not obviously related to the first four
criteria for quasiparticle stability used above), it is noteworthy
that for larger rs (>0.8), it gives essentially the same critical
kc as the first four criteria do. We note that criterion 5 is
somewhat arbitrary since the spectral height and width have
fundamentally different (in fact, inverse of each other) units
(1/energy and energy respectively) and cannot therefore be
compared directly as, for example, the quasiparticle energy
and the broadening in the criterion 1 can be. Although di-
mensionalizing them using EF may sound reasonable and it
is comforting to see that it provides a kc which is consistent
with kc values obtained from the first four criteria, we must
keep in mind that this fifth criterion is quite arbitrary since the
height and width of the spectral function are fundamentally
not comparable even if such a comparison seems intuitive in
defining stable quasiparticles. We emphasize, however, that
this operational definition is enough to conclude that defini-
tion 5 gives the identical critical wave vectors kc as the other
definitions 1–4.

We note that the 3DEG results are somewhat similar to the
2D results except that the quasiparticles are not completely
suppressed at a critical momentum kc in 3D as they are in the
2DEG although a critical wave vector kc exists in both cases
with the kc in 3D manifesting a less stable quasiparticle with
the renormalization factor showing a minima without going
to zero. The difference between 2D and 3D is thus quanti-
tative, and we conclude that they are similar except that the
quasiparticle appears to be completely suppressed at k = kc in
2D in contrast to 3D where it is just strongly suppressed. By
contrast, the 1D interacting system formally has a vanishing
quasiparticle renormalization factor at all momenta, including
even the Fermi momentum, indicating a nonexistence of a
1D Fermi liquid. In some sense, we can say that in 1D all
momenta become critical with all k values being kc (including
kF ) whereas, in 2D, kc is a set of measure zero, being precisely
one momentum value above kF . In 3D, there is a well-defined
kc also except here kc only implies a momentum where the
quasiparticle weight is a minimum without vanishing, so the
quasiparticle is always stable. Thus, in 1D, the quasiparticles
do not exist at any momentum (including the Fermi momen-
tum) whereas in 3D quasiparticles are stable at all momenta
whereas in 2D, the quasiparticles are stable at all momenta
except possibly at one critical momentum. Although one does
not usually think of 1D interacting fermions in terms of per-
turbative arguments since there is no small parameter in 1D, it
can be shown that for Coulomb interacting systems, the same
diagrams as the ones calculated in the current work (i.e., the
infinite ring diagrams in an expansion in the leading-order dy-
namical RPA theory) immediately lead to the conclusion that
there are no quasiparticles in 1D and there is no interacting
Fermi surface [28].

We must also emphasize very clearly that although we
have mostly discussed the intriguing role of the critical mo-
mentum kc for the interacting 2DEG, mainly because of
the unanticipated total suppression of the 2D quasiparticle
spectral weight at kc, our main finding is that 2D quasipar-
ticles are stable and well-defined at all momenta and energies
for all rs values (except of course at k = kc), and although
the incoherent contribution to the interacting spectral func-

tion is often appreciable, there is always a stable coherent
piece well-described by a Lorentzian, with EQP being larger
than the imaginary part of the self-energy at all momenta
except for k ∼ kc. We also recover the quasiparticle renor-
malization factor approaching unity at large energy since
interaction effects should disappear at very high momen-
tum and energy. Quasiparticles are perturbatively stable in
2D (just as they are in 3D) in the presence of Coulomb
interactions, except for perhaps one precise momentum kc.
Our work provides the quantitative details for the renormal-
ization effects in 2DEG and 3DEG arising from Coulomb
interaction appropriate for simple metals and doped 2D
semiconductors.

One may wonder what our T = 0 theory implies for the
finite temperature situation with respect to the validity or not
of the finite-temperature Fermi liquid theory and the quasipar-
ticle picture. Very crudely speaking we could reinterpret the
electron energy away from the Fermi surface as a temperature
in the corresponding finite temperature theory, and conclude
qualitatively that the Fermi liquid theory and the quasiparticle
picture remain applicable for very large temperatures above
the Fermi temperature, even T > TF , since our T = 0 theory
indicates the validity of the Fermi liquid picture for energies
E > EF away from the Fermi surface. This indeed seems to
be the situation as recent works have explored the validity of
the Fermi liquid quasiparticle picture at finite temperatures,
finding that the imaginary part of the self-energy remains
smaller than the quasiparticle energies up to arbitrarily high
temperatures, T � TF [29]. One should be careful, however,
because in some sense, there are no well-defined quasiparti-
cles at finite temperatures even for a noninteracting electron
gas as the Fermi distribution function is continuous at any
finite temperature, and the Fermi surface discontinuity disap-
pears trivially at all finite temperatures. We refer to Ref. [29]
for more details on the finite temperature RPA self-energy
calculations.

To conclude, we have revisited the quasiparticle Landau
theory, providing a comprehensive treatment of 2D quasipar-
ticles for Coulomb interactions from low energies near the
Fermi surface up to high energies where the quasiparticle be-
haves essentially as a free particle. We investigate the domain
of validity of the quasiparticle Landau theory by explicitly
calculating the real and imaginary parts of the self-energies,
the spectral functions, and the renormalization factor within
the leading-order dynamical theory which is exact at high den-
sities, which has been highly successful in obtaining reliable
quasiparticle properties of interacting systems. In contrary
to the popular belief that the quasiparticle picture becomes
ill-defined far away from the Fermi surface (i.e., quasiparticles
exist only at low energies near the Fermi surface), we find that
quasiparticles are robust up to high energies, showing that the
quasiparticle energy is always larger than the imaginary part
of the self-energy essentially everywhere (except for a set of
measure zero at a critical momentum kc) and for all Coulomb
coupling strengths. We find, however, that there exists a small
region around a critical wave vector kc where the quasiparticle
picture becomes fragile (and probably fails completely) due
to the strong coupling of quasiparticles with the plasmon
collective modes. This also happens in 3DEG, but much less
prominently than in 2DEG. Our conclusion is therefore that
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FIG. 14. Self-energies and spectral functions for (a) small and (b) large values of rs along with the best Lorentzian fit to the spectral peak.
(a) The upper five figures show the calculated real and imaginary part of self-energies near the Fermi surface (k = 1.1kF ), around the critical
wave vector (k = 1.2kF , 1.3kF , and 1.4kF ) and at high energies far away from the Fermi surface (k = 1.6kF ). For visual clarity, |Im�| is
plotted instead of Im�. The straight dashed lines are given by h̄ω − εk + EF , whose intersection with Re� corresponds to the solutions of the
Dyson’s equation giving sharp peaks of the spectral functions plotted below. The figures in the third row show the zoom-in of the spectral peak
along with the best fit curve by a Lorentzian distribution (dahsed red). Here we set rs = 0.2, and ω is measured from the interacting Fermi
energy.
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FIG. 15. Evolution of the spectral functions decomposed into the coherent and incoherent parts with increasing momentum k for (a) small,
(b) intermediate, and (c) large values of rs. (a) Evolution of the coherent (AQP) and incoherent (Ainc) parts of the spectral functions with
increasing k for small rs = 0.2.

although Coulomb interaction effects are strong in the 2DEG
(much stronger than in 3DEG), the interacting system is qual-
itatively similar to 3D metals where the quasiparticle picture
and the Landau Fermi liquid theory apply at all energies and
momenta, not just close to the Fermi surface. This provides
a direct explanation for why band theories are so extremely
successful in both 2D and 3D unless some nonperturbative
strong correlation effects (e.g., Mott transition in a lattice or
Wigner transition in the continuum) intervene causing a quan-
tum phase transition invalidating our perturbative theoretic
results.

Finally, we comment on possible improvements of our
theory, which is exact only for the weak-coupling rs � 1
high-density limit. One obvious question in this context is
if it is feasible to go to the next-to-the-leading-order in the
dynamically screened Coulomb interaction since the current
theory is the leading-order theory. Our answer is that it is
essentially impossible to carry out any systematic higher order
diagrammatic many-body field theory calculations along the
line of the systematic perturbative expansion in rs we carried
out here. The reason is that the next-to-the-leading-order
perturbation theory involves far too many diagrams because
one must take functional derivatives of the electron-hole
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FIG. 16. Two-dimensional false-color plot of the spectral function and the imaginary part of the self-energy for small rs = 0.1, 0.2, 0.5
(upper two rows), and for large rs = 1.0, 2.0, 5.0 (lower two rows). The dashed black and red lines represent the renormalized and bare energy
band dispersion, respectively, which are in good agreement for small rs.

bubbles along with the obvious higher order terms in the
RPA-screened interactions themselves. These terms in
general are multidimensional singular integrals which cannot
be calculated except by making drastic simplifying (and
uncontrolled) approximations, e.g., 1/N approximation [33],
which would not apply to any physical 2DEG. Such

approximations must be entirely numerical using demanding
Monte Carlo techniques, and detailed results for the spectral
function similar to what is presented in the current work are
then impossible. One may resort entirely to nonperturbative
numerical quantum Monte Carlo techniques, which are
often successful in obtaining ground state properties, but
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are typically not useful in answering fundamental issues of
principle (e.g., the detailed structure of the interacting spectral
function) discussed in our work.
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APPENDIX: ADDITIONAL RESULTS FOR
DIFFERENT rs VALUES

In this Appendix, we present the results of the main text
for different values of rs to show that all the key qualitative
features discussed in the main text remain qualitatively the
same regardless of the interaction strength. Figure 14 shows
results corresponding to the Fig. 3 results of the main text
for smaller rs = 0.2 and larger rs = 2.0. It is worth noting
that even for small rs = 0.2 where our leading-order approx-
imation is known to be exact, the spectral function develops

a sharp non-Lorentzian peak approaching the critical wave
vector kc. Figure 15 shows the evolution of the spectral func-
tion with increasing momentum k for various values of rs.
The figure shows that near the critical wave vector the quasi-
particle peak is split into the coherent and incoherent parts
regardless of the value of rs. We also present in Fig. 16 the
two-dimensional false-color plot of the spectral functions and
the imaginary part of the self-energy along with the renormal-
ized (black-dashed) and bare (red-dashed) energy dispersions.
It is important to note that for all values of rs ranging from 0.1
to 5.0 the collective plasmon mode crosses into the single-
particle renormalized energy dispersion at the critical wave
vector kc, showing that the coupling of quasiparticles with
plasmon collective modes occurs regardless of the interaction
strength. Also note that the renormalized energy dispersion
can be well approximated by the parabolic energy dispersion,
which numerically justifies the derivation of Eq. (26). All
the results in this Appendix show that the discussions and
conclusions in the main text are qualitatively valid in both
weakly and strongly interacting regimes.
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