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We investigate the magnetic couplings in Sr2IrO4 in the Mott-insulating picture, combining density-functional
theory, dynamical mean-field theory, and many-body perturbation theory. We first determine the form of the
jeff = 1/2 pseudospin via the local-density-approximation + dynamical mean-field theory approach. Next we
study the magnetic interactions in the strong-to-intermediate coupling regime. To this end, we calculate the
superexchange pseudospin tensors �1, �2, and �3 up to fourth order and analyze their dependence on the screened
Coulomb interaction integrals U and J . We show that, due to term cancellations, the experimental nearest-
neighbor coupling �1 is reasonably well reproduced for a whole range of realistic (U, J ) values. We show
that increasing the Hund’s rule coupling J (within the window of realistic values) can lead to large fourth-order
contributions, which could explain the ferromagnetic next-nearest-neighbor coupling �2 extracted from the spin-
wave dispersion. This regime is characterized by a sizable ring exchange K . For (U, J ) values that yield a Mott
insulator with a half-filled jeff = 1/2 state, however, fourth-order terms remain minor even if the gap is small. For
no realistic parameters, we find a sizable next-next-nearest-neighbor coupling �3 ∼ |�2|. Possible implications
are discussed.
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I. INTRODUCTION

The striking similarities in the electronic properties of
Sr2IrO4 and La2CuO4 fostered the search for superconduc-
tivity in doped iridate, making Sr2IrO4 the object of intense
investigations at the same time [1–8]. Even if superconductiv-
ity has not yet been found, other characteristics of cuprates,
such as Fermi arcs or the pseudogap [4–6], marginal-Fermi-
liquid-like electron scattering rates [7] and electron-boson
coupling [8] have been reported. Thus the absence of su-
perconductivity could be of significance by itself, hiding
clues about the mechanism for superconductivity in doped
La2CuO4; this is, in particular, true if spin fluctuations play
an important role. It is therefore key to study and under-
stand in detail the magnetic interactions in Sr2IrO4, clarify
their microscopic origin, and identify the differences with
La2CuO4. So far, despite the fact that intense experimental
and theoretical work has been devoted to this aim [9–18], im-
portant questions remain open. In the first approximation, the
magnetic interactions are well described by a two-dimensional
antiferromagnetic Heisenberg model in which spins are re-
placed by jeff = 1/2 pseudospins [1,10]. This reinforces the
analogy with cuprates, which, at half filling and low temper-
ature, behave as interacting spin-1/2 systems. In the case of
Sr2IrO4, however, the magnetic Hamiltonian immediately ap-
pears more complicated. This is due to the microscopic origin
of the jeff = 1/2 pseudospin state. The latter emerges from
the interplay among spin-orbit coupling, crystal-field split-
ting, and Coulomb repulsion in an otherwise t5

2g multiorbital

material. The key magnetic couplings between pseudospins
(�α) are displayed in Fig. 1, where each �α is, in princi-
ple, a rank 1 tensor. So far, theoretical and experimental
estimates [9–18] of the dominant couplings, the diagonal el-
ements of the nearest-neighbor tensor, �1, vary from 40 meV
[16] up to 100 meV [12,19]. Instead, it is an established
fact that the SU(2)-symmetry-breaking anisotropy αXY is siz-
able, αXY ∼ 0.04 − 0.08 [16–18], differently than in cuprates
[20]. Going beyond �1, the situation becomes even more
complex. Fitting the experimental magnon dispersion with
linear spin-wave theory requires long-range exchange cou-
plings [15,17,18], which can, in turn, lead to frustration effects
under high pressure [21]. More specifically, a ferromagnetic
next-nearest-neighbor coupling, �2, and an antiferromagnetic
next-next-nearest-neighbor coupling �3 of similar magnitude
have been introduced [15,17,18]. Their nature remains so
far unclear, however. They could arise from multiorbital su-
perexchange processes, Coulomb ferromagnetic exchange, or
higher order processes, or all that. A ferromagnetic �2 was
also proposed for La2CuO4, again to fit experimental spin-
wave spectra. In that case, it was, however, suggested that a
�2 < 0 from magnon dispersions could rather be the signature
of sizable fourth-order superexchange terms, among which is
the ring exchange [22]. Proposals in the same direction have
been made, at the model level, also for layered iridate [19].
Still, it remains an open question if high-order superexchange
terms indeed play a role for Sr2IrO4. To complicate the matter,
extracting relatively small parameters from spin-wave spec-
tra proves difficult [23]; furthermore different spin models
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often fit equally well with experimental data, as observed for
cuprates [22]. In this situation, materials-specific theoretical
investigations are of great help. Although some first-principles
calculations have already been performed [14,16], a sys-
tematic analysis of all principal superexchange terms, their
relative size, and their dependence on the key materials-
specific parameters has not be carried out so far.

In this paper, we thus reexamine the problem in
a systematic way. To this end, we compute the ex-
change couplings combining many-body perturbation the-
ory and the local-density approximation+dynamical mean-
field theory approach, including explicitly spin-orbit effects
(LDA+SO+DMFT). For realistic screened Coulomb param-
eters (U, J ), our LDA+SO+DMFT calculations show that
the system is strongly correlated, either in the Mott insulat-
ing phase with a small gap or close to the metal-insulator
transition. We also find a half-filled jeff = 1/2 multiplet.
This confirms the picture emerging from previous theoreti-
cal and experimental works [24–35]. In such a situation, the
low-energy behavior is well captured by the jeff = 1/2 pseu-
dospin picture and the magnetic exchange couplings between
pseudospins can still be obtained via the strong coupling
expansion. At the same time, however, orders higher than
the second can start to play a role. We thus perform super-
exchange calculations up to fourth order and analyze the
dependence of the interactions on the three key parameters,
the crystal-field splitting εCF, and the screened Coulomb inte-
grals, (U, J ).

We show that, for the values of (U, J ) that yield the Mott
insulating jeff = 1/2 state, second-order superexchange con-
tributions still dominate (strong coupling limit), even if the
Mott gap is not very large. Furthermore, due to term can-
cellations, �1 is comparable with experimental estimates for
a whole interval of realistic (U, J ) values. In this picture, a
small ferromagnetic �2 and an antiferromagnetic �3 of similar
size are hard to explain within superexchange theory. This
might be an indication that, for a complete description of
the magnetic couplings, one needs to include in the model
further degrees of freedom, as well as the ferromagnetic
Coulomb exchange. Since the experimental charge gap is
relatively small, however, another scenario is possible. Go-
ing beyond DMFT and taking nonlocal effects into account,
a slightly weaker average Coulomb interaction, Uavg, could
already produce an insulating state. This happens, for ex-
ample, in the case of the single-band Hubbard model for
the cuprates. In the extreme case, Sr2IrO4 could be a bad
metal with very heavy masses in the paramagnetic phase,
becoming an actual insulator only below the magnetic transi-
tion [25,34,35]. In such a truly intermediate coupling regime,
for sufficiently large J , one could then even obtain a �2

which is both ferromagnetic and comparable with experi-
mental estimates. The reduction in Uavg which could produce
such an effect is small compared to the one needed for
cuprates. In this situation, quantum fluctuations could explain
the rest.

The paper is organized as follows. In Sec. II, we describe
model and method. In Secs. II A and II B, we present the
results of second- and fourth-order superexchange calcula-
tions. Conclusions and implications are summarized Sec. III.
Additional details are given in the Appendices A and B.

FIG. 1. Sr2IrO4: Most relevant exchange couplings �d
n , where

d is the bond direction and n the neighbors’ shell. Primitive vec-
tors: a, b, c. Global pseudocubic coordinate system: x = (a + b)/2,
y = (−a + b)/2 and z = c. Local axes X , Y , and Z , parallel to the
Ir-O bonds, are also shown. (a) In-plane couplings �

x/y
1 , �

a/b
2 , �

x/y
3 .

(b) Interlayer couplings �a/b
z . All couplings are 3 × 3 tensors with

elements [�d
n ]α,β ; elements α, β are given in the set of axes used to

define jeff = 1/2 pseudospin states.

II. METHOD

We first calculate the electronic structure in the local-
density approximation with spin-orbit coupling (LDA+SO)
via the full-potential linearized augmented plane-wave
method implemented in the WIEN2K code [36]. Next we
construct the localized t2g Wannier functions centered at the Ir
atoms and spanning the t2g bands via projectors and the max-
imally localized Wannier function method [37,38]. Based on
these Wannier orbitals, we build the t2g Hubbard Hamiltonian,

Ĥ = −
∑

j j′

∑
mm′

∑
σσ ′

t j, j′
mσ,m′σ ′ ĉ

†
jmσ ĉ j′m′σ ′

+ 1

2

∑
j

∑
mm′ pp′

∑
σσ ′

Umm′ pp′ ĉ†
jmσ ĉ†

jm′σ ′ ĉ j p′σ ′ ĉ j pσ , (1)

where ĉ†
jmσ (ĉ jmσ ) creates (annihilates) an electron at lat-

tice site j with spin σ ∈ {↑,↓} and orbital m ∈ {xy, yz, xz}.
The terms −t j, j′

mσ,m′σ ′ give the on-site crystal-field matrix
( j = j′) and intersite hopping integrals ( j �= j′). The spin-
orbit interaction enters both in the on-site term and in
the hopping integrals. The parameters Umm′ pp′ are elements
of the screened Coulomb interaction tensor. The essential
terms for t2g electrons are [39] the direct Coulomb inter-
action, Umm′mm′ = Um,m′ = U − 2J (1 − δm,m′ ), the exchange
Coulomb term Umm′m′m = J , the pair-hopping interaction,
Ummm′m′ = J , and the spin-flip term Umm′m′m = J . Estimates
from constrained random-phase approximation (cRPA) calcu-
lations [24–26,40] yield U ∼ 2.0 − 2.6 eV and J ∼ 0.15 −
0.3 eV. Keeping in mind that cRPA is not exact and can over-
estimate screening, we perform calculations for an interval of
parameters around and slightly above these numbers.

For setting up the Hamiltonian, we first introduce t2g Wan-
nier functions in the global pseudocubic axes, shown in Fig. 1,
and order them as |xy〉↑, |yz〉↑, |xz〉↑, |xy〉↓, |yz〉↓, |xz〉↓. It is

convenient to change basis to |XY 〉 j
σ = e−iσα

j
s |xy〉σ , |Y Z〉 j

σ =
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e−iσα
j
s |yα

j
o z〉σ , and |XZ〉 j

σ = e−iσα
j
s |xα

j
o z〉σ , where σ = ±1/2,

while yα
j
o = y cos α

j
o − x sin α

j
o and xα

j
o = y sin α

j
o + x cos α

j
o

with the constraint

α j
o + α j

s = α j
c = −atan

Im〈xy,↑ |ĥSO|yz,↓〉 j

Re〈xy,↑ |ĥSO|yz,↓〉 j
, (2)

where ĥSO is the local part of the spin-orbit interaction. Due
to the alternate rotations of corner-sharing IrO6 octahedra,
the couple (α j

o, α
j
s ) at nearest-neighboring Ir sites in the

plane has opposite sign, (α j
o, α

j
s ) = sign j × (αo, αs ). The

angle αo ∼ 14◦ is close to a rotation to local axes, labeled
X and Y in Fig. 1. Such a transformation brings the on-site
one-electron part of the Hamiltonian in the S4-symmetric form

ε =

⎛
⎜⎜⎜⎜⎜⎜⎝

εXY 0 0 0 λY
2 − iλX

2
0 εY Z

iλZ
2 − λY

2 0 0
0 − iλZ

2 εXZ
iλX
2 0 0

0 − λY
2 − iλX

2 εXY 0 0
λY
2 0 0 0 εY Z − iλZ

2
iλX
2 0 0 0 iλZ

2 εXZ .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

where εMσ,M ′σ ′ = −t j, j
Mσ,M ′σ ′ . The energies εXY , εY Z , and εXZ

are the crystal-field energies, with εY Z = εXZ . We define
the crystal-field splitting as εCF = (εY Z + εXZ )/2 − εXY . The
couplings λX , λY , and λZ are the spin-orbit (SO) matrix el-
ements; due to S4 symmetry, λY = λX . For the experimental
structure [41], we obtain in LDA λX/Y ∼ 346 meV, λZ ∼
354 meV, and εCF ∼ 213 meV. A positive εCF is not what one
expects from a naive model based on elongated IrO6 octahedra
[42]; in the literature, the adopted value of εCF thus varies
from −202 meV [43] to 360 meV [44,45]. For this reason,
we will study the effects of varying εCF in an interval includ-
ing both positive and negative values. In the t5

2g atomic-limit
configuration, the hole goes in the Kramers doublet,

|σ 〉 j =iα6|XY h〉 j
σ−α5

|XZh〉 j
−σ−2iσ |Y Zh〉 j

−σ√
2

, (4)

where |Mh〉 j
σ is a t5

2g multiplet with one hole in orbital |M〉 j
σ ,

while α6 and α5 are positive real numbers and α2
6 + α2

5 = 1. In
Appendix A, we give the expression and energies of all atomic
t5
2g multiplets. The expression Eq. (4) defines the effective
jeff = 1/2 state. For the jideal = 1/2 state (zero crystal-field
splitting), α2

5 = 2/3 ∼ 0.667. Using the LDA crystal-field
matrix, one obtains α2

5 ∼ 0.812 in the atomic limit. In terms
of the original basis, Eq. (4) can be reexpressed as

|σ 〉 j = e−iσα
j
s |σ̃ 〉 j,

|σ̃ 〉 j =
(

iα6|xyh〉 j
σ−α5e+2iσα

j
c
|xzh〉 j

−σ −2iσ |yzh〉 j
−σ√

2

)
. (5)

Starting from Hamiltonian Eq. (1), we first perform many-
body calculations based on the local-density-approximation
+ dynamical mean-field theory, fully accounting for the
spin-orbit interaction (LDA+SO+DMFT). We adopt as the
quantum impurity solver the interaction-expansion quantum
Monte Carlo approach, in the implementation presented in
Refs. [46–51]. Calculations are carried out in the t2g basis
with a 6 × 6 self-energy matrix in spin-orbital space with

off-diagonal elements; they are performed in the paramagnetic
phase.

Previous DMFT-based studies based on cRPA Coulomb
parameters indicate that the system is strongly correlated,
although not deep in the Mott regime [24–26]. This finds
confirmation in experiments, as one may see, e.g., from
Refs. [31,34]. Our results support this scenario. Due to the
relative proximity to the Mott transition, the exact U value
for which, in theoretical simulations, the gap opens depends
on details of the modeling and the approximation adopted,
either in the solution method or at the stage of model building.
Our calculations, performed for the t2g Hubbard model Eq. (1)
with full Coulomb vertex and self-energy matrix, yield a Mott
gap of about 0.4 eV for, e.g., both for (U, J ) = (3.2, 0.4) eV
(U, J ) = (2.4, 0) eV. Such a gap is close to the one reported
in various experiments [27–33]. For (U, J ) = (2.0, 0) we find
a pseudogap at T = 1/20 eV, indicating that the system is
still metallic but close to the Mott transition. Finally, for all
realistic (U, J) parameters, we find a half-filled jeff = 1/2
pseudospin ground state, defined in Eq. (4). In the Mott
phase, this state is very close to the one obtained in the
atomic limit for the LDA value of the crystal-field splitting.
In such a strong-to-intermediate coupling regime, the mag-
netic interactions can be obtained in the jeff = 1/2 picture
via strong-coupling perturbation theory; at the same time,
however, fourth-order terms can start to play a role.

By performing superexchange calculations up to fourth
order, we obtain a generalized Heisenberg-like model for
pseudospins, ĤSE, discussed in the next sections. Here we
would like to add only a remark. ĤSE includes, in principle,
a Dzyaloshinskii-Moriya (DM) [52] term; since the xy plane
is almost a mirror, for an in-plane pair of Ir ions, in prac-
tice, the only nonzero element of the DM vector is the axial
component, D j, j′ = (0, 0, [D j, j′ ]z ). By a staggered rotation
of the pseudospins, defined via the angle α

j
s in Eq. (5), the

Hamiltonian with axial DM interaction can be mapped into
an equivalent anisotropic Heisenberg model [10]. In the case
of SrIr2O4, we find that, at second order, this is obtained for
αs ∼ −1.2◦ (αo ∼ 14◦), as shown in Fig. 2. This result can be
understood in a simple way if we set the Hund’s rule coupling
J = 0. Then

[D j, j′ ]z = 2i

U

(
t j, j′
⇓,⇓t j, j′

⇑,⇑ − t j, j′
⇑,⇑t j, j′

⇓,⇓

)
. (6)

For the hopping integrals in Table I, obtained for αs ∼ −1.2◦,
the DM coupling vanishes. In the rest of the paper, we adopt
this staggered rotation for pseudospins. In this basis, the only
remaining DM coupling is the small term arising from fourth-
order contributions; hence we will not further discuss the DM
interaction.

A. Second-order terms

The second-order superexchange Hamiltonian has the form
ĤSE = 1

2

∑
j j′ Ĥ j, j′

SE . Assuming as ground multiplet the pseu-
dospin S̃ j defined in Eq. (5), we obtain the superexchange
Hamiltonian from the 4 × 4 second-order energy-gain matrix,
M(2)

j, j′ . As a matter of fact,

Ĥ j, j′
SE = S̃T

j �
j, j′ S̃ j′ −→ M(2)

j, j′ − 1
4 Tr

[
M(2)

j, j′
]
, (7)
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FIG. 2. Nearest-neighbor Dzyaloshinskii-Moriya interaction
[Dx

1]z for a bond along x̂ as a function of the angle αo, second-order
perturbation theory. Also shown are the deviations of the diagonal
elements of the �1 tensor from their values for αo ∼ 14◦ (indicated
with an arrow). The reference values are (in meV) 63.9, 62.6,
and 59.9 for components (x, x), (y, y), and (z, z), respectively.
Calculation are for U = 3.2 eV and J = 0.4 eV. Similar conclusions
are reached for U = 2.0 eV.

where the right-hand side is the operator expressed in matrix
form, in the basis of the pseudospins. For Hund’s rule cou-
pling J = 0, the general form of the diagonal superexchange
couplings for a single-band jeff = 1/2 mode is

[� j, j′ ]xx = 2
t j, j′
⇑,⇑t j, j′

⇓,⇓+t j, j′
⇓,⇓t j, j′

⇑,⇑+t j, j′
⇑,⇓t j, j′

⇓,⇑+t j, j′
⇓,⇑t j, j′

⇑,⇓
U

, (8)

[� j, j′ ]yy = 2
t j, j′
⇑,⇑t j, j′

⇓,⇓+t j, j′
⇓,⇓t j, j′

⇑,⇑−t j, j′
⇑,⇓t j, j′

⇓,⇑−t j, j′
⇓,⇑t j, j′

⇑,⇓
U

, (9)

[� j, j′ ]zz = 2
t j, j′
⇑,⇑t j, j′

⇑,⇑+t j, j′
⇓,⇓t j, j′

⇓,⇓−t j, j′
⇑,⇓t j, j′

⇑,⇓−t j, j′
⇓,⇑t j, j′

⇓,⇑
U

. (10)

Here the labels ⇑ and ⇓ denote the pseudospin states. These
couplings are isotropic for Sr2IrO4, as one can see insert-
ing in the formulas the hopping integrals from Table I; the

TABLE I. Hopping integrals t j, j′
σ,σ ′ between site j and j ′ ∼ j +

lx + my + nz in meV. The global pseudocubic axes are defined as
x = 1

2 (a + b), y = 1
2 (−a + b), z = c. The quantum numbers σ and

σ ′ denote the pseudospin quantum numbers. Pseudospins at site j are
rotated about the ẑ by the angle α j

s = sign j × αs with αs = −1.2o.

Due to time-reversal symmetry, t j, j′
⇑,⇑ = t j, j′

⇓,⇓ and t j, j′
⇑,⇓ = −t j, j′

⇓,⇑; be-
cause of the S4 symmetry of Ir sites, one can show that the latter
are zero within a plane.

lmn t j, j′
⇑,⇑ t j, j′

⇑,⇓ t j, j′
⇓,⇑ t j, j′

⇓,⇓

100 (−198,0) (0,0) (0,0) (−198,0)
010 (−198,0) (0,0) (0,0) (−198,0)
1-10 (−19,0) (0,0) (0,0) (−19,0)
110 (−19,0) (0,0) (0,0) (−19,0)
200 (1,0) (0,0) (0,0) (1,0)
020 (1,0) (0,0) (0,0) (1,0)

anisotropy appears for finite J [10]. The off-diagonal terms of
the tensor are instead given by

[� j, j′ ]xy =2i
−t j, j′

⇑,⇑t j, j′
⇓,⇓+t j, j′

⇓,⇓t j, j′
⇑,⇑+t j, j′

⇑,⇓t j, j′
⇓,⇑−t j, j′

⇓,⇑t j, j′
⇑,⇓

U
, (11)

[� j, j′ ]yx =2i
+t j, j′

⇑,⇑t j, j′
⇓,⇓−t j, j′

⇓,⇓t j, j′
⇑,⇑+t j, j′

⇑,⇓t j, j′
⇓,⇑−t j, j′

⇓,⇑t j, j′
⇑,⇓

U
, (12)

[� j, j′ ]xz =2
+t j, j′

⇑,⇑t j, j′
⇓,⇑−t j, j′

⇓,⇓t j, j′
⇑,⇓−t j, j′

⇑,⇓t j, j′
⇓,⇓+t j, j′

⇓,⇑t j, j′
⇑,⇑

U
, (13)

[� j, j′ ]zx =2
+t j, j′

⇑,⇑t j, j′
⇑,⇓−t j, j′

⇓,⇓t j, j′
⇓,⇑+t j, j′

⇑,⇓t j, j′
⇑,⇑−t j, j′

⇓,⇑t j, j′
⇓,⇓

U
, (14)

[� j, j′ ]yz =2i
+t j, j′

⇑,⇑t j, j′
⇓,⇑+t j, j′

⇓,⇓t j, j′
⇑,⇓−t j, j′

⇑,⇓t j, j′
⇓,⇓−t j, j′

⇓,⇑t j, j′
⇑,⇑

U
, (15)

[� j, j′ ]zy =2i
−t j, j′

⇑,⇑t j, j′
⇑,⇓−t j, j′

⇓,⇓t j, j′
⇓,⇑+t j, j′

⇑,⇓t j, j′
⇑,⇑+t j, j′

⇓,⇑t j, j′
⇓,⇓

U
(16)

and they are all zero. For J = 0, the hopping integrals
to excited jeff = 3/2 states do not contribute at second
order. Going back to realistic Coulomb parameters, for
(U, J ) = (3.2, 0.4) eV, values giving the experimental gap in
LDA+SO+DMFT, we thus find

�x
1 =

⎛
⎝63.9 0.0 0.0

0.0 62.6 0.0
0.0 0.0 59.9

⎞
⎠meV. (17)

This is the matrix for a bond along the x direction (Fig. 1);
the one for an analogous bond along the y can be obtained ex-
changing the first two diagonal components of �x

1. Reducing
U to 2.0 eV, a representative cRPA value, keeping everything
else the same, we find instead

�x
1 =

⎛
⎝132.5 0.0 0.0

0.0 128.6 0.0
0.0 0.0 120.2

⎞
⎠meV. (18)

From these matrices, we can extract the anisotropy,

αXY = [�1]⊥ − [�1]‖
[�1]⊥

, (19)

where [�1]‖ = �1z and [�1]⊥ = ([�x/y
1 ]x,x + [�x/y

1 ]y,y)/2; we
obtain αXY ∼ 0.05 for U = 3.2 eV and αXY ∼ 0.09 for U =
2.0 eV. Up to this point, the form of the superexchange Hamil-
tonian is similar to the one introduced in Ref. [10], including
the sign of the anisotropy.

The average diagonal coupling extracted from fitting spin-
wave spectra is �1 ∼ 60 meV; hence the agreement is very
good for U = 3.2 eV, while the calculated couplings are about
a factor two too large for U = 2.0 eV. For what concerns the
anisotropy, the numbers obtained are all in line with experi-
mental estimates [15,17,18].

Next we consider the matrix of next-nearest neighbor cou-
plings (�2) along a, finding for U = 3.2 eV

�a
2 =

⎛
⎝0.5 0.0 0.0

0.0 0.2 0.0
0.0 0.0 1.0

⎞
⎠meV, (20)
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TABLE II. Exchange couplings (in meV) obtained in second- and fourth-order perturbation theory calculations. Coulomb parameters:
U = 3.2 eV, U = 2.0 eV, J = 0.4 eV. When relevant, for the second-order terms, �(2), we give all three diagonal elements in the format
([�]x,x, [�]y,y, [�]z,z ). Fourth-order terms are approximately isotropic. Values calculated excluding the contribution of spin-orbit excitonic
states are given in a separate column. The total couplings are defined as �tot = 1

3 Tr[�(2)] + �(4). We keep the K term separate here since,
although it modifies the actual total couplings, its contribution cannot be extracted from linear spin-wave dispersions.

U Order �x
1 No excitons �a

2 No excitons �x
3 No excitons �a/b

z K

3.2 �(2) (63.9, 62.6, 59.9) (0.5,0.2,1.0) 0.0 0.0 –
3.2 �(4) −3.8 −6.4 −0.4 1.7 −0.5 0.5 – 4.3

�tot 3.2 58.3 55.7 0.2 −1.1 −0.5 0.5 – 4.3
2.0 �(2) (132.5, 128.6, 120.2) (1.0,0.1,2.4) 0.0 0.0 –
2.0 �(4) −54.8 −64.8 −15.5 −20.0 0.87 4.5 – 40.2

�tot 2.0 72.3 62.3 −14.3 −18.8 0.87 4.5 – 40.2
60 [15] −20 [15] 15 [15] – –

�exp 57 [17] −18 [17] 14 [17] – –
57 [18] −16.5 [18] 12.4 [18] – –

100 [12] – – – –

and for U = 2.0 eV

�a
2 =

⎛
⎝ 1.0 −0.2 0.0

−0.2 0.1 0.0
0.0 0.0 2.4

⎞
⎠meV. (21)

The couplings along b can be obtained exchanging the first
two diagonal components of �a

2 . The tensors Eqs. (20) and
(21) show that the average �2 is antiferromagnetic and rel-
atively small in absolute value, a result in sharp contrast
with the estimates obtained by fitting the magnon dis-
persion [15,17,18]. The latter is ferromagnetic and about
−18 meV, more than an order of magnitude larger (in abso-
lute value) than the calculated values. Finally, the interplane
matrices �a

z and �b
z have elements very close to zero in

all cases.
The most relevant second-order superexchange couplings

are summarized in Table II. The discrepancies found so far
could of course come from the choice of Coulomb param-
eters, and, in particular, the Hund’s rule coupling J . This is
investigated in Fig. 3. The figure shows that �1 increases with
increasing J . This can be understood in a simple way; for the

0

 0.2

0  0.5

U=2.0 eV

�
 (

eV
)

J (eV)

0  0.5

U=3.2 eV

J (eV)

[�x
1]x,x

[�x
1]y,y

[�x
1]z,z

[�a
2]x,x

[�a
2]y,y

[�a
2]z,z

FIG. 3. Diagonal elements of the superexchange couplings �1

and �2 for two representative U values and as a function of the
Hund’s rule coupling J . The cRPA estimates are J ∼ 0.15 − 0.3 eV
[24–26,40].

jideal = 1/2 state (zero crystal field splitting), the virtual exci-
tation with two electrons in the jideal = 1/2 state has energy
U − 4/3J (see Ref. [48]), hence the associated superexchange
coupling increases with increasing J . For U = 3.2 eV, the
changes obtained increasing J from 0.2 eV to 0.4 eV, the
realistic interval, is small, however. The change is larger for
U = 2.0 eV. In this case for J = 0.2 eV, we obtain �1 ∼
90 meV; this is sizably smaller than for J = 0.4 eV, which
yields �1 ∼ 130 meV, but still too large compared to the
experimental spin-wave bandwidth. Agreement can only be
recovered for J → 0. Figure 3 shows that the relative strength
of �1 and �2 does not change much with the Coulomb pa-
rameters; �2 remain always much smaller than �1 in absolute
value. Furthermore, it stays positive (i.e., antiferromagnetic)
for all realistic U and J values. Hence, modifications of J
in an interval of possible realistic values does not change
the picture. The second source of uncertainty is the value
of the crystal-field splitting εCF, for which both positive and
negative values have been adopted in the literature. This effect
is analyzed in Fig. 4, where we vary εCF (and thus also the
effective pseudospin) while keeping all the rest the same.
We find that a negative εCF increases the isotropic part of �1,
while the opposite happens for a positive εCF. In Sr2IrO4, in
LDA we obtain εCF ∼ 0.2 eV, positive; for such value, agree-
ment with experimental �1 is best reached for U ∼ 3.2 eV,
as already mentioned; a crystal field of the same size but
opposite sign would lead to a too large coupling. Instead, for
U = 2.0 eV an unrealistically large positive splitting would
be needed for finding good agreement with experiment, even
if at the same time we reduce J to 0.2 eV.

For what concerns the anisotropy, Fig. 4 shows that αXY

starts to increase at εCF ∼ −0.3 eV, where α6 ∼ α5 and the
dominant component changes. The anisotropy is finite even
for εCF = 0 (vertical dotted line), corresponding in the atomic
limit to the jideal = 1/2 state [10]. The agreement remains
good in the whole range shown for positive crystal-field split-
ting. All these results thus support εCF > 0, as found in LDA.
In the bottom panel of Fig. 4, we analyze the effect of the
crystal-field splitting on �2. We show results for U = 2.0 eV,
but the same conclusion can be reached for a larger U . The
figure shows that, no matter the value of εCF (within a realistic
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FIG. 4. Top and center panel: Components of the pseudospin, α2
5

and α2
6 and exchange parameters �1 as a function of the crystal-field

splitting εCF. Vertical lines: Ideal j = 1/2 state with zero crystal-
field splitting (dashed) and LDA+SO crystal-field splitting for the
experimental structure (full). Top: U = 3.2 eV. Center: U = 2.0 eV.
Bottom panel: Variation of �2 with εCF, U = 2.0 eV, J = 0.4 eV.

interval), the coupling remains antiferromagnetic (positive),
contrarily to experimental estimates.

In Fig. 5, we show the spin-wave spectra obtained in lin-
ear spin-wave theory with the parameters calculated so far,
compared to experiments. The top left panel of the figure
shows that the bandwidth is approximately of the right order
for (U, J ) = (3.2, 0.4) eV but the dispersion differs, as can
be seen along XM. For U = 2.0 eV, instead, unless J is
unrealistically small and the crystal field very large, the value
of �1 is too large, and the overall agreement is poor. The
good agreement shown in the top right panel of the figure is
obtained for the parameters estimated from fitting spin-waves
in Ref. [18]; here �1 is close to the value obtained for (U, J ) =
(3.2, 0.4) eV or (U, J ) = (2.4, 0.0) eV. The figure shows that,
in addition, a ferromagnetic �2 and an antiferromagnetic �3,
comparable in absolute value, are needed in linear spin-wave
theory for recovering full agreement with experiments.
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FIG. 5. Theoretical spin wave dispersion (lines) compared to
experimental data from Fig. 4 in Ref. [18] (points). The pa-
rameters are defined as �l⊥ = 1

2 ([�l ]x,x + [�l ]y,y ) for l = 1, 2, 3.
Values are given in meV. The small anisotropies 	�l⊥ = 1

2 ([�l ]x,x −
[�l ]y,y ) and 	�lz = �l⊥ − �lz are the same for all panels: 	�

x/y
1⊥ =

±0.65 meV, 	�
x/y
1z = 3.35 meV, 	�

a/b
2⊥ = ±0.15 meV, 	�

a/b
2z =

−0.65 meV. (a) Theoretical exchange parameters obtained with
(U, J ) = (3.2, 0.4) eV. (b)–(d) show results for different couplings
in representative cases. The set used in (b) yields a good fitting of
experiments. Special points: X = (π, 0, 0), M = (π, π, 0), 2X =
(2π, 0, 0), � = (0, 0, 0); lattice constants are set equal to 1 for
simplicity.

Summarizing, by using a combination of
LDA+SO+DMFT calculations and many-body perturbation
theory, we derived the parameters of the superexchange
Hamiltonian at second order. The results yield a �1 compa-
rable with experiments for, e.g., (U, J ) = (3.2, 0.4) eV or
(U, J ) = (2.4, 0.0) eV; both set of parameters gives a similar
insulating solution in LDA+SO+DMFT, with a half-filled
effective jeff state. Setting J = 0, however, yields isotropic
exchange couplings, in contradiction with experiments.
At the same time, we find that �1 increases rapidly with
J , everything else staying the same; thus �1 is almost a
factor of 2 too large for (U, J ) = (2.0, 0.4) eV. Furthermore,
our calculations show that �2 is antiferromagnetic and
too small compared to the experimental estimate from
spin wave spectra. This conclusion is very robust, i.e., it
remains valid in the whole range of realistic values of the
Hund’s rule coupling and crystal-field integrals. Remarkably,
although the spin-wave spectra are not sufficiently well
described, the magnetic ordered structure stemming from
the second-order couplings is in line with experiments.
Experimentally, the magnetic structure has been determined
by x-ray [53] and neutron diffraction [54]. The pseudospins
form a canted antiferromagnetic structure in IrO2 layers
with the net magnetic moments projected along the b axis.
The layer-stacking along c axis is of ABBA type and can
be modified easily by a modest magnetic field (> 0.2 T)
[21]. In the window of realistic screened Coulomb integrals,
our findings are in line with these observations. Except for
(unrealistically) large and negative εCF ∼ (−0.4,−0.3) eV,
the condition αXY > 0 is always satisfied and therefore the
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FIG. 6. Superexchange diagrams of second (a) and fourth order
(the remaining ones). The latter split into processes involving two
(b), three (c) and four sites (d). For each diagram, the possible site
configurations are also shown; the terms are discussed in Appendix
B.

magnetic moments lie in the IrO2 layers. Finally, �a/b
z ∼ 0,

indicating quite weak interlayer magnetic couplings.
Thus, on the one hand, the second-order Hamiltonian cap-

tures the main features for describing the ground state but,
on the other hand, it is missing some essential ingredients
for describing well, alone, the excited spectrum. In the light
of these results, in the next section we analyze the effect of
fourth-order terms.

B. Fourth-order terms

A possible solution to the discrepancies discussed above
are higher-order superexchange terms, shown schematically
in Fig. 6. In the case of La2CuO4, it has been pointed out
that a sizable ring exchange could explain the shape of spin
waves [22,55–60], a fact taken often as an indication of a
relatively weak Coulomb interaction. Also in the iridates, one
could expect sizable fourth-order effects, as suggested, e.g., in
Ref. [19]. Here we quantify their role.

The elements of the fourth-order many-body energy-gain
matrix can be written as

M(4)
g,g′ =

∑
ee′g′′

ĤT
geĤT

eg′′ĤT
g′′e′ĤT

e′g′

	Ee	Ee′

1

2

(
1

	Ee
+ 1

	Ee′

)

−
∑
ee′e′′

ĤT
geĤT

ee′ĤT
e′e′′ĤT

e′′g′

	Ee	Ee′	Ee′′
, (22)

where 	Ee = E0
e − E0

g , with E0
g and E0

e energies of ground
(g) and excited (e) atomic states and ĤT is the hopping part of
the Hamiltonian. Fourth-order terms from hopping integrals
between nearest neighbors are sizably larger than those from
longer range ones; thus we consider their effects only. The
contributing processes can involve two, three, or four sites
[61], as shown in Figs. 6(b)–6(d). For each diagram, we map

FIG. 7. The contribution of excitonic processes. The initial and
final configurations have four electrons in the jeff = 3/2 multiplet
and one in the jeff = 1/2 multiplet, both at site (i) and (i′). In the first
step, a jeff = 1/2 electron moves from site (i) to the empty jeff = 1/2
state at the neighboring site (i′). In step (2), a jeff = 3/2 electron
from site (i′) is transferred to the jeff = 1/2 multiplet of site (i). The
intermediate state is now a spin-orbit excitonic state. In step (3), an
electron from site (i) in the jeff = 3/2 multiplet moves to site (i′)
in the same multiplet. In step (4) a jeff = 1/2 electron from site (i′)
moves back to site (i) but in the jeff = 3/2 multiplet. This sequence
of virtual excitations contributes to �

(b)
1 .

the energy gain matrix M(4)
g,g′ into the effective pseudospin

Hamiltonian as explained in Appendix B.
Compared to the case of the single-band half-filled

Hubbard model, there are contributions from spin-orbit ex-
citonic states via the term in the last line of Eq. (22); this
is illustrated in Fig. 7 in a representative case. To quantify
the role of excitonic processes, we perform calculations with
and without such contributions. For diagrams in Fig. 6(b), the
magnetic coupling matrix along x direction without excitonic
terms is, for U = 3.2 eV,

�
′(b)
1x =

⎛
⎝−2.1 0.0 0.0

0.0 −2.1 0.0
0.0 0.0 −2.1

⎞
⎠ meV. (23)

Adding the excitonic terms, we have

�
(b)
1x =

⎛
⎝ 1.4 0.1 0.0

−0.1 1.4 0.0
0.0 0.0 1.3

⎞
⎠ meV. (24)

For U = 2.0 eV, the matrices are instead

�
′(b)
1x =

⎛
⎝−19.0 0.0 0.0

0.0 −18.8 0.0
0.0 0.0 −18.5

⎞
⎠ meV (25)

and

�
(b)
1x =

⎛
⎝−6.6 0.1 0.0

−0.1 −6.6 0.0
0.0 0.0 −6.8

⎞
⎠ meV. (26)

The corresponding elements of �
(b)
1y along the y direction

can be obtained exchanging the first two diagonal elements
of �

(b)
1x . These matrices show that accounting for excitonic

processes reduces the value of the negative couplings on the
diagonal and can even lead to a sign change. As a result, the
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FIG. 8. The fourth-order exchange couplings as a function of Hund’s rule coupling J (left panels) and crystal-field splitting (right panels).
(a), (c) With excitonic states. (b), (d) Without excitonic states. (a), (b) U = 3.2 eV. (c), (d) U = 2.0 eV. The meaning of the symbols is the
same for all panels.

contribution from the diagram in Fig. 6(b) is positive (antifer-
romagnetic) for U = 3.2 eV, while it remains ferromagnetic
(negative) for smaller U . In the case of La2CuO4, the corre-
sponding parameter is ferromagnetic. Since Eqs. (25) and (26)
show that the anisotropy is tiny, we will from now on neglect
it. By collecting all the the contributions from Figs. 6(b)–6(d),
after taking the multiplicities on a square lattice into account,
we finally have

Ĥ (4)
SE = 1

2

(
�

(4)
1 +K (4)

) ∑
〈 j j′〉N

S̃ j · S̃ j′

+ 1

2

(
�

(4)
2 +1

2
K (4)

) ∑
〈 j j′〉NN

S̃ j · S̃ j′

+ 1

2
�

(4)
3

∑
〈 j j′〉NNN

S̃ j · S̃ j′

+ 2K (4)
∑
〈i jkl〉

(
(S̃i · S̃ j )(S̃k · S̃l )

+ (S̃ j · S̃k )(S̃l · S̃i )−(S̃i · S̃k )(S̃ j · S̃l )
)
. (27)

Here 〈 j j′〉N, 〈 j j′〉NN, and 〈 j j′〉NNN, indicate that the sum is
over nearest (N), next-nearest (NN), and next-next-nearest
(NNN) neighbors (both bonds counted), and 〈i jkl〉 on four
spins on a plaquette (here each set of four spins is counted
only once). The total effective exchange couplings obtained
by fourth-order perturbation calculations for the representa-
tive values (U, J ) = (3.2, 0.4) eV and (U, J ) = (2.0, 0.4) eV
are summarized in Table II. The small fourth-order DM term
has been neglected.

Let us now discuss the results. First, the experimental mag-
netic ground state is still in line with the set of parameters
obtained adding fourth-order terms. What about the spin-wave
dispersion? The contributions from K (4) cancel out in linear
spin-wave theory for the isotropic case [58]. Hence, only the
remaining terms, �

(4)
1 , �

(4)
2 , and �

(4)
3 , can be directly com-

pared to values obtained fitting experimental magnon spectra.
Table II shows that, once fourth-order terms are taken into
account, a similar total �

(1)
tot is obtained for U = 3.2 eV and

U = 2.0 eV, due to cancellation of terms. This shows that
it is hard to distinguish the two modelizations by compar-

ing to spin-wave spectra, at least if one looks to the largest
couplings only. Things are different for �

(2)
tot ; for U = 2.0 eV,

the fourth-order term offsets the second-order one, making the
total effective �

(2)
tot not only ferromagnetic but also of the right

order of magnitude.
To study the stability of this conclusion, in Fig. 8, we

investigate the effects of U , J , and εCF on the total fourth-order
couplings �

(4)
1 , �

(4)
2 , �

(4)
3 , and K (4). By comparing the top and

bottom panels, one sees that, as expected, the fourth-order
couplings increase by almost an order of magnitude with
decreasing U from 3.2 to 2.0 eV, everything else staying the
same. The effects of the Hund’s rule coupling J are much less
trivial; increasing J makes �

(4)
1 more negative, everything else

staying the same, partially compensating the increase found
in the corresponding antiferromagnetic second-order term,
shown in Fig. 3. Thus, the total �

(1)
tot is less sensitive to the

exact value of J than the two components (second and fourth
order) alone. For example, for U = 2.0 eV, if J = 0.2 eV
we obtain �

(4)
1 ∼ −20 meV, and �

(1)
tot ∼ 78 meV, while for

J = 0.4 eV we find �
(4)
1 ∼ −55 meV and �

(1)
tot ∼ 72 meV.

The situation is very different for �
(2)
tot , since at second order

this parameter is 1 meV or smaller. Thus, �
(4)
2 can dominate

if J is sufficiently large; indeed, for J ∼ 0.4 eV we find
�

(4)
2 ∼ −16 meV. This yields good agreement with experi-

ments. It has to be said, however, that the value of �
(4)
2 quickly

drops, reducing J , and for J = 0.2 eV it is already merely
�

(4)
2 ∼ −2.5 meV. This can be seen in Fig. 8(c). The figure

also shows that increasing the crystal-field splitting has the
largest effect for �

(4)
1 and K (4); the more positive the crystal

field is, the smaller (in absolute value) the two parameters are.
Instead, for �

(4)
2 , the effect is weak. Finally, for all realistic

parameter values, �
(4)
3 is very small.

The total magnetic couplings are shown in Fig. 9. The
figure shows that the main parameter, �

(1)
tot has a value close to

experiments (assuming ≈60 ± 10 meV) in a reasonable range
of Coulomb parameters, e.g., U ∼ 2.5 eV and J ∼ 0.3 eV.
For �

(2)
tot , instead, a value comparable to the one extracted

from experimental spin-wave spectra is only obtained if U
is sufficiently small and J sufficiently large. The crystal-field
splitting variation (within a realistic interval) appears less
crucial.
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FIG. 9. Total couplings �
(1)
tot (left) and �

(2)
tot (right) as a function of J and εCF. (b), (d) Results for three couples of (U, J ) values, (3.2,0.4),

(2.5,0.3), (2.0,0.4), all in eV. (a), (b) With excitonic processes. (c), (d) No excitonic processes. Straight lines: Interval of ±10 meV around the
experimental value �1 ∼ 60 meV.

III. DISCUSSION AND CONCLUSION

We performed LDA+SO+DMFT calculations for Sr2IrO4

in the paramagnetic phase. Our results show that, in line with
previous theoretical and experimental works, the system is
strongly correlated but not far from the Mott transition, and
it is characterized by a half-filled jeff = 1/2 multiplet. This
indicates that the magnetic couplings can be obtained in the
effective jeff = 1/2 pseudospin picture via a strong coupling
expansion. At the same time, however, these results point
to a possible important role of fourth-order terms. We thus
calculated the magnetic couplings by many-body perturbation
theory up to fourth order.

We studied the superexchange tensors obtained as a func-
tion of the screened Coulomb integrals, (U, J ), and the
crystal-field splitting εCF. We find that the nearest-neighbor
coupling, �

(1)
tot is in reasonable agreement with experiments

for realistic choices of (U, J ). Its microscopic origin, how-
ever, changes rapidly with increasing U and J , even staying
within the window of realistic values. More specifically, for
U ∼ 3.2 eV or larger, it is dominated by second-order terms;
instead, for U ∼ 2.0 eV, fourth-order contributions can be
sizable and even partially compensate second-order ones if
J is sufficiently large. The situation is different for the next-
nearest-neighbor coupling, �

(2)
tot . At second order, the latter

is always too small with respect to experimental estimates;
furthermore, it has the wrong sign. Adding fourth order terms
can change the sign of �

(2)
tot , however, making it ferromagnetic;

for U ∼ 2.0 eV and J ∼ 0.4 eV, the value of �
(2)
tot is close to

the experimental estimate. We have also shown that spin-orbit
excitonic states play a key role at fourth order and reduce
the absolute value of �

(2)
tot . Finally, our calculations show

that, in the full range of realistic parameters, the next-next-
nearest-neighbor superexchange coupling, �

(3)
tot , is too small

with respect to the value needed to fit spin-wave dispersions
using linear spin-wave theory.

Thus, for (U, J) values that give, in LDA+SO+DMFT
calculations, a Mott insulating state with half-filled jeff = 1/2
state, second-order superexchange terms dominate, despite
the small gap, as in the truly strong-coupling limit. This
is what happens, for example, for (U, J ) = (3.2, 0.4) eV,
(U, J ) = (2.5, 0.3) eV, or (U, J ) = (2.4, 0.0) eV, all val-
ues used in the literature (and yielding a small but finite

Mott gap), corresponding to an average Coulomb interaction
Uavg=1.9−2.4 eV. The reason is that, depending on the case,
either U is too large or J too small—or both at the same
time—for sizable fourth-order contributions. In this situation,
a ferromagnetic �2 ∼ −15 meV and �3 ∼ |�2| are hard to
explain within superexchange theory alone, at least when
starting from the t2g Hubbard model Eq. (1). The discrepancies
would suggest that the microscopic model should be expanded
to explicitly include more degrees of freedom as well as the
ferromagnetic Coulomb exchange.

Since in Sr2IrO4 the experimental gap is small, about 0.1–
0.6 eV [27–33], and LDA+SO+DMFT calculations give a
Mott gap in line with these data for Uavg ∼ 2.4 eV, it is still
possible that a different scenario occurs, however. DMFT re-
sults are based on the local self-energy approximation; going
to large clusters remains very challenging, in particular, in the
presence of spin-orbit interaction. If nonlocal correlation ef-
fects were taken into account, however, the gap could already
open for a slightly smaller Uavg, not far from the cRPA esti-
mate. Alternatively, in the paramagnetic phase, Sr2IrO4 could
even remain a bad metal with very heavy masses, becoming
an insulator only below the magnetic transition [25,34,35].
In these circumstances, true signatures of the intermediate-
coupling regime could appear. In fact, should the Hund’s
rule J be large enough (J ∼ 0.4 for U = 2.0 eV), fourth-
order terms could explain a ferromagnetic �2 (alone or in
combination with Coulomb exchange). In addition, as has
been shown for the single-band Hubbard model on a square
lattice, quantum fluctuations could justify the suppression of
the excitation energy at the X point, without the need of a
large �3 [19,59,60]; this is true, in particular, if the ratio rR =
2K/(�(1)

tot + K ) is as large as rR ∼ 0.7, the value we obtain for
(U, J ) = (2.0, 0.4) eV.

In conclusion, we have identified two possible scenarios.
In the first, despite the small charge gap, the magnetic cou-
plings are dominated by second-order terms, as in the strong
coupling regime. In this case, the dominant coupling, �1, is
well described by standard superexchange theory within the
three-band t2g Hubbard model. For explaining the sign and
size of the long-range �2 and �3 couplings, however, terms
beyond t2g superexchange interactions have to be considered.
In the second scenario, instead, true intermediate-coupling ef-
fects play an important role. In this regime, if J is sufficiently
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TABLE III. The t5
2g multiplets in the presence of crystal field and spin-orbit coupling, with Coulomb energy EU = 10U − 20J , in the

one-electron basis which yields the local Hamiltonian Eq. (3). The states are defined as |Mh〉σ = c†
Mσ c†

M2↑c†
M2↓c†

M1↑c†
M1↓|0〉. We use the same

notations of Ref. [51]. The coefficients α5 and α6 are positive.

|N ; α〉 E = Eatom − EU

|5; �6, σ 〉 = − 1√
2
(|XZh〉σ −2iσ |Y Zh〉σ ) 3εCF+ λX

2

|5; �′′
7 , σ 〉 = −iα5|XY h〉σ − α6√

2
(|XZh〉−σ −2iσ |Y Zh〉−σ ) 4εCF + 1

2 (−εCF− λZ
2 +

√
(εCF+ λZ

2 )2+2λ2
X/Y )

|5; �′
7, σ 〉 = +iα6|XY h〉σ − α5√

2
(|XZh〉−σ −2iσ |Y Zh〉−σ ) 4εCF + 1

2 (−εCF− λZ
2 −

√
(εCF+ λZ

2 )2 + 2λ2
X/Y )

α2
5 = 2λ2

X/Y(
εCF+ λz

2 −
√(

εCF+ λZ
2

)2
+2λ2

X/Y

)2
+2λ2

X/Y

, α2
5 + α2

6 = 1.

large, a ferromagnetic �2 can already be obtained from t2g su-
perexchange theory. Ultimately, the independent experimental
determination of K remains the smoking gun for identifying
the correct picture. In the case of La2CuO4, evidence in favor
of a sizable K was gathered via the temperature dependence of
the static susceptibility at high temperature [58], although the
question is far from settled. Experiments with similar goals
could help shed light on the correct modelization for Sr2IrO4.
This could also help in understanding the behavior of other
systems, such as the bilayer Sr3Ir2O7, for which long-range
couplings have also been used to fit the RIXS spin-wave
dispersion [62].
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APPENDIX A: THE t5
2g MULTIPLETS IN ATOMIC LIMIT

The multiplets for t5
2g configuration with both tetragonal

crystal-field and spin-orbit coupling are listed in Table III. The
lowest energy doublet |5; �′

7, σ 〉 is redefined as pseudospin
states |σ 〉 in the main text.

APPENDIX B: DERIVATION OF FOURTH-ORDER TERMS

In this Appendix, we explain how we calculate the contri-
butions of the diagrams in Fig. 6. For Fig. 6(b), involving only
two sites, we simply use Eq. (7), replacing M(2) with M(4).
For the multisite diagrams Figs. 6(c) and 6(d), we ignore the
tiny anisotropy and adopt Dirac’s approach [58,64,65]. As an
intermediate step, we thus map the interaction into

H(c/d )
SE = −1

2

∑
ξ

(−1)pξ �
(c/d )
ξ Pσ

ξ , (B1)

where �ξ is the exchange parameter and Pσ
ξ are the cyclic spin

permutation operators

Pσ
123...N |σ1, σ2, σ3, ..., σN 〉 = |σN , σ1, σ2, ..., σN−1〉.

In Eq. (B1), pξ is even (odd) for an odd (even) number of
pseudospins. Thus, if �

(c/d )
ξ > 0, cyclic permutations with

an odd number of pseudospins result in a ferromagnetic ex-
change [66]. For N = 2, we have

Pσ
i j = 1

2 (1 + �σi · �σ j ), (B2)

where �σi and �σ j are Pauli matrices. Since for N > 2,

Pσ
123...N = Pσ

12Pσ
23...Pσ

N−1,N , (B3)

for three and four spins, we have Pσ
i jk = Pσ

i jPσ
jk and Pσ

i jkl =
Pσ

i jPσ
jkPσ

kl . Given that the inverse of Pσ
ξ equals its complex

conjugate, the two relevant terms at fourth order can then be
expressed as

Pσ
i jk + (

Pσ
i jk

)−1 = 1
2 (1 + �σi · �σ j + �σ j · �σk + �σk · �σi )

= Pσ
i j + Pσ

jk + Pσ
ki − 1 (B4)

and

Pσ
i jkl+

(
Pσ

i jkl

)−1 = −1 + Pσ
ik+Pσ

jl+Pσ
i jPσ

kl+Pσ
jkPσ

li − Pσ
ikPσ

jl .

(B5)

For Fig. 6(c), we thus obtain the following exchange terms for
three sites, ordered as i, j, k:

H(c)
SE = 1

2

(
�

(c)
1;B + �

(c)
1;L

)(
Pσ

i j + Pσ
jk

) + 1
2

(
�

(c)
2;B + �

(c)
3;L

)
Pσ

ik

− 1
2

(
�

(c)
T B + �

(c)
T L

)(
Pσ

i jk + (
Pσ

i jk

)−1)
.

The possible site configurations (which we label with X )
contributing are shown in Fig. 6. The bent configurations,
(1)—(4) are indicated as X=B, while the linear configura-
tions, (5) and (6), as X=L. The couplings �

(c)
l;X contribute

to �
(4)
l only, where l = 1, 2, 3 indicates if the sites are

first, second, or third neighbors. The coupling �
(c)
T X with

X=B contributes to both �
(4)
1 and �

(4)
2 , with values �

(c)
1;T B =

�
(c)
2;T B = −�

(c)
T B; instead, for X=L the contributions are

�
(c)
1;T L = �

(c)
3;T L = −�

(c)
T L. In Table IV, we give the final results

for (U, J ) = (3.2, 0.4) eV and (U, J ) = (2.0, 0.4) eV. The
table evidences once more that the numerical values of the
exchange couplings can vary sizably, including excitonic pro-
cesses, a peculiarity of iridates with respect to cuprates. In
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TABLE IV. Exchange couplings (in meV) from fourth-order diagrams (b)–(d). Hopping parameters are obtained via LDA+SO calculations.
Coulomb parameters: U = 3.2 eV (left), U = 2.0 eV (right), J = 0.4 eV. Superscripts (b)–(d ) indicate the diagrams from which the parameter
originates; diagrams and associated possible site configurations are illustrated in Fig. 6. Notice that �

(c)
1;T B = �

(c)
2;T B = −�

(c)
T B, �(c)

1;T L = �
(c)
3;T L =

−�
(c)
T L , and �

(d )
1;T = �

(d )
2;T = −�

(d )
T by construction; here B stands for bent [diagram (c), configurations (1)–(4)], L for linear [diagram (c),

configurations (5) and (6)], P for plaquette (diagram (d). In addition T stands for (i jk) and S for (i jkl).

Type U = 3.2 eV No excitons U = 2.0 eV No excitons

(b) �
(b)
1x =

⎛
⎝ 1.4 0.1 0.0

−0.1 1.4 0.0
0.0 0.0 1.3

⎞
⎠

⎛
⎝−2.1 0.0 0.0

0.0 −2.1 0.0
0.0 0.0 −2.1

⎞
⎠

⎛
⎝−6.6 0.1 0.0

−0.1 −6.6 0.0
0.0 0.0 −6.8

⎞
⎠

⎛
⎝−19.0 0.0 0.0

0.0 −18.8 0.0
0.0 0.0 −18.5

⎞
⎠

(c)

conf P �1 �2 �3 K

B i j −0.9 −0.7

L i j −0.4 −1.7

B T : i jk +0.4 +0.4

L T : i jk +1.2 +1.2

�1 �2 �3 K

−0.7 −0.4

−0.6 −0.2

+0.8 +0.8

+0.7 +0.7

�1 �2 �3 K

−6.5 0.2

−4.0 −6.1

+5.1 +5.1

+7.0 +7.0

�1 �2 �3 K

−6.0 −3.2

−5.0 −1.2

+6.2 +6.2

+5.7 +5.7

(d)

conf P �1 �2 �3 K

P i j +0.7 +0.4

P T : i jk −1.3 −1.3

P S : i jkl +4.3

�1 �2 �3 K

+7.1 +5.2
−15.6 −15.6

+40.2

addition, the table shows that T couplings from Fig. 6(c) are
all antiferromagnetic and can compensate the ferromagnetic
contributions from other diagrams.

Figure 6(d) involves four sites, ordered as i, j, k, l . The
associated SU(2)-symmetric terms can be expressed as

H(d )
SE = �

(d )
1

2

(
Pσ

i j+Pσ
jk+Pσ

kl + Pσ
li

) + �
(d )
2

2

(
Pσ

ik+Pσ
jl

)

− �
(d )
T
2

(
Pσ

i jk+
(
Pσ

i jk

)−1+Pσ
ikl+

(
Pσ

ikl

)−1

+ Pσ
i jl + (

Pσ
i jl

)−1+Pσ
jkl+

(
Pσ

jkl

)−1)

+ K (d )
S
2

(
Pσ

i jkl + (
Pσ

i jkl

)−1)
. (B6)

Spin-orbit excitonic states do not contribute. The coupling
�

(d )
T contributes to both �

(4)
1 and �

(4)
2 with values �

(d )
1;T =

�
(d )
2;T = −�

(d )
T . The numerical values obtained are listed in

Table IV; the T couplings are all ferromagnetic.
Finally, collecting all the contributions

Ĥ (4)
SE =1

2

(
�

(4)
1 +K (4)

) ∑
〈 j j′〉N

S̃ j · S̃ j′

+ 1

2

(
�

(4)
2 + 1

2
K (4)

) ∑
〈 j j′〉NN

S̃ j · S̃ j′

+ 1

2
�

(4)
3

∑
〈 j j′〉NNN

S̃ j · S̃ j′

+ 2K (4)
∑
〈i jkl〉

((S̃i · S̃ j )(S̃k · S̃l )

+ (S̃ j · S̃k )(S̃l · S̃i ) − (S̃i · S̃k )(S̃ j · S̃l )), (B7)

where we took also the multiplicities on a square lattice into
account. Here 〈 j j′〉N, 〈 j j′〉NN, and 〈 j j′〉NNN, indicate that the
sum is over nearest (N), next nearest (NN), and next-next
nearest (NNN) neighbors (both bonds counted), and 〈i jkl〉
on four spins on a plaquette (here each set of four spins is
counted only once). The small fourth-order DM term has been
neglected. The total fourth-order parameters are given by

�
(4)
1 = 1

3 Tr
[
�

(b)
1x

] + 4�
(c)
1;B + 2�

(c)
1;L+4�

(c)
1;T B+2�

(c)
1;T L

+ 2�
(d )
1 +4�

(d )
1;T , (B8)

�
(4)
2 = 2�

(c)
2;B+2�

(c)
2;T B + �

(d )
2 +2�

(d )
2;T

�
(4)
3 = �

(c)
3;L+�

(c)
3;T L (B9)

K (4) = K (d )
S . (B10)

The total effective exchange couplings obtained by fourth-
order perturbation calculations for the representative values
(U, J ) = (3.2, 0.4) eV and (U, J ) = (2.0, 0.4) eV are sum-
marized in Table II.
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