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A formalism to describe steady-state electronic and thermal transport in the framework of density functional
theory is presented. A one-to-one correspondence is proven between the three basic variables of the theory, i.e.,
the density on as well as the electrical and heat currents through the junction, and the three basic potentials, i.e.,
the local potential in as well as the DC bias and thermal gradient across the junction. Consequently, the Kohn-
Sham system of the theory requires three exchange-correlations potentials. In linear response, the formalism
leads to exact expressions for the many-body transport coefficients (both electrical and thermal conductances and
Seebeck coefficient) in terms of both the corresponding Kohn-Sham coefficients and derivatives of the exchange-
correlations potentials. The theory is applied to the single impurity Anderson model and an accurate analytic
parametrization for these derivatives in the Coulomb blockade regime is constructed through reverse engineering.
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I. INTRODUCTION

Thermoelectricity [1] is at the heart of a range of
technological applications, e.g., energy conversion, and is
intrinsically related to both charge and heat transport. With
progress in the manipulation and fabrication of materials at the
nanoscale and even at the level of single molecules (molecular
electronics, see Refs. [2–6]), designing more efficient thermo-
electrics requires reliable modeling techniques at an atomistic
level. Today, density functional theory (DFT) is most often the
method of choice for ab initio modeling due to its favorable
balance of accuracy and numerical efficiency. In a DFT frame-
work, transport is typically described by combining DFT with
the Landauer-Büttiker (LB) approach. This LB-DFT formal-
ism, also known as DFT-NEGF (DFT plus nonequilibrium
Green’s function), treats transport as a scattering problem of
noninteracting electrons. The resulting Landauer formula for
the electronic current is physically very intuitive in that the
current is given as an energy integral of the transmission func-
tion integrated over the bias window. The LB-DFT framework
has become extremely useful in a qualitative understanding of
transport through, e.g., single molecules.

However, one should keep in mind that the noninteracting
nature of electrons in LB-DFT clearly is an approximation.
Furthermore, LB-DFT uses ground-state (equilibrium) DFT
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in a nonequilibrium situation (transport) which is formally not
justified.

A proper nonequilibrium DFT approach to transport could
be time-dependent DFT (TDDFT) [7] where the steady state
is achieved in the long-time limit of the time evolution of the
system after switching on a DC bias. Formally, the long-time
limit of TDDFT leads to exchange-correlation (xc) corrections
to the bias [8–13] which are absent in LB-DFT but are diffi-
cult to model. Within TDDFT, one can hope to describe the
(longitudinal) part of the electronic (steady) current. For the
additional description of heat (or energy) currents, the formal-
ism has been extended recently [14–16], but applications have
so far been restricted to noninteracting systems [17] due to the
lack of approximations to the corresponding xc functionals.

Recently, an alternative DFT approach to transport in
the steady state was suggested [18]. This so-called i-DFT
formalism allows us to compute the steady-state density
and electronic current (and thus the electrical conductance).
Again, just like in TDDFT, this is achieved via an xc contri-
bution to the bias. Unlike in TDDFT, however, xc functionals
have been constructed for nontrivial model systems such as
the single impurity Anderson model (SIAM), both in the
Kondo as well as in the Coulomb blockade regime [19]. Also,
in TDDFT the exact xc functional has memory dependence
[20–25] whereas the i-DFT xc functionals only depend on the
steady-state values of the densities. Somewhat unexpectedly,
i-DFT can also be used to compute many-body spectral func-
tions both in [26,27] and out of equilibrium [28].

By construction, i-DFT does not give access to the heat cur-
rent (although the Seebeck coefficient can be extracted [29]).
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In the present paper, we will close this gap and generalize
i-DFT to iq-DFT, a formalism which allows us to compute
not only the (steady-state) density and electrical current but
also the electronic contribution to the heat current.

The structure of the paper is as follows: In Sec. II, we
prove the fundamental theorem of the iq-DFT formalism (the
one-to-one correspondence between densities and potentials)
and introduce the corresponding Kohn-Sham (KS) scheme. In
Sec. III, we derive the linear response equations which allow
expressing the linear transport coefficients solely in terms
of iq-DFT quantities. These coefficients include the thermal
conductance, for which up to now only the (formally incom-
plete) LB-DFT expression has been available. In Sec. IV, we
apply iq-DFT to the SIAM in the linear response regime.
From reverse engineering, we derive analytic parametrizations
for all iq-DFT quantities needed to describe the Anderson
model in the Coulomb blockade regime. In the Appendix, we
give detailed derivations for the analytical integrals needed in
Sec. IV.

II. FORMALISM

We consider the typical setup for electronic transport which
consists of a central molecular junction (C) coupled to a left
(L) and a right (R) electrode. The electrodes are in (local)
thermal equilibrium with temperatures TL/R and chemical po-
tentials μL/R, respectively. The central region C is subject to
an electrostatic potential v(r) generated by, e.g., the nuclei in
the molecular junction and/or an external gate potential which
vanishes deep inside the electrodes. The system can be driven
out of equilibrium by a finite thermal gradient �T = TL − TR

and/or an external DC bias V across the junction. We assume
that these perturbations in the long-time limit lead to a steady-
state electrical current (I) as well as energy and heat currents
(W and Q, respectively).

We aim to construct a formally exact density functional
framework, which we call iq-DFT, to describe such a steady
state and reproduce these currents. To this end, we extend the
recently proposed DFT framework for steady-state transport
[18], also called i-DFT, which in principle captures the steady-
state density n(r) in the central region C, as well as the steady
current I through it. By construction, in the linear-response
regime, i-DFT gives access to the (many-body) electrical
conductance and can also describe the Seebeck coefficient
[29]. On the other hand, the energy or heat currents are not
guaranteed to be reproduced in i-DFT and therefore also the
thermal conductance is not captured. i-DFT is based on the
one-to-one map between the pair of densities (n(r), I) and the
pair of potentials (v(r),V ), where the bias V across region C
is given as V = μL − μR.

In our iq-DFT framework for the description of both
charge and thermal transport, we establish a one-to-one map
between the three densities (n(r), I, Q) and the three poten-
tials (v(r),V, �), where � = (TL − TR)/T is the normalized
thermal gradient and T = (TL + TR)/2 is the background tem-
perature. In linear response, iq-DFT gives access not only to
the electrical conductance and the Seebeck coefficient but also
to the thermal conductance, see Sec. III.

In the following, we adopt the sign convention that currents
flowing into the central region are positive. Due to charge

and energy conservation, the steady-state electrical/energy
current flowing in from the left lead is equal to the steady-
state electrical/energy current flowing out through the right
lead, i.e., I ≡ IL = −IR (electrical current), W ≡ WL = −WR

(energy current) and Q ≡ QL = −IV − QR (heat current).
The foundation of iq-DFT rests on the following theorem

which establishes the one-to-one correspondence between the
basic variables of the theory (n(r), I, Q) and the three driving
forces or potentials (v(r),V, �).

Theorem: For any finite temperature T and fixed elec-
trostatic potential in the leads, there exists a one-to-one
correspondence between the set of densities (n(r), I, Q) and
the set of potentials (v(r),V, �) in a (gate dependent) finite
region of bias and thermal gradient around V = 0 and � = 0.

Proof: The existence of the invertible map can be proven
by showing that the determinant of the Jacobian

J = det

⎛
⎜⎜⎝

δn(r)
δv(r′ )

∂n(r)
∂V

∂n(r)
∂�

δI
δv(r′ )

∂I
∂V

∂I
∂�

δQ
δv(r′ )

∂Q
∂V

∂Q
∂�

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣V = 0

� = 0

(1)

is nonvanishing.
Since a change in the gate voltage cannot produce a persis-

tent current in the linear regime, we have

δI

δv(r)

∣∣∣∣V = 0
� = 0

= 0,
δQ

δv(r)

∣∣∣∣V = 0
� = 0

= 0, (2)

and therefore we can write Eq. (1) as

J = det(χ (r, r′))det(L) = det(χ (r, r′))T Gκ, (3)

where χ (r, r′) = δn(r)
δv(r′ ) | V =0

�=0
is the static equilibrium density

response function and G and κ are the electrical and thermal
conductances. These are derived from the linear response
relationship between the currents (I, Q) which, to first order,
result from application of the potentials (V, �),(

I
Q

)
= L

(
V
�

)
=

(
L11 L12

L21 L22

)(
V
�

)
, (4)

with L21 = L12 from Onsager’s relation [30]. The conductance
matrix L can be expressed in terms of the transport coeffi-
cients as [31]

L =
(

G −T GS
−T GS T κ + T 2GS2

)
, (5)

where S is the Seebeck coefficent. Equivalently, we can use
Eq. (5) to express the transport coefficients in terms of the
matrix elements Li j as

G = ∂I

∂V

∣∣∣∣V = 0
� = 0

= L11, (6a)

S = ∂V

∂�T

∣∣∣∣ I = 0
Q = 0

= − 1

T

L12

L11
, (6b)

κ = − ∂Q

∂�T

∣∣∣∣ I = 0
Q = 0

= 1

T

(
L22 − L2

12

L11

)
. (6c)

It has already been shown [18] that, for any finite temperature
T , we have det(χ (r, r′)) < 0 [18] and G > 0 [18,32]. There-
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fore, to complete the proof of the theorem, it remains to be
shown that κ > 0.

This step can be done by applying Onsager’s original argu-
ments. In the steady state, the time- derivative of the entropy S
in the central molecular region equals the sum of the entropy
currents Qα/T , α = L, R, from the leads

Ṡ = −
(QL

TL
+ QR

TR

)

= − 1

T

(
QL + QR − �

2
(QL − QR)

)
, (7)

where the minus sign follows from our convention that cur-
rents flowing into the central region C are positive. In the
last step, we expanded to linear order for small temperature
gradients �. Using the relation

Wα = Qα + μαIα (8)

between energy and heat currents, and using that in the steady
state we have IL = −IR = I and WL = −WR = W , we arrive
at

Ṡ = 1

T
(IV + Q� )

= 1

T
(L11V

2 + 2L12V � + L22�
2), (9)

where we used Eq. (4) in the last step.
From the second law of the thermodynamics, we know

that Ṡ � 0, where the equality sign holds at equilibrium.
Therefore, the equilibrium state of the system corresponds to
the local minimum of the rate of production of entropy. As a
consequence, the determinant of the Hessian matrix of Ṡ has
to be positive around V = 0, � = 0:

HṠ = ∂2Ṡ
∂V 2

∣∣∣∣V = 0
� = 0

∂2Ṡ
∂�2

∣∣∣∣V = 0
� = 0

− ∂2Ṡ
∂V ∂�

∣∣∣∣
2

V = 0
� = 0

= 4

T 2

(
L11L22 − L2

12

) = 4T −1Gκ > 0. (10)

From Eq. (10), the positiveness of the thermal conductance
κ > 0 directly follows, which completes the proof of the one-
to-one map.

An equivalent formulation stems from considering as
a third basic variable the energy current W instead of
Q. The theory thus leads to a one-to-one correspondence
between (n(r), I,W ) and the trio of potentials (v(r),V −
μL�,�). The two formulations are related through
Eq. (8) [33].

A. Kohn-Sham equations of iq-DFT

The iq-DFT theorem holds for any form of the interaction,
in particular, also for the noninteracting case. To establish
the KS scheme, we make the usual assumption of noninter-
acting representability, i.e., that there exists a unique trio of
potentials (vs(r),Vs, �s) for a noninteracting system, the KS
system, which exactly reproduces the densities (n(r), I, Q) of
the interacting system with potentials (v(r),V, �). Following

the standard KS procedure, the xc potentials of the iq-DFT
framework are then defined as

vHxc[n, I, Q](r) = vs[n, I, Q](r) − v[n, I, Q](r), (11a)

Vxc[n, I, Q] = Vs[n, I, Q] − V [n, I, Q], (11b)

�xc[n, I, Q] = �s[n, I, Q] − �[n, I, Q]. (11c)

The self-consistent coupled KS equations for the densities
read (

∫ ≡ ∫ ∞
−∞

dω
2π

in the following)

n(r) = 2
∑

α=L,R

∫
f

(
ω − μs,α

Ts,α

)
As,α (r, ω), (12a)

I = 2
∑

α=L,R

∫
f

(
ω − μs,α

Ts,α

)
sαTs(ω), (12b)

Q = 2
∑

α=L,R

∫
f

(
ω − μs,α

Ts,α

)
sα (ω − μs,L )Ts(ω), (12c)

where f (x) = [1 + exp(x)]−1 is the Fermi function,
μs,α = μ + Vs,α , Ts,α = T (1 + sα�s/2), and sL/R =
±1. We also defined the partial spectral function
As,α (r, ω) = 〈r|G(ω)�α (ω)G†(ω) |r〉, with G(ω) and
�α (ω) the KS Green’s function and broadening ma-
trices, respectively, and the KS transmission function
Ts(ω) = Tr{G(ω)�L(ω)G†(ω)�R(ω)}. Finally, the energy
current follows directly from Eqs. (8) and (12):

W = 2
∑

α=L,R

∫
f

(
ω − μs,α

Ts,α

)
sαωTs(ω). (13)

Equations (12a) and (12b) have the same structure as the
KS equations of the original i-DFT formulation, except that
in the present formalism the thermal gradient along the central
region is not a parameter anymore but a basic potential which
depends on the densities of the system. Therefore, the only
possible parametric temperature dependence in the approxi-
mations for the functionals Eqs. (11) is through the average
temperature T .

III. LINEAR RESPONSE

In this section, we develop the linear response formalism
for iq-DFT which leads to expressions for the linear transport
coefficients G, S, and κ purely in terms of quantities accessible
by the theory.

The linear relationship for small variations of the basic
densities around zero currents follows Eq. (4). The same cur-
rent variations can be expressed in terms of the KS system(

I
Q

)
= Ls

(
V + Vxc

� + �xc

)
, (14)

where we have used the definition of the KS potentials
Eqs. (11) and that Is = I and Qs = Q by the KS construction.
In the linear response regime, the changes in the xc potentials
can be written as (

Vxc

�xc

)
= Fxc

(
I
Q

)
, (15)
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with the matrix of xc derivatives Fxc defined by

Fxc =
(

∂Vxc
∂I

∂Vxc
∂Q

∂�xc
∂I

∂�xc
∂Q

)∣∣∣∣∣ I = 0
Q = 0

. (16)

Combining Eqs. (4), (14), and (16), and using the fact that V
and � are arbitrary, we arrive at the Dyson equation

L = Ls + LsFxcL (17)

or, equivalently,

Fxc = L−1
s − L−1 = Rs − R. (18)

Here, L and Ls are the interacting and KS conductance ma-
trices where each element is evaluated at (V = 0, � = 0) and
(Vs = 0, �s = 0), respectively. Similarly, R = L−1 and Rs =
L−1

s are the interacting and KS resistance matrices where each
element is evaluated at (I = 0, Q = 0). As a consequence of
the Onsager’s relations between the cross terms in the conduc-
tance matrices, from Eq. (18) it follows

∂Vxc

∂Q

∣∣∣∣ I = 0
Q = 0

= ∂�xc

∂I

∣∣∣∣ I = 0
Q = 0

. (19)

We can express the Fxc elements as function of the linear
transport coefficients making use of Eqs. (5) and (18) for the
interacting and the KS system:

∂Vxc

∂I

∣∣∣ I = 0
Q = 0

= 1

Gs
+ T

S2
s

κs
− 1

G
− T

S2

κ
, (20a)

∂�xc

∂I

∣∣∣ I = 0
Q = 0

= ∂Vxc

∂Q

∣∣∣ I = 0
Q = 0

= Ss

κs
− S

κ
, (20b)

∂�xc

∂Q

∣∣∣ I = 0
Q = 0

= 1

T κs
− 1

T κ
. (20c)

These equations can be inverted to express the transport
coefficients as

κ = κs

1 − T ∂�xc
∂Q

∣∣∣ I = 0
Q = 0

κs

, (21a)

S =
Ss − κs

∂Vxc
∂Q

∣∣∣ I = 0
Q = 0

1 − T ∂�xc
∂Q

∣∣∣ I = 0
Q = 0

κs

, (21b)

G = Gs

1 −
(

∂Vxc
∂I

∣∣∣ I = 0
Q = 0

+ T S2

κ
− T S2

s
κs

)
Gs

. (21c)

Equations (21) are exact expressions for the interacting
(linear) transport coefficients in any molecular transport setup.
They express the many-body transport coefficients in terms
of quantities which are fully accessible within iq-DFT, i.e.,
the xc derivatives evaluated at (I = 0, Q = 0) and the KS
transport coefficients. The transport coefficients in iq-DFT
exhibit increasing complexity: while the thermal conductance
κ [Eq. (21a)] only depends on the KS thermal conductance

κs and ∂�xc
∂Q , the Seebeck coefficient depends on its KS contri-

bution Ss, κs as well as the two xc derivatives, ∂Vxc
∂Q and ∂�xc

∂Q .
Finally, the electrical conductance depends on the three KS
coefficients (κs, Ss, Gs) and the three xc derivatives through S
and κ .

Using Eqs. (21) for the iq-DFT transport coefficients, we
now briefly discuss the relation of iq-DFT to other DFT-based
frameworks for the description of steady-state transport. First,
we consider the simplest approximation which completely
neglects the xc contributions to the transport coefficients, i.e.,
setting Vxc ≈ 0 and �xc ≈ 0. Then all linear transport coef-
ficients reduce to the corresponding KS coefficients, i.e., we
recover the standard LB-DFT approach. At the next level, we
consider the relation to the original i-DFT formalism which is
designed to give the exact electrical steady current. The i-DFT
expression for the electrical conductance

G = Gs

1 − ∂V i−DFT
xc
∂I

∣∣∣
I = 0

Gs

(22)

is exact, just as the corresponding iq-DFT expression
Eq. (21c). Thus, we can establish the exact relation

∂V i−DFT
xc

∂I

∣∣∣
I = 0

= ∂V iq−DFT
xc

∂I

∣∣∣ I = 0
Q = 0

+ T S2

κ
− T S2

s

κs
(23)

for the current derivatives at I = 0 of the xc bias in i-DFT and
iq-DFT. In the original i-DFT framework, the Seebeck coef-
ficient as well as the thermal conductance are given by their
KS counterparts. In iq-DFT, this corresponds to the approxi-
mation of setting �xc ≈ 0 and approximating the xc bias as a
functional independent of the heat current, i.e., Vxc[n, I, Q] ≈
Vxc[n, I]. In earlier work [29], we have extended the original
i-DFT formalism to not only give the many-body electri-
cal conductance but also the many-body Seebeck coefficient,
while for the thermal conductance one still has κ = κs. In
iq-DFT, this corresponds to the approximation �xc[n, I, Q] ≈
�xc[n, I], independent of Q for general Vxc[n, I, Q]. Then we
find S = Ss − κs

∂Vxc
∂Q | I = 0

Q = 0 = Ss + ∂Vxc
∂�T | I = 0

Q = 0 = Ss + Sxc, as in
Refs. [29,34]. This approximation then also implies a finite
correction (over pure i-DFT) for the electrical conductance
G = Gs[1 − ( ∂Vxc

∂I | I=0
Q=0

+ T Sxc(Sxc − 2Ss)/κs)Gs]−1.

To calculate the interacting transport coefficients from
Eq. (21), one first needs to evaluate the KS coefficients and,
consequently, an approximation for the functional vHxc[n] is
required where the dependence of vHxc on I and Q can be
neglected if we work in the linear response regime. To gain
some initial insight into the possible approximations for the
iq-DFT functionals, in the following section we will discuss
an application of iq-DFT formalism to a particular model
system in the linear response regime.

IV. APPLICATION TO THE SINGLE IMPURITY
ANDERSON MODEL

In this section, we apply our iq-DFT framework to the
SIAM. Due to its simplicity and evident physical interpre-
tation, this model is ideally suited as a system to explore
the formalism and has been used in many previous works
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[28,34,35], both within and outside any DFT setting. The
SIAM describes a single interacting impurity (quantum dot)
coupled to noninteracting left (L) and right (R) leads. The
Hamiltonian of the system reads

Ĥ =
∑

σ

vn̂σ + Un̂↑n̂↓ +
∑
αkσ

εαkσ ĉ†
αkσ

ĉαkσ

+
∑
kασ

(tαk ĉ†
αkσ

d̂σ + H.c.). (24)

The first two terms in Eq. (24) describe the single impu-
rity, where v is the on-site energy of the dot and U is the
Coulomb interaction. ĉ†

αkσ
and d̂†

σ are the creation operators
for electrons with spin σ (σ =↑,↓) in lead α and on the dot,
respectively. n̂σ = d̂†

σ d̂σ and n̂ = n̂↑ + n̂↓ are the operators for
the spin density and for the total density of electrons on the
dot. The third and last term account for the single particle
eigenstates of the isolated leads as well as for the tunnel-
ing between the dot and the leads with couplings �α (ω) :=
2π

∑
k |tαk|2δ(ω − εkα ). We consider featureless electronic

leads described by frequency-independent couplings �α (ω) =
γα (with α = L, R), i.e., we work in the wide band limit.
For simplicity, we choose symmetric coupling of the leads,
i.e., γL = γR = γ /2. In the present section, we are mostly
concerned with application of the theory to the linear response
regime, but for derivation purposes we keep a finite symmetric
thermal gradient and a finite symmetric DC bias between the
leads, i.e., Tα = T (1 + sα

�
2 ) and Vα = sα

V
2 with sL/R = ±1,

where we choose μ = 0.

A. Reverse engineering from a many-body model

To apply our iq-DFT formalism to the SIAM, we need
approximations for all the xc potentials of the formalism.
Since here we are concerned with the linear response regime
only, we actually need to construct parametrizations for the
derivatives of the xc potentials (at zero currents) appearing in
Eqs. (21).

This can be achieved through a reverse engineering pro-
cess. First, we express the interacting density on and currents
through the dot in terms of the many-body spectral function
A(ω) [36,37]:

n =
∑

α=L,R

∫
f

(
ω − sα

V
2

T
(
1 + sα

�
2

))
A(ω), (25a)

I = γ

2

∑
α=L,R

∫
sα f

(
ω − sα

V
2

T
(
1 + sα

�
2

))
A(ω), (25b)

Q = γ

2

∑
α=L,R

∫
sα f

(
ω − sα

V
2

T
(
1 + sα

�
2

))(
ω − V

2

)
A(ω). (25c)

To proceed with the reverse engineering, we consider the
following model for the many-body spectral function [38]
which correctly describes the impurity coupled to the leads
in the parameter range T/γ > 1:

A(ω) =
(

1 − n

2

) γ

(ω − v)2 + γ 2

4

+ n

2

γ

(ω − v − U )2 + γ 2

4

.

(26)

In the following, we denote the spectral function of Eq. (26)
as a many-body model (MBM). This model can be derived
from the equations of motion technique [39]. However, it may
also be understood more intuitively by calculating the exact
spectral function of the single site model (SSM) [40], i.e.,
the limit of the uncontacted impurity. Broadening the delta
peaks of the SSM spectral function to Lorentzian peaks with
width given by the coupling strength γ , one obtains Eq. (26).
The validity of this model is formally limited to temperatures
larger than any other energy scale of the system. In particular,
Eq. (26) correctly captures Coulomb blockade physics, but not
the Kondo regime.

For the reverse engineering, we also need the densities and
currents expressed through the KS equations. These can be
obtained from Eqs. (25) by replacing the basic potentials by
their noninteracting versions, i.e., v → vs, V → Vs, and � →
�s, and replacing A(ω) → As(ω) = γ /((ω − vs)2 + γ 2/4).
The resulting integrals can be evaluated analytically (see
Appendix) and the basic variables of the theory can then be
expressed as

n = 1 − 1

π

(
Im

[
ψ

(
zR

s

)] + Im
[
ψ

(
zL

s

)])
, (27a)

I = γ

2π

(
Im

[
ψ

(
zR

s

)] − Im
[
ψ

(
zL

s

)])
, (27b)

Q = γ 2

2π

(
Re

[
ψ

(
zL

s

)] − Re
[
ψ

(
zR

s

)])
+ γ 2

2π
ln

(
1 + �s/2

1 − �s/2

)
+

(
vs − Vs

2

)
I, (27c)

where zL/R
s = 1

2 + γ /2+i(vs∓Vs/2)
2πT (1±�s/2) and ψ (z) = d ln (�(z))

dz is the
digamma function with general complex argument z, and
�(z) is the gamma function [41]. Also for our model many-
body spectral function Eq. (26), all integrals in Eqs. (25)
can be evaluated analytically using the same integrals of the
Appendix but here we refrain from showing the resulting
expressions explicitly.

Taking the derivatives in Eqs. (27) with respect to the
related KS potentials, we can derive in an exact way the matrix
elements Ls

i j of the matrix Ls [see Eq. (14)] as

Ls
i j (vs) = Mi j (vs), (28)

where we have used the Mi j coefficients derived in Eqs. (A17)
and made explicit the dependence on the KS potential vs.

Similarly, also for the many-body model [Eq. (26) inserted
into Eqs. (25)], we can derive the corresponding matrix el-
ements of the interacting response matrix L by taking the
corresponding derivatives. These matrix elements then read

Li j (v) =
(

1 − n

2

)
Mi j (v) + n

2
Mi j (v + U ). (29)

Combining Eqs. (6) and Eqs. (20), we arrive at

∂Vxc

∂I

∣∣∣ I = 0
Q = 0

= 1

Ls
11(vs)

− 1

L11(v)
+ Ls

12(vs)2

Ls
11(vs)

1

det(Ls(vs))

− L12(v)2

L11(v)

1

det(L(v))
, (30a)
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∂�xc

∂I

∣∣∣ I = 0
Q = 0

= ∂Vxc

∂Q

∣∣∣ I = 0
Q = 0

= Ls
12(vs)

det(Ls(vs))
− L12(v)

det(L(v))
,

(30b)

∂�xc

∂Q

∣∣∣ I = 0
Q = 0

= Ls
11(vs)

det(Ls(vs))
− L11(v)

det(L(v))
. (30c)

Equations (30) together with Eqs. (29) provide the analyt-
ical parametrizations of the xc derivatives in terms of both vs

and v. Instead, the dependence of the xc derivatives on the
density can be obtained by (i) replacing v in the argument
of the many-body coefficients Li j by v(n), the inverse of
the density-potential relationship of Eq. (25a) (at V = 0 and
� = 0) and, similarly, (ii) by using vs(n) as arguments in the
KS coefficients Ls

i j which can be obtained by inverting the
corresponding KS expression n(vs) for the density (at Vs = 0
and �s = 0). These inverse functions can easily be obtained
numerically and, by construction, the resulting density func-
tionals for the xc derivatives then give exactly the same linear
response transport coefficients (in a DFT framework) as the
many-body model. Nevertheless, here we are interested in
finding an analytical parametrization for the xc derivatives in
terms of the density and therefore an approximation for the
density-gate relationship is required.

Following ideas from previous works [40,42], we can refer
to the SSM which describes a single (interacting or nonin-
teracting) site not connected to leads but in contact with a
heat and particle bath. The exact density-gate relations for the
noninteracting and interacting SSM read

vs(n) = T ln

(
2

n
− 1

)
, (31a)

v(n) = −U − T ln

⎛
⎝δn +

√
δn2 + e− U

T (1 − δn2)

1 − δn

⎞
⎠, (31b)

where δn = n − 1. The SSM may be viewed as the limiting
case of a SIAM weakly coupled to leads and the Eqs. (31)
become more accurate as the ratio T/γ increases [29]. Inser-
tion of Eqs. (31) into Eqs. (30) defines our fully analytical
parametrizations of the derivatives of the xc potentials of iq-
DFT in the linear response regime. These functionals provide
a measure of the correction required over the KS system to
accurately describe the linear response properties of the many-
body model. From Fig. 1, it is evident that the xc corrections
become larger with increasing temperature T or interaction
strength U . In the left column of Fig. 1, the xc derivatives are
calculated at U/γ = 8 for different temperatures T while in
the right column T is fixed to T/γ = 12 and the xc deriva-
tives are obtained for different interactions U . Our analytical
parametrization is compared with the numerically exact inver-
sion from the MBM approach.

B. Numerical results

To assess the accuracy of our reverse-engineered approx-
imations for the derivatives of the iq-DFT xc potentials in
comparison to the reference MBM, we solve the DFT problem
in the standard way. In the present paper, we use as an approx-
imation for the Hxc (gate) potential the exact Hxc potential of

2

1

3

10
-3

dV
xc

/d
I T/γ=2

T/γ=5
T/γ=10
T/γ=20

0

1

2

U/γ=1
U/γ=4
U/γ=7
U/γ=12

-1

0

1

10
-2

dV
xc

/d
Q Analytic RE

Numeric RE

-1

0

1

0 0.5 1 1.5 2
n

0

5

10

dΨ
xc

/d
Q

0.5 1 1.5 2
n

5

10

0

FIG. 1. Comparison between analytical and numerical reverse
engineered xc derivatives as function of the density. The left column
corresponds to U/γ = 8 and the right one to T/γ = 12. For the
analytic result, the relation between the gates and the density from
Eqs. (31) has been used, while for the numeric inversion this relation
directly follows Eq. (27). The xc derivatives are obtained in both
approaches using Eqs. (29) and (30).

the SSM [29,40] given as

vSSM
Hxc (n) = vs(n) − v(n), (32)

with vs(n) and v(n) of Eqs. (31a) and (31b), respectively. In
Fig. 2, the iq-DFT densities as a function of the gate volt-
age (vg = v + U

2 ) are compared with the ones obtained from
MBM. As expected, this approximate Hxc potential works
better as T/γ is increased (for fixed U/γ ) while for rela-
tively small T/γ = 1 the qualitative behavior of the density
is captured well for different interactions while quantitative
differences persist.

In Fig. 3, we show the linear transport coefficients for a
fixed interaction strength U/γ = 8 and various temperatures

0.5

1

1.5

2

n

T/γ=1
T/γ=3
T/γ=5
T/γ=10

-10 0 10
vg/γ

0.5

1

1.5

n

U/γ=1
U/γ=4
U/γ=7
U/γ=12

MBM
iq-DFT

FIG. 2. Equilibrium density of the SIAM as a function of the gate
voltage (vg = v + U

2 ) from the MBM and iq-DFT. In iq-DFT, the
Hxc potential of the single site model has been used (see main text).
Upper panel: Density for different temperatures at fixed U/γ = 8.
Lower panel: Density for different interactions at fixed T/γ = 1.
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0.1

0.3

G
/G

0

T/γ=1
T/γ=3
T/γ=5

2

0

-2

S

-10 0 10
vg/γ

0

0.2

0.4

κ/
G

0

MBM
iq-DFT
LB-DFT

FIG. 3. Transport coefficients and electronic contribution to the
figure of merit as a function of the gate voltage (vg = v + U

2 ) for
U/γ = 8. The iq-DFT results using the analytic reverse engineered
xc derivatives Eqs. (30) are compared with those obtained directly
from Eqs. (25) when using the model spectral function of Eq. (26).

as function of the gate voltage vg for the MBM, iq-DFT,
and the LB-DFT approach (corresponding to the KS transport
coefficients). The iq-DFT results agree extremely well with
the MBM ones highlighting the good approximation of the
gate-density relations [Eqs. (31)] in the range T/γ > 1. On
the other hand, the LB-DFT results are only accurate in the
empty orbital regime where correlations essentially play no
role. Notice that, for T/γ = 1, in the LB-DFT the Seebeck
coefficient flattens around vg/γ = 0, while both iq-DFT and
MBM predict a significant deviation [29,34]. Note that the
electrical and heat conductances are shown in units of the
quantum of conductance G0, while the Seebeck coefficient is
given in atomic units.

In Fig. 4, the iq-DFT transport coefficients as well as the
figure of merit of the system ZT = T GS2/κ are compared
with those obtained from MBM for fixed gate potential as a
function of temperature for strong correlations U/γ = 8. As
in Fig. 3, we observe excellent agreement as T/γ increases.
Finally, in Fig. 5, we show the iq-DFT transport coefficients
for different interaction strengths U using xc parametrizations
[Eq. (30)]. Again we observe that for the given, fixed tem-
perature T/γ = 1, the whole range from weak (U/γ = 1) to
strong correlations (U/γ > 7) is correctly captured in iq-DFT
as compared to the MBM.

In terms of summary of the numerical results, we have
shown that our parametrization for the derivatives of the iq-
DFT xc potentials leads to a rather accurate reproduction of
the linear response transport coefficients of the MBM. There
were two approximations involved in our iq-DFT approach: (i)
we used the approximate Hxc potential of Eq. (32) for the self-
consistent calculation of the density and (ii) the approximate
density-potential relations Eq. (31) were used to construct
the xc derivatives as functionals of the equilibrium density.
Both approximations (i) and (ii) originate from the SSM
and therefore it is not surprising that the corresponding iq-

0.1

0.2

0.3

G
/G

 0
 

MBM
iq-DFT

1 10 100
T/ γ

-1

0

1

S

0.4

0.2

0.6
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G

0
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T/ γ
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-7
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Z
T

FIG. 4. Transport coefficients and electronic contribution to the
figure of merit as a function of the temperature for U/γ = 8. The
iq-DFT results using the analytic reverse engineered xc derivatives
Eqs. (30) are compared with those obtained directly from Eqs. (25)
when using the model spectral function of Eq. (26).

DFT calculations show improved agreement with the MBM
as temperature increases. We would also like to emphasize
again that the MBM approximation for the spectral function
Eq. (26) is by construction derived for the Coulomb blockade
regime (T/TK � 1 where TK is the Kondo temperature of the
system). Therefore, our approximation cannot and should not
be expected to accurately describe the linear transport coeffi-
cients of the interacting system for temperatures in the Kondo
regime (T 
 TK ). Nevertheless, our approximation may very
well serve as a step toward the construction of improved
approximations which are valid in this regime as well. While
such a construction is beyond the scope of the present paper,
we have already observed that the low-temperature behavior
of the Seebeck coefficient and the thermal conductance are

0.10

0.3

0.20

G
/G

0

0.2

0.6

0.4
κ/

G
0

MBM
iq-DFT

-10 0 10
v

g
/ γ

-2

0

2

S
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U/γ=4
U/γ=7
U/γ=12
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v

g
/ γ

0.5

2.5

1.5 Z
T

FIG. 5. Transport coefficients and electronic contribution to the
figure of merit as function of the gate voltage (vg = v + U

2 ) for
T/γ = 1. The iq-DFT results using the analytic reverse engineered
xc derivatives are compared with those obtained directly from
Eqs. (25) when using the model spectral function of Eq. (26).
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qualitatively correctly captured with the analytical approach.
Therefore, the main corrections appear to be necessary for
the electrical conductance, where ideas of the corresponding
i-DFT construction [19] are expected to be transferable to iq-
DFT as well. Before concluding, we would like to emphasize
that the iq-DFT framework in principle is exact for both the
Coulomb blockade and the Kondo regime and an improved
approximation will cover both.

V. CONCLUSIONS

In this paper, we proposed a density functional framework,
which we call iq-DFT, to describe both electronic and heat
(energy) transport in the steady state for two-terminal (molec-
ular) junctions driven out of equilibrium by an external bias
and/or temperature gradient between the leads, generalizing
our earlier i-DFT theory [18] for steady-state transport. The
foundation of iq-DFT rests on the one-to-one correspondence
between the set of three densities (n, I, Q) and the set of three
potentials (v,V, �), which we proved for a finite bias and
thermal gradient window around equilibrium. Naturally, the
corresponding KS system requires three xc potentials which
need to be approximated in practice. Unlike i-DFT, iq-DFT
allows us to calculate not only the density and steady current
but also the heat current of interacting junctions. The widely
used LB-DFT formalism may be viewed as a (crude) approx-
imation to iq-DFT where the xc contributions to the bias as
well as to the � field are neglected completely and the xc
contribution to the local (gate) potential is independent of the
currents I and Q.

We developed the iq-DFT linear response formalism which
allows us to access all linear thermal transport coefficients,
i.e., the electrical conductance, the Seebeck coefficient, as
well as the (electronic contribution to the) thermal conduc-
tance. All these coefficients can fully and exactly be expressed
in terms of quantities accessible with iq-DFT, leading to xc
corrections for all three transport coefficients. This goes be-
yond i-DFT, where only the electrical conductance [18] and
the Seebeck cefficient [29] can exactly be written in terms of
quantities of the theory.

As a first example, we applied iq-DFT in the linear
response regime to the Anderson model. From reverse en-
gineering of a MBM spectral function valid in the Coulomb
blockade regime, we constructed fully analytical parametriza-
tions of the derivatives of the iq-DFT xc potentials which
accurately reproduce the transport coefficients of the many-
body model. These parametrizations are expected to serve
as a step toward construction of approximate xc functionals
beyond the Coulomb blockade regime, in analogy to corre-
sponding i-DFT work for the conductance [19].

As any DFT framework, due to the noninteracting nature
of the KS system, iq-DFT can be expected to be a numerically
highly efficient scheme for the ab initio calculation of current
and heat transport through nanoscale systems as accurate ap-
proximations for the xc functionals become available.
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APPENDIX: ANALYTIC EXPRESSIONS FOR THE
TRANSPORT INTEGRALS IN THE SIAM

In this Appendix, we analytically evaluate the most impor-
tant integrals needed both in the MBM and in the construction
of our parametrization for the derivatives of the iq-DFT xc
potentials. In our MBM for the SIAM, the many-body spec-
tral function consists of two Lorentzians with broadening γ

(γ > 0) centered at v and v + U , see Eqs. (26). Therefore, all
integrals needed to compute the MBM density and currents
have the form

∫
dωωn f (ω)A(ω) with n = 0, 1. The first inte-

gral we are interested in is

I1 =
∫ ∞

−∞
f (x − V/2)

γ

(x − x0)2 + γ 2

4

dx, (A1)

where the Fermi function f (z) can be expanded as [43]

f (z) = 1

1 + e
z
T

= 1

2
− i

2π

∞∑
n=0

1

n + 1
2 + i z

2πT

. (A2)

Using the substitution x = V/2 + T z and the abbreviations
a = x0−V/2

T and b = γ

2T , we can write the integral as

I1 = 2b
∫ ∞

−∞

dz

(ez + 1)[(z − a)2 + b2]
≡ 2b

∫ ∞

−∞
g(z)dz.

(A3)
The integrand g(z) has only single poles with nonvanishing
imaginary part in the complex plane. We therefore use the
calculus of residues to compute this integral. Since g(z) van-
ishes sufficiently fast as |z| → ∞, we can close the integration
contour by a semicircle with infinite radius in the upper half
plane (avoiding the poles on the imaginary axis). The integral
then can be evaluated as

I1 = 4bπ i

[
1

i2b(ea+ib + 1)
−

∞∑
n=0

1

[(2n + 1)π i − a]2 + b2

]
.

(A4)

For the terms in the sum, we perform a fractional decompo-
sition and then use the series representation of the digamma
function ψ ,

ψ (z) =
∞∑

n=0

(
1

n + 1
− 1

n + z

)
− γ EM, (A5)

with the Euler-Mascheroni constant γ EM ∼ 0.5772 to obtain

I1 = 2π

[
1

ea+ib + 1
− 1

2π i
ψ

(
1

2
+ b + ia

2π

)

+ 1

2π i
ψ

(
1

2
+ −b + ia

2π

)]
. (A6)

We then apply the reflection formula

ψ (1 − z) = ψ (z) + π cot (πz) (A7)
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to the last term and, returning to the original parameters,
finally arrive at

I1(γ , x0,V/2, T ) = π − 2 Im
[
ψ

(
1
2 +

γ

2 +i(x0−V/2)
2πT

)]
.

(A8)

In the special case x0 = V/2, I1 = π .
The second integral we are interested in is

I2 =
∫ ∞

−∞
dx

(
f

(
x − V/2

1 + �/2

)
− f

(
x + V/2

1 − �/2

))

× xγ

(x − x0)2 + γ 2

4

, (A9)

where � = TL−TR
T . We can rewrite I2 by decomposing the

second factor as
xγ

(x − x0)2 + γ 2

4

= γ

2
[GA(x) + GR(x)]

− ix0[GA(x) − GR(x)], (A10)

with the advanced and retarded Green’s function GA/R(x) =
1

x−(x0±i γ

2 ) . Noting that the last term on the right-hand side of
Eq. (A10) reduces to a Lorentzian, we obtain

I2 = IA
2 + IR

2 + x0I3, (A11)

where I3 = I1(γ , x0,V/2, TL ) − I1(γ , x0,−V/2, TR) and we
have defined

IA/R
2 = γ

2
lim

r→∞

∫ ∞

−r
dx GA/R(x)

×
[

f

(
x − V/2

1 + �/2

)
− f

(
x + V/2

1 − �/2

)]
. (A12)

The integrals IA/R
2 are convergent because the difference of

the Fermi functions decays asymptotically at least as x−1

as |x| → ∞ and the Green’s function contributes another
asymptotic x−1 behavior in the same limit. Note that a lower
cutoff has been explicitly introduced in Eq. (A12) to correctly
account for the nonequivalent asymptotics of the two Fermi
functions due to their generally different temperatures (in
general, � �= 0).

By simple variable substitution, the integrals IA/R
2 can be

written as

IA/R
2 = γ

2
lim

r→∞

∫ ∞

−r+V/2
1−ψ/2

dz fT (z)

×
(

1

z + V/2−(x0±iγ /2)
1+�/2

− 1

z + −V/2−(x0±iγ /2)
1−�/2

)

+ γ

2
lim

r→∞

∫ −r+V/2
1−ψ/2

−r−V/2
1+ψ/2

dz
fT (z)

z + V/2−(x0±iγ /2)
1+�/2

. (A13)

The first contribution can now again be evaluated by closing
the contour with a semicircle in the upper half plane and
summing the residues of all poles inside the contour which
again leads to digamma functions. On the other hand, the
second integral becomes trivial by replacing f (z) with unity
which is justified in the limit r → ∞. This leads to

IA = γ

2

[
ψ

(
1

2
+ γ /2 − i(x0 − V/2)

2πTL

)

−ψ

(
1

2
+ γ /2 − i(x0 + V/2)

2πTR

)]

+γ

2
ln

(
1 + �/2

1 − �/2

)
(A14)

and

IR = γ

2

[
ψ

(
1

2
+ γ /2 + i(x0 − V/2)

2πTL

)

−ψ

(
1

2
+ γ /2 + i(x0 + V/2)

2πTR

)]

+γ

2
ln

(
1 + �/2

1 − �/2

)
. (A15)

Using Re[ψ (a + ib)] = 1
2 [ψ (a + ib) + ψ (a − ib)], we arrive

at the final result for our second integral

I2 = γ Re

[
ψ

(
1

2
+ γ /2 + i(x0 − V/2)

2πTL

)]

−γ Re

[
ψ

(
1

2
+ γ /2 + i(x0 + V/2)

2πTR

)]

+x0I3 + γ ln

(
1 + �/2

1 − �/2

)
. (A16)

The results for the integrals of Eqs. (A8) and (A16) are
sufficient to analytically evaluate the density and currents for
the SIAM both in the MBM as well as in the KS system. With
these integrals, we can also derive the analytical expressions
for the integrals entering the transport coefficients in the linear

response regime. These coefficients are

M11(v) = γ

4π

dI3

dV

∣∣∣∣V = 0
� = 0

= −γ 2

4π

∫
f ′(ω)

dω

(ω − v)2 + γ 2

4

= γ

4π2T
Im (iψ (1)(z1)), (A17a)

M12(v) = γ

4π

dI2

dV

∣∣∣∣V = 0
� = 0

= −γ 2

4π

∫
f ′(ω)

ω dω

(ω − v)2 + γ 2

4

= γ

4π2T
Im (z0ψ

(1)(z1)), (A17b)

M22(v) = γ

4π

dI2

d�

∣∣∣∣V = 0
� = 0

= −γ 2

4π

∫
f ′(ω)

ω2 dω

(ω − v)2 + γ 2

4

= − γ 2

8π2T
Re (z0ψ

(1)(z1)) + vM12 + γ 2

4π
, (A17c)

where z0 = γ

2 + iv, z1 = 1
2 + z0

2πT , and ψ (1)(z) is the trigamma function [41].
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