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Single particle properties of the two-dimensional Hubbard model for real frequencies at weak
coupling: Breakdown of the Dyson series for partial self-energy expansions
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We generate the perturbative expansion of the single particle Green’s function and related self-energy for
a half-filled single-band Hubbard model on a square lattice. We invoke algorithmic Matsubara integration to
evaluate single-particle quantities for real and Matsubara frequencies and verify results through comparison
to existing data on the Matsubara axis. With low-order expansions at weak coupling we observe a number of
outcomes expected at higher orders: the opening of a gap, pseudogap behavior, and Fermi-surface reconstruction.
Based on low-order perturbations, we consider the phase diagram that arises from truncated expansions of the
self-energy and Green’s function and their relation via the Dyson equation. From Matsubara axis data, we
observe insulating behavior in direct expansions of the Green’s function, whereas the same order of truncation
of the self-energy produces metallic behavior. This observation is supported by additional calculations for real
frequencies. We attribute this difference to the order in which diagrams are implicitly summed in the Dyson
series. By separating the reducible and irreducible contributions at each order we show that the reducible
diagrams implicitly summed in the Dyson equation lead to incorrect physics in the half-filled Hubbard model.
Our observations for this particular case lead us to question the utility of the Dyson equation for any problem
that shows a disparity between reducible and irreducible contributions to the expansion of the Green’s function.
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I. INTRODUCTION

Many-body perturbation theory, in principle, provides a
window to understanding the qualitative and quantitative be-
haviors of interacting quantum systems. At the heart of the
many-body formalism is the realization that one does not need
the entire wave function of a system but can instead project the
state of the system into contributions to the single-particle,
two-particle, and ultimately many-particle observables as an
expansion in the interaction order [1,2]. The fundamental ob-
ject for single-particle properties is the single-particle Green’s
function G(k, ω) from which one can obtain the spectral
function, local density of states, and total particle density, all
of which are experimental observables for condensed-matter
systems or cold-atom quantum emulators [3].

The perturbative expansion is built upon the presumption
that a starting noninteracting solution G0 is known. The ex-
pansion of G(k, ω) is then a functional of noninteracting
Green’s functions and interaction terms that may be described
by a Feynman diagram. Evaluating diagrams to high order is
computationally expensive, and one recognizes that there exist
repeated or factorizable structures within the full expansion
of G. The Green’s function can then be written in terms of
an infinite sequence of factorizable one-particle irreducible
diagrams known as the self-energy �. This gives rise to
the Dyson equation which relates the noninteracting Green’s
function, the fully-dressed Green’s function, and the self-
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energy function that is intended to encode all of the details
of interactions at the single-particle level.

Still, it remains difficult to sum the self-energy diagrams
themselves to high order which has lead to the proposal of a
variety of self-consistent or “bold-line” expansions intended
to approximate infinite sums whereas summing only low-
order diagrams by repeatedly replacing the noninteracting
G0 with a partially-dressed starting point for the expansion.
Whereas, in principle, this seems like a good idea, it has been
shown recently that for a subset of problems based on resum-
mation of the skeleton series, the self-consistent procedure,
although convergent, converges to an incorrect physical result
[4]. This has been attributed to conditional convergence of
the series, which allows for convergence to an arbitrary value
depending upon the order in which terms are summed. In
principle, this is not an issue for a converged expansion in
that one will always obtain the correct physical result if the
initial series itself has converged. This, however, renders the
self-consistency obsolete.

Something altogether different occurs in practice for the
majority of perturbative diagrammatic approaches within the
many-body formalism. Typically one attempts to extract
physically relevant information from partial diagrammatic
summations based on only very low-order diagrams. In the
case of diagrammatic extensions of dynamical mean-field the-
ory (DMFT) this has been shown to be dangerous in the sense
that selecting a particular set of higher-order contributions
that can be resummed exactly produces “worse” results than a
truncated low-order expansion [5]. Nevertheless, the majority
of practical applications of many-body theory are based on
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these low-order partial diagrammatic expansions. Of course,
this does not preclude the possibility that the result of a partial
resummation is physically correct or relevant. If one can apply
physical intuition to guide partial summations, the correct
physical outcome can often be reached.

One example of the wide applicability of such partial ex-
pansions is the polarization function where it is standard to
use the noninteracting polarization bubble from a Lindhardt
expression and then resum an infinite chain of such diagrams,
the random-phase approximation (RPA) as an approxima-
tion to the full susceptibility. This is widely employed in
material physics calculations based on self-consistent local-
density approximation + GW schemes [6,7]. However, it has
been shown rigorously that the RPA approximation whereas
qualitatively correct, is quantitatively wrong by often an enor-
mous margin for model systems, such as the uniform electron
gas [8], as well as for the two-dimensional (2D) Hubbard
model for the spin susceptibility [9] when compared to the full
expansions.

The deviation of the RPA expansion from the correct an-
swer for the full susceptibility is not unexpected given that the
noninteracting bubble on which it is built explicitly neglects
correlations. Simply, if one starts by selecting a subset of
diagrams that is quantitatively wrong at a given order and
then creates an infinite sequence of these possibly incorrect
values there should be no expectation that the end result,
although well behaved, is physically correct or relevant. The
susceptibility is, therefore, one example of where an infinite
resummation of diagrams based on a partial diagrammatic
expansion is performed, not only because it is a particularly
smart thing to do, but also purely because it is a thing that can
be performed.

In this paper, we consider the repercussions of this idea
on the Dyson expansion of the Green’s function in terms
of an infinite resummation of one-particle irreducible self-
energy diagrams. Specifically we study the half-filled 2D
Hubbard model on a square lattice where we find that the
choice between two commonly employed diagrammatic ex-
pansions leads directly to misleading physics. This is only
made possible through comparison to extremely high-order
expansions from the state-of-the-art connected determinant
method (cDET) from Ref. [10] that are exact fully converged
results in the thermodynamic limit.

In what follows, we compute both the self-energy and
Green’s function expansions for the 2D square lattice
Hubbard model. We employ the method of algorithmic Mat-
subara integration (AMI) which allows us to evaluate each
diagram both for real and Matsubara frequencies [11]. Access
to dynamical properties on the real-frequency axis allows us to
compute directly the local density of states in which we find
the opening of a gap and reduction of quasiparticle spectral
weight as expected from Matsubara axis data. We further find
that an expansion of the Green’s function for the half-filled
Hubbard model, truncated at rather low order, exhibits the
expected [10] metal-insulator crossover at low temperatures
and weak coupling, but that truncating the self-energy at the
same order only produces insulating behavior at extremely
strong coupling, the latter being an observation that is in
agreement with past work [12]. Together, these results suggest
a fundamental flaw pervasive in studies of strongly corre-

lated systems, namely, the presumption that application of the
Dyson expansion is preferable over the truncated expansion of
the Green’s function—when in this very fundamental weak-
coupling case it is not.

II. MODEL AND METHODS

A. Hubbard Hamiltonian

We study the single-band Hubbard Hamiltonian on a 2D
square lattice [13],

H =
∑

〈i j〉σ
ti jc

†
iσ c jσ + U

∑

i

ni↑ni↓, (1)

where ti j is the hopping amplitude, c(†)
iσ (ciσ ) is the creation

(annihilation) operator at site i, σ ∈ {↑,↓} is the spin, U is
the on-site Hubbard interaction, niσ = c†

iσ ciσ is the number
operator, and 〈i j〉 restricts the sum to nearest neighbors for
a 2D square lattice resulting in the free particle energy,

ε(k) = −2t[cos(kx ) + cos(ky)] − μ,

where μ is the chemical potential. Throughout we study
exclusively the half-filled system which in our convention
corresponds to μ = 0.

B. Algorithmic approach to evaluation of Feynman diagrams

Algorithmic Matsubara integration is a recently developed
method [11] that allows us to evaluate the internal Matsubara
sums of arbitrary Feynman diagrams symbolically at virtually
zero computational expense. For each diagram topology of
order m, that we denote ζm [14], the amplitude is given for
d-spatial dimensions by a Feynman integral in the form

Dζm = U m

(2π )ndβn

∑

{kn}

∑

{νn}
Aζ

N∏

j=1

Gj
0(ε j, X j ), (2)

that must be summed over a set of internal Matsubara
frequencies {νn} and internal momenta {kn}. Aζ is a topology-
dependent prefactor and the product of N noninteracting
Green’s functions Gj

0 that are each given by

Gj
0 = 1

X j − ε j
, (3)

where X j represents the frequency and ε j is the energy of
each function. X j and ε j are constructed via symbolic rep-
resentations [15]. For a given diagram with n-independent
(internal) Matsubara frequencies we define the frequency of
each Gj

0 as the linear combination X j = ∑n+1

=1 iα j


ν
 where
the allowed values for the coefficients α

j

 are zero, plus one,

or minus one. Similarly the free particle energy is ε j = ε(k j ),
where k j = ∑n+1


=1 α
j

k
. In this notation νn+1 and kn+1 are the

external frequency and momenta, νext and kext, respectively.
The Matsubara summations of a given Feynman diagram

are contained in the factor,

Iζm = 1

βn

∑

{νn}

N∏

j=1

Gj
0(ε j, X j ). (4)
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This allows us to write the contributions from a diagram as

Dζm = 1

(2π )nd

∑

{kn}
Dζm , (5)

where

Dζm = AζU mIζm ({iνext}, {kext}, β, μ). (6)

AMI [11,15] provides a tool to evaluate Eq. (4). We first
generate all diagrams of a given order for an observable of
interest and then use AMI to generate an analytic expression
in the form of Eq. (6). For the 2D model at order m, this
effectively resolves one-third of the internal integrals leaving
only internal momenta to be summed. The resulting integrand
Iζm typically contains many terms and is a function of internal
momenta but also external variables, such as temperature or
chemical potential as well as external momenta and external
frequencies. The AMI result is an analytic function of the
external frequency, which, in turn, allows us to perform an-
alytic continuation iωn → ω + i� without having to resort to
the ill-conditioned process of numerical analytic continuation
[16–18].

AMI has disadvantages when compared to state-of-the-art
determinental methods [19,20]. In our approach diagrams are
sampled independently, and the diagrammatic space grows
dramatically with expansion order and the number of terms in
the AMI result Iζm grows exponentially with expansion order.
In the case of the self-energy expansion, the second-order
diagram (for which the Matsubara sums can be managed by
hand) produces four terms. For our calculations, the fourth-
order contribution to � involves 12 diagrams for which the
AMI procedure yields a total of 932 analytic terms, whereas
at sixth order there are 515 diagrams resulting in ∼1.1 × 106

analytic terms. The two latter cases generate an impossibly
large number of terms to manage by hand and, consequently,
this paper is only made possible via the AMI procedure [11]
or other recently developed algorithmic or analytic schemes
[21]. We note that substantial computational savings can be
achieved by factorizing and grouping diagrams based on
their pole structure, which at half-filling results in groups
of equivalent diagrams [15]. Although the computational ex-
pense of sampling diagrams individually is large, it affords us
the opportunity to dissect contributions from individual dia-
gram groups which cannot be performed using determinental
methods in which all diagrams of a given order are summed
simultaneously.

C. Observables

For this paper, we generate the diagrammatic expansion for
the Green’s function up to sixth order and separate out the
one-particle irreducible self-energy diagrams. This gives us
two routes to access information for single-particle properties.
The first via the direct expansion of the Green’s function, that
includes all one-particle reducible and irreducible diagrams,
truncated at order n which we will denote G(n). Alternatively,
we can evaluate only the irreducible self-energy diagrams
summed to order n, �(n), and use the Dyson equation to
represent the Green’s function which we will denote G�(n)

given by

G�(n) = (
G−1

0 − �(n)
)−1

. (7)

Conversely, the same methodology can be applied in re-
verse. By first truncating the Green’s function expansion we
can invert the Dyson equation to suggest what the related
self-energy, which we denote �G(n) , might be via

�G(n) = G−1
0 − [G(n)]−1. (8)

We, therefore, have two routes to obtain the Green’s function:
(1) the direct evaluation of G(n), and (2) the evaluation of
G�(n) via Dyson’s equation. Similarly, the inverse procedure
provides two representations of the self-energy. The Green’s
function expansion truncated at order n includes all reducible
and irreducible diagrams up to order n whereas the self-energy
expansion when coupled with Dyson’s equation includes all
reducible and irreducible diagrams up to order n and all re-
ducible diagrams at higher order that are composed of the
known diagrams. Regardless of which approach is taken the
two representations are equivalent in the n → ∞ limit, but for
a truncated expansion these two schemes amount to summing
the same diagrams of the series selected in a different order.
In practice, both are obtained from the same information via
computation of �(m) for m � n from which the truncated
expansion of G(n) can be constructed by including irreducible
diagrams as well as all possible combinations of chains of
one-particle reducible self-energy insertions.

This provides an important diagnostic for truncated ex-
pansions since deviation of G(n) from G�(n) immediately
indicates nonconvergence of the series. With this in mind,
we present results for the spectral function obtained from the
expansion of the Green’s function A(k, ω)=−Im G(n)(k, ω)
along with the equivalent result from the Dyson expansion
using a truncated self-energy A� (k, ω) = −Im G�(n) (k, ω).
We also present results for the density of states N (ω), which
can be obtained from the expansion of the Green’s function
N (ω) = ∑

k A(k, ω) where the final momenta summation can
be performed simultaneously with the internal momenta sum-
mations from the resulting AMI integrand Eq. (5).

In line with previous works [9,10,22], we examine how the
difference between the imaginary parts of the self-energies at
the first and second Matsubara frequencies acts as an indi-
cator of non-Fermi-liquid behavior. We compute 
�(n)(k) =
Im �(n)(iω0, k) − Im �(n)(iω1, k) as well as 
�G(n) (k) =
Im �G(n) (iω0, k) − Im �G(n) (iω1, k) for values of β and U/t .
At fixed β, we sweep over values of U/t to find where 
� =
0, marking a crossover temperature that we denote T ∗

� (k) and
T ∗

G (k), respectively, for a particular choice of momenta k.
However, it is important to note that the use of 
� as a metric
for non-Fermi-liquid behavior is only rigorously correct in the
T → 0 limit.

Throughout, we present results truncated at fourth order
and where possible include data at sixth order. We emphasize
that even at fourth order, the number of terms to be evaluated
is extremely large, and the analytic expressions have not been
available prior to the advent of AMI.

125114-3



MCNIVEN, ANDREWS, AND LEBLANC PHYSICAL REVIEW B 104, 125114 (2021)

FIG. 1. Second-, fourth-, and sixth-order self-energies obtained
directly (�, left) and from inverting Dyson’s equation (�G, right)
at U/t = 3, , βt = 8.33, μ = 0 for the antinodal momenta k =
(π, 0). Shown for reference are DMFT results and benchmark results
from cDET taken from Ref. [10].

III. RESULTS

We show results for � and �G for a well-established
benchmark case in Fig. 1. Plotted on the Matsubara axis, this
data set at U/t = 3 and βt = 8.33 for the antinodal point
kan = (π, 0) is known to high order from the cDET [10,23].
Paying special attention to 
� = Im �(iω0) − Im �(iω1) we
see from the cDET data the characteristic negative value
of 
�, suggesting that the system has non-Fermi liquid or
insulating character. In contrast, we present DMFT results
(red curves in Fig. 1) computed using the numerically exact
continuous time auxiliary field method [1]. We see that the
local approximation is insufficient at weak coupling, an issue
only recently understood [9,10].

Our AMI calculation of �(2), �(4), and �(6) is shown in
the left frame of Fig. 1. We see that with increasing order
the result systematically approaches the cDET benchmark. By
sixth order, however, the sign change in 
� is not evident,
and each curve shows a positive 
� suggestive of metal-
lic behavior. We plot also results from the truncation of the
Green’s function at order n, �G(n) . Starting at second order,
�G(2) is substantially closer to the cDET benchmark than �(2),
particularly at high frequencies. At fourth order, �G(4) lies
even closer to the cDET benchmark and, more importantly,
demonstrates the characteristic non-Fermi-liquid signature of
�(iω0) < �(iω1). Inclusion of sixth-order contributions to
�G results in further improvement in the agreement between
our result and the benchmark.

This dichotomy of physical outcomes is, of course, irrele-
vant in the large-n limit. We see that both �(n) and �G(n) are
trending towards the benchmark. What is disconcerting is how
different the two approximations are for truncation at low or-
ders and that �G(n) is systematically closer to the correct result
than �(n). This difference is despite the two schemes requiring
precisely the same computational effort—both obtained from
knowledge of G0, �(2), �(4), and �(6).

FIG. 2. Phase diagram on the T -U plane for fourth and sixth
order. Left: T ∗

� (k) and Right: T ∗
G (k). Benchmark data for cDET taken

from Ref. [10]. Uncertainty associated with fourth-order data is the
approximate size of each data point.

To explore this issue further, in Fig. 2 we present a phase
diagram on the T -U plane and identify the temperature at
which 
� changes sign for the antinodal and nodal momenta
kan and kn, respectively. Also shown is cDET data from
Ref. [10] for nodal and antinodal momenta. This benchmark
has several key features present at both nodal and antin-
odal points: (1) at low temperature the nodal and antinodal
crossovers merge and suggest a critical interaction strength
at T/t = 0 of Uc < 1.3; (2) a turning point above some tem-
perature at a maximal value of U/t ; (3) a high-temperature
intercept in the U/t → 0 limit.

We truncate our calculations at fourth order and construct
a phase diagram from both �(n) [left frame] and �G(n) [right
frame]. Considering first T ∗

�(4) , we see that our data merge
with the high-temperature crossover for small values of U/t .
However, unlike the cDET benchmark, T ∗

�(4) does not show a
turning point for either nodal or antinodal points and, there-
fore, also does not show a low-temperature crossover. This
observation is consistent with the absence of a downturn in
�(4) in Fig. 1 as well as with past studies of fourth-order
expansions based on Matsubara axis data [12]. For kan we
also compute T ∗

�(6) shown as green circles at βt = 8.33, 10,
and 20. We see that the sixth-order results have shifted signif-
icantly toward lower values of U/t—whereas at fourth order
a crossover requires critical interaction strengths Uc/t > 6, at
sixth order a crossover requires critical interaction strengths
Uc/t ∼ 2.6 at our lowest temperature shown βt = 20.

The story is quite different for the same phase diagram
generated from the Green’s function expansion T ∗

G(n) . At fourth
order we see that T ∗

G(4) (kan) precisely follows the cDET result
over the range of 0.37 � T/t � 0.18, below which deviations
are seen between the two sets of results. The key characteristic
that is recaptured is the reentrant turning point and the low-
temperature crossover. This crossover shows a monotonically
decreasing critical U/t for decreasing temperature and per-
sists to our lowest accessible temperature of βt = 80 at U/t ∼
1.6. T ∗

G(4) (kn) shows behavior similar to that of T ∗
G(4) (kan),
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FIG. 3. Density of states N (ω) for βt = 5 at varying U/t values.
The inset shows the density of states at ω = 0 for βt = 5. A broad-
ening of �/t = 0.125 is used in the analytic continuation.

but with considerably larger deviation from the benchmark
results. This suggests that the convergence properties of the
nodal and antinodal points may be substantially different and
that the nodal point requires relatively larger-order diagrams
to converge. Finally, our calculation of T ∗

G(6) (kan) substantially
improves upon T ∗

G(4) (kan) converging with the benchmark,
here shown down to βt = 20.

From Fig. 2, we see that the result from the direct expan-
sion G(n) shows results that are systematically closer to the
benchmark than results from �(n). This remains true through-
out the phase diagram and is consistent with the behavior seen
at the single point (U/t = 3, βt = 8.33) shown previously in
Fig. 1. Particularly, above T/t = 0.18, the antinodal behavior
at fourth order is in precise agreement with the benchmark.
The observation of a crossover based on Matsubara axis
data leads to the obvious question as to how well this phase
diagram is reflected in real-frequency properties since the ob-
servation that a sign change in 
� relates to non-Fermi-liquid
behavior has only previously been examined from Matsubara
data via numerical analytic continuation [24].

In Fig. 3, we compute the density of states N (ω) from
Im G(4)(k, ω + i�) shown as a function of ω for increasing
values of U/t . We use a moderate broadening of �/t = 0.125
that acts as a numerical regulator required for the integration
of Eq. (5), the overall impact of which is to soften features
smaller than �/t . For example, at U/t = 0 the value of �

suppresses the van Hove singularity but is otherwise inert. We
see that as U/t increases there is a suppression of states near
the Fermi level at frequencies |ω| < 0.25. For U/t > 3, N (ω)
exhibits a minimum at ω = 0 and a linear in |ω| behavior
indicative of a d-wave gap that plateaus and exhibits a ringing
or peak-dip-hump structure from |ω| = 0.3 → 0.5 [25]. Such
behavior is considered a sign of strong boson-mediated inter-
actions and can be related through a derivative of N (ω) to the
α2F coupling amplitude [26,27] which in this case would be
spin fluctuations that are known to cause pseudogap behavior
[22,28].

To facilitate comparison with the phase diagram of Fig. 2,
we show in the inset of Fig. 3 the value of N (0) as a function

FIG. 4. Spectral function at the antinodal point calculated di-
rectly from the Green’s function [left, A(k, ω)] and from the
self-energy via Dyson’s equation [right, A� (k, ω)]. A broadening of
�/t = 0.125 is used in the analytic continuation.

of U/t at βt = 5. Comparing that data to the Matsubara data
in Fig. 2 we see that the kan crossover that occurs at U/t = 3
corresponds well with the decrease in N (0). From the inset
we see that N (0) tends to zero around U/t = 3.7, a value only
marginally higher in U/t than the nodal crossover result from
cDET beyond which the system should be insulating. Overall,
there is a clear correspondence between the real frequency
density of states and the Matsubara axis phase diagram.

Returning to the deviation between the G(n) and �(n) ex-
pansions in Fig. 4 we now invert the comparison and plot the
spectral functions from G(n) and G�(n) obtained from Eq. (8),
truncated at fourth order, on the real frequency axis at the
antinodal momentum point.A(kan, ω) and A� (kan, ω) are plot-
ted in the left and right frames, respectively, for increasing
values of U/t . At U/t = 1, the results are identical between
the two frames, suggesting that the series is converged. We see
deviations emerging above U/t = 2, where A� (k, ω) broad-
ens but remains a single peak whereas A(k, ω) begins to form
a characteristic lower and upper Hubbard band with a remnant
ω = 0 quasiparticle peak.

The data for A(k, ω) and A� (k, ω) further corroborates
behavior shown in Figs. 1 and 2 that the truncated expansion
G(n) shows correct insulating behavior whereas G�(n) does not.
This suggests that the physics contained in the two expansions
is vastly different. Furthermore, we emphasize that the left
and right frames of Fig. 3 are not the same above U/t = 1,
suggesting that the expansion at fourth order has not con-
verged. Although this means that neither calculation should be
expected to be quantitatively correct, this does not preclude us
from asking the question as to which of the two is closer to the
correct result. Based on our understanding of Fig. 2, A(kan, ω)
from G(n) is consistent with the cDET reference data whereas
A� (kan, ω) is not. We revisit and explain this effect in Sec. IV.

In Figs. 5(a) and 5(b), we consider the spectral function at
the Fermi-level ω → 0 + i� as a function of k = (kx, ky) on
a high-resolution 65 × 65 momentum grid. Due to the large
number of points we truncate the Green’s function at fourth
order. We present results for two representative interaction
strengths: U/t = 2 and U/t = 3.5. We see that at U/t = 2,
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FIG. 5. Top: −Im G(kx, ky, ω = 0) for β = 5 for (a) U/t = 2
and (b) U/t = 3.5 at half-filling μ = 0. Bottom: Real and imagi-
nary parts of the Green’s function for cuts along k1: (kx, ky = kx ) =
(0, 0) → (π, π ) and k2: (kx = 0, ky ) = (0, 0) → (0, 2π ).

there is a well-defined Fermi surface composed of a single
spectral peak throughout the Brillouin zone. With an increase
in interaction strength to U/t = 3.5, the picture changes to
include three spectral peaks, one along the original Fermi sur-
face, and two beginning to form on either side of the original
Fermi surface. Since these peaks occur at the same energy,
they should not be confused with the upper and lower Hubbard
bands that form as a function of energy as in Fig. 4. Here, the
peaks represent a shift in spectral weight in momenta rather
than in energy.

We also present results as a function of momentum for
paths through the Brillouin zone, shown in Figs. 5(c)–5(f) for
increasing values of U/t at fixed temperature. We present two
cuts: the first along the nodal direction from k1 = (0, 0) →
(π, π ) [frames (c) and (d)], and the second along the antinodal
direction from k2 = (0, 0) → (0, 2π ) [frames (e) and (f)].
Along the k1 direction, shown in Fig. 5(d), there remains a
single peak in the vicinity of (π/2, π/2). We see that in-
creased interaction strength reduces the peak amplitude, but
otherwise, it is virtually unchanged. The behavior of Re G in
frame (c) is similarly simple showing a loss of peak amplitude
and slight change in slope near ω = 0 and further shows a
single sign change across (π/2, π/2). In contrast, the path
along k2 in Fig. 5(f) shows a reduction in peak amplitude
as well as spectral weight followed by additional peaks at
incommensurate wave vectors above U/t = 3. These appear
at a shift δ ∼ 0.51 above/below and left/right of the point
(0, π ). Moreover, in Fig. 5(e) the real part of the Green’s

TABLE I. Order by order counting of diagrams in the self-energy
expansion n� , Green’s function expansion nG, and the number re-
ducible diagrams that account for the difference nred.

Order n� nG nred
nred
nG

(%)

2 1 1 0
3 2 2 0
4 12 13 1 7.7
5 70 74 4 5.4
6 515 544 29 5.3
7 4264 4458 194 4.4

function for the antinodal cut shows that the reduction of states
coincides with a dip in Re G(4) to take on negative values at
(0, π ± δ).

There is a long history of phenomenology of pseudogap
physics and its connection to Fermi-surface reconstruction
that extends from the the mean-field level [29–32] to exchange
coupling [33], including also DQMC and cluster-DMFT
methods [34,35]. In the latter case, all previous calculations
have been restricted to analysis based on numerical analytic
continuation schemes of Matsubara axis data or indirect ob-
servation from other quantities. In our results, we see directly
for the evaluation of the spectral density in real frequencies ev-
idence of Fermi-surface reconstruction [36]. The sign change
in Re G is an indicator of a change in character of states
from holelike to electronlike, similar to electron/hole pockets
observed in phenomenological models [29,37]. Qualitatively,
our results suggest that Fermi-surface reconstruction can oc-
cur at arbitrarily weak interactions and coincides with the
antinodal non-Fermi-liquid crossover identified in Ref. [10]
shown to originate from strong spin fluctuations [9]. These
calculations at fourth order are approximate at this value
of βt = 5, and whereas higher-order results are extremely
expensive, they are, in principle, possible within the same
AMI framework. Extending this paper to higher order and
improving convergence of the integration of internal param-
eters will be necessary to make quantitative conclusions about
the nature of Fermi-surface reconstruction in the 2D Hubbard
model.

IV. DISSECTING THE DYSON EXPANSION

In this section, we illustrate the reason for fundamentally
different physics in the direct expansion of G(n) as com-
pared to obtaining G�(n) from Dyson’s equation. To streamline
the discussion, we consider the direct contribution of each
diagram to a particular observable, the imaginary Green’s
function at the antinodal momentum for the zeroth Matsubara
frequency. We will see that a pattern emerges which clearly
separates the reducible contributions included in the Dyson
series from the irreducible contributions that are neglected at
each order.

First, we consider for the Hubbard interaction the number
of diagrams in each expansion, enumerated in Table I. Af-
ter absorbing tadpole diagrams, the number of terms in the
self-energy expansion is given by n� . Similarly, the number
of diagrams in the Green’s function expansion is given by
nG. The difference between the two values is the number of
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FIG. 6. Evolution with β of contributions to −Im G(iω0, kan)
from reducible and irreducible diagrams for fourth order (left frame)
and sixth order (right frame). Shown are the direct coefficients equiv-
alent to the U/t = 1 case.

one-particle reducible diagrams nred of that order, each of
which is composed of combinations of self-energy insertions
of lower order. It is, therefore, the set of nred diagrams that are
implicitly resummed at a particular order when one calculates
the self-energy and then employs the Dyson equation. For
example, if one truncates the self-energy expansion at fourth
order and then utilizes Dyson’s equation, the effective con-
tribution at sixth order is the sum of nred = 29 diagrams out
of a possible nG = 544 diagrams, only ∼5% of the diagrams.
This disparity between the number of diagrams included in
the Dyson expansion and the full number of diagrams at
each order does not obviously change with truncation order.
This is illustrated in the final column of Table I, the value
of nred/nG remains small at ∼5%. This means that for any
self-energy expansion truncated at order m, the application of
the Dyson’s equation only accounts for ∼5% of the diagrams
at order m + 1 (m + 2 in the case of half-filling where odd
orders vanish). The fact that the fraction of included diagrams
is small is not necessarily problematic so long as those nred

diagrams are the dominant contribution.
We probe this issue in detail in Fig. 6 where we plot

the negative imaginary part of G(4) (left frame) and G(6)

(right frame) broken into contributions from reducible and
irreducible diagrams. Shown as a function of inverse temper-
ature for the zeroth Matsubara frequency, a positive value is
indicative of metallic behavior whereas a negative value sug-
gests insulating behavior. At fourth order the reducible and
irreducible contributions are comparable in magnitude but
opposite sign for all values of βt . Below βt = 1 the two
contributions merge, but tend to zero suggesting that neither
contribution is important for temperatures above T/t = 1. At
sixth order we again see that the reducible and irreducible
contributions have opposite signs, and below βt ≈ 6 both con-
tributions are negligible. Since we are comparing coefficients
of the same order—carrying the same factors of U m—this
disparity in value is not interaction strength dependent and
exists for all choices of U/t .

In order for Dyson’s equation to have utility, the sum
of reducible diagrams would need to be the dominant con-
tribution to the total result. If this were the case, then the

infinite sequence of reducible terms generated by Dyson’s
equation would provide for free a good approximation of very
high-order terms. Interpreting the results of Fig. 6 we see
that there is no temperature at which the reducible diagrams
are the dominant contribution. We see that systematically,
order by order, the reducible contributions are not a good
representation of the total. This does not appear to change as
order increases and we expect that for fixed temperature this
disparity in value will continue until both the reducible and
the irreducible contributions at the next order are negligible.

The basic logic of the Dyson series is that it should be
preferable to include some higher-order terms rather than
none. We see instead that it is systematically preferrable to not
include those terms. This suggests that there is no advantage to
employing Dyson’s equation for this problem—the Hubbard
interaction at weak coupling and low temperatures. This does
not mean we should not take advantage of the reducibility
of self-energy diagrams, simply that we should truncate the
expansion and include all terms of each order to avoid this
issue.

V. CONCLUSIONS

In this paper we have presented results for single-particle
quantities from partial diagrammatic expansions of the 2D
Hubbard model for both Matsubara and real frequencies,
made possible by recent advancements in symbolic tools
[11,15,38]. Thanks to exact results, at extremely high or-
der [10], we compute and contrast the direct expansion of
the Green’s function against the use of the Dyson series
expansion. We compute the single-particle properties of the
half-filled model including up to sixth-order contributions,
a feat that requires the generation and evaluation of ∼106

analytic expressions. We evaluate the expansion for weak-
coupling U/t < 4 where we observe many expected features,
such as the formation of a gap in the density of states as well
as a separate behavior of nodal and antinodal Fermi surfaces
which are qualitatively similar to Fermi-surface reconstruc-
tion. Motivated by the phase diagram of Ref. [10], we set
out to establish the consequences of observed non-Fermi-
liquid behavior on the real frequency spectral function. In
this process, we determined that for both real and Matsubara
axis data, the low-order expansion of the Green’s function
demonstrates completely different physics (insulating) from
what one obtains via the self-energy and Dyson’s equation
(metallic) for a similar order of truncation. By dissecting the
Green’s function into its reducible and irreducible compo-
nents, we see that the reducible diagrams that are implicitly
included in the Dyson equation represent only about 5% of
the diagrams at a given order. In the case of the 2D Hubbard
model, the reducible diagrams are never the dominant contri-
bution at each order, and as a result, the use of the Dyson
equation creates a systematic error that is not resolved by
increasing the expansion order unless all higher-order terms
are negligible. We determine that this systematic error for
low-order expansions can be avoided by simply not employing
the Dyson equation, and instead directly evaluating G(n) from
the set of �(m) contributions obtained at m � n. We show that
this gives improved results with respect to our known exact
benchmark. Since we work with only bare Green’s functions,
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this issue, although surely related, should not be confused
with convergence issues in renormalization approaches where
the convergence of an iterative skeleton series converges to
unphysical branches [4,39]. Extending our paper to higher or-
der will be necessary, which will require additional algorithm
development as pointed out in Ref. [40].

To summarize, our results show explicitly that partial per-
turbative expansions of the self-energy based on the bare
propagator when combined with Dyson’s equation will lead
to incorrect physical results for the half-filled Hubbard model.
In hindsight this is perhaps not surprising since, regardless
of what problem is being solved, there is no mathematical
or physical reason to expect that the ≈5% of reducible dia-
grams at each order that are implicitly included in the Dyson
series should be a good representation of the diagrams at
a given order. This observation of the disparity in diagram
numbers is, however, only part of the story, as explored in
Sec. IV. It is reasonable to presume that one might find a
class of problems where for some limits of model parameters
(e.g., high temperature, low density) the reducible diagrams
provide a dominant contribution which would result in cor-
rect physics from a partial self-energy expansion. However,
in the absence of such a special case our observations lead
us to question the general utility of the Dyson series where

there are two likely scenarios for a given truncation order n
either:

(1) The �(n) series is converged in which case G(n) ≡
G�(n) , suggesting that the additional higher-order diagrams
implicitly included in the Dyson series are effectively zero and
the Dyson equation provides no new information.

Or
(2) the �(n) series is not converged in which case it is

likely that the Dyson equation erroneously sums incorrect
values to infinite order potentially leading to wrong physics.

When framed in this light, the general utility of the
Dyson series is potentially compromised. Identifying classes
of problems where the Dyson series for partial diagrammatic
expansions is guaranteed to lead to correct physics could
represent a fruitful direction of future study.
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