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Non-Hermitian skin effect beyond the tight-binding models
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The energy bands of non-Hermitian systems exhibit nontrivial topological features that arise from the complex
nature of the energy spectrum. Under periodic boundary conditions (PBCs), the energy spectrum describes rather
generally closed loops in complex plane, characterized by integer nonzero winding numbers. Such nontrivial
winding provides the topological signature of the non-Hermitian skin effect (NHSE), i.e., the macroscopic
condensation of bulk states at the lattice edges under open boundary conditions (OBCs). In spite of the great
relevance of band winding in the non-Hermitian topological band theory and the related NHSE, most of current
results rely on tight-binding models of non-Hermitian systems, while exact Bloch wave function analysis of
the NHSE and related topological band theory is still lacking. While tight-binding models can correctly describe
narrow-band electronic states with a relatively weak degree non-Hermiticity, they are not suited to describe
high-energy wide-band electronic states and/or regimes corresponding to strong non-Hermiticity. Here we
consider the single-particle continuous Schrödinger equation in a periodic potential, in which non-Hermiticity
is introduced by an imaginary vector potential in the equation, and show that the NHSE is ubiquitous under
OBC and characterized by a nonvanishing integer winding number, even though the energy spectrum under PBC
always comprises an open curve, corresponding to high-energy electronic states. We also show that the interior
of the PBC energy spectrum corresponds to the complex eigenenergies sustaining localized (edge) states under
semi-infinite boundary conditions.
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I. INTRODUCTION

A common belief in solid state physics is that bulk physics
is insensitive to boundary conditions, so that bulk properties
such as thermodynamic and transport quantities [1,2] as well
as band topological invariants [3] can be computed assuming
the Born–von Karman (periodic) boundary conditions. This
common wisdom has been challenged in recent years, where
effective non-Hermitian Hamiltonians describing open lattice
systems display strong sensitivity to boundary conditions and
richer non-Hermitian topology arising from the complex na-
ture of the energy spectrum [4–70] (for recent reviews see
Refs. [14,48,50]). Unlike Hermitian lattices, non-Hermitian
ones can be topologically nontrivial even in one dimension
and without any symmetry because the energy spectrum can
form closed loops in the complex plane, characterized by
a nonvanishing winding number [7,38,50,52]. Such a non-
trivial winding provides the topological grounds of exotic
phenomena observed in non-Hermitian lattices, such as the
breakdown of the bulk-boundary correspondence based on
Bloch band topological invariants and the non-Hermitian skin
effect (NHSE) [50]. The generalized Brillouin zone and non-
Bloch band theory have been formulated to correctly predict
the topological edge modes from the topological bulk in-
variants, which are defined in the generalized Brillouin zone
rather than in the standard Brillouin zone [10,20,37]. The
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point-gap topology of the energy spectrum under periodic
boundary conditions (PBCs), corresponding to a nonvanishing
winding number, is at the heart of the NHSE, i.e., to the
macroscopic condensation of bulk modes at the edges in a
lattice under open boundary conditions (OBCs) [34,38,52].
A central result relating non-Hermitian point-gap topology
and NHSE is that, whenever the energy spectrum under PBC
describes a closed loop in complex plane with a nonvanish-
ing winding number, under the OBC the energy spectrum
of the same system collapses to an open curve with trivial
topology in the interior of the PBC energy spectrum, and
correspondingly the NHSE is observed, i.e., the wave func-
tions are squeezed toward the edges of the lattice [38,52]. A
paradigmatic model exhibiting the NHSE was introduced by
Hatano and Nelson more than two decades ago [71–73] as a
non-Hermitian extension of the famous Anderson model of
localization. In their model, Hatano and Nelson introduced an
imaginary vector potential in the nonrelativistic single-particle
Schrödinger equation [74,75]. When the Schrödinger equation
describes a quantum particle on a one-dimensional periodic
potential, within a tight-binding model the Peierls phase in
the hopping amplitudes introduced by the imaginary vector
potential takes the form of a phase factor but with a real
exponent [74], i.e., it induces asymmetric left/right hopping
along the lattice responsible for the NHSE. The implications
of the imaginary gauge field in the Anderson-Hatano-Nelson
model have been discussed in several subsequent works (see,
e.g., Refs. [76–88]) and found interesting applications in ro-
bust excitation transport [85,86] and laser array stabilization
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FIG. 1. Schematic of the models used to describe the band struc-
ture of a crystal as a function of the potential strength.

[87–89]. The point-gap topology of the Hatano-Nelson model
was disclosed in Ref. [7], which inspired much of the current
studies on non-Hermitian topological models displaying the
NHSE.

All such previous studies on the NHSE and related point-
gap topology have been concerned with the tight-binding
approximation of lattice bands, which is suitable to describe
low-energy narrow bands separated by wide gaps. However, it
is well known that wide energy bands in a crystal separated
by narrow gaps, corresponding to the nearly-free electron
limit, cannot be described by the tight-binding model, and
that both the nearly-free electron model and the tight-binding
model are approximate methods to describe the band struc-
ture of a crystal (Fig. 1). An open question is whether the
NSHE and related point-gap topology of energy bands can
be extended beyond the tight-binding models, i.e., within the
general Bloch-Floquet theory of periodic potentials.

In this work we consider the single-particle Schrödinger
equation in a periodic potential, in which non-Hermiticity
is introduced by an imaginary vector potential in the equa-
tion [74,75]. We show that the energy spectrum is strongly
sensitive to the boundary conditions, and that under OBC
one observes the NHSE, with bulk modes squeezed toward
the edge of the crystal. Correspondingly, the band structure
displays a point-gap topology with nonvanishing winding of
all bands. However, contrary to the tight-binding models, the
energy spectrum of the highest energy band of the crystal de-
scribes an open (rather than a closed) curve in complex energy
plane, which is nevertheless still characterized by a nonvan-
ishing integer winding number. As the imaginary gauge field
is increased, band merging is observed, until a single energy
band emerges, described by an open curve in complex en-
ergy plane approaching the energy dispersion curve of the
free-particle limit (a parabola). The results are illustrated con-
sidering three significant examples of potentials, namely the
Lamé potential, the binary (double-well) potential, and the
Mathieu (sinusoidal) potential.

II. ENERGY SPECTRUM, NON-HERMITIAN SKIN
EFFECT AND WINDING NUMBER IN A CRYSTAL

WITH AN IMAGINARY GAUGE FIELD

The starting point of our analysis is provided by the
Schrödinger equation for a quantum particle in a periodic one-
dimensional potential V (x + a) = V (x) with lattice period a
and with an imaginary gauge field β [74,75]. In scaled form,
the Schrödinger equation reads

Eψ (x) = −(∂x + β )2ψ (x) + V (x)ψ (x) ≡ Ĥβψ (x). (1)

For the sake of definiteness, in the following we will assume
β � 0, however, the results are valid mutatis mutandis also for
the β � 0 case. Let us consider a crystal made of M unit cells

with either OBC (infinite edge barriers)

ψ (0) = ψ (Ma) = 0 (2)

or PBC

ψ (Ma) = ψ (0) (3)

in the larger M limit. A semi-infinite crystal on the line x �
0 can be also considered, corresponding to the semi-infinite
boundary conditions (SIBCs)

ψ (0) = 0, max lim
x→+∞ |ψ (x)| < ∞. (4)

While in the Hermitian limit β = 0 the energy spectrum of
Ĥβ does not substantially depend on the boundary condi-
tions (either OBC, PBC or SIBC), a strong dependence of
energy spectrum on boundary conditions is found in the non-
Hermitian regime β �= 0.

A. Energy spectrum under OBC and the skin effect

For OBC, after the imaginary gauge transformation

ψ (x) = φ(x) exp(−βx) (5)

Eq. (1) reads

Eφ(x) = −∂2
x φ(x) + V (x)φ(x) = Ĥβ=0φ(x) (6)

with

φ(Na) = φ(0) = 0. (7)

This means that φ(x) are the usual extended Bloch wave
functions in a Hermitian crystal of finite length with energy
spectrum defined by the Bloch bands of the infinite crystal,
with possible additional surface Tamm states localized at the
edges of the lattice [90–92]. Such spectrum is entirely real
and is described by a finite set (or an infinite numerable set)
of intervals I1, I2,..., In,... on the real energy axis of permitted
energies (bands) separated by intervals of forbidden energies
(gaps). The energy spectrum is bounded below but not above.
This means that, for a crystal with a finite number (N − 1) of
gaps and supporting N bands, the interval IN of the highest
energy band is a semi-infinite line on the real energy axis,
extending to E = +∞ [see Fig. 2(a)]. Hence under OBC the
imaginary gauge field β does not change the energy spectrum
of Hβ as compared to the Hermitian limit β = 0. However, the
imaginary gauge field changes the localization properties of
the wave functions and is responsible for the appearance of the
NHSE under OBC. In fact, according to Eq. (5) all extended
Bloch wave functions φ(x) in the Hermitian limit become
exponentially localized toward the left or right edge of the
lattice (depending on the sign of β), with a localization length
∼1/|β|. Also, since the energy spectrum remains entirely real
and formed by a set of straight open curves, it is topological
trivial. Such results clearly indicate that the appearance of the
NHSE by an imaginary gauge field in a finite crystal with
OBC is a very general feature, that holds beyond the usual
tight-binding models of the crystal.

B. Energy spectrum under PBC

Under PBC, the imaginary gauge transformation (5) cannot
be used to eliminate the imaginary field β, and the energy
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FIG. 2. Schematic of the energy spectrum in complex plane E
(solid red curves) of the non-Hermitian Hamiltonian Ĥβ under PBC
for increasing values of the imaginary gauge field β. (a) β = 0
(Hermitian limit). For a crystal with a finite number (N − 1) of
gaps, the energy spectrum comprises N intervals (energy bands) I1,
I2,..., IN on the real energy axis, separated by (N − 1) gaps, with IN

unbounded from above. The (2N − 1) band edges are denoted by
E0, E1,..., E2N−2. (b) As the gauge field β is slightly increased above
zero, the energy spectrum is described by (N − 1) non-intersecting
closed loops C1, C2,..., CN−1, emanating from the straight segments
I1, I2,..., IN−1, and an additional open curve CN emanating from the
semi-infinite line IN . (c-e) As the imaginary gauge field β is further
increased, successive merging of the curves Cn is observed, thus re-
ducing the number of closed curves in complex energy plane. Above
a critical value β = βc, all bands merge and the energy spectrum is
described by an open curve [panel (e)], which is approximated by the
parabola (dashed curve) of the free-particle problem as β → ∞. The
shaded areas internal to the various bands correspond to the domain
of base energies EB where the winding W (EB ) is non vanishing and
edge states do exist in the semi-infinite lattice.

spectrum of Ĥβ should be computed rather generally as fol-
lows. Indicating by k the Bloch wave number in the first
Brillouin zone (−π/a � k < π/a), the PBC Eq. (3) is sat-
isfied by letting

ψ (x) = exp(ikx)
∑

n

ψn exp(i2π inx/a) (8)

with quantized k (kMa should be an integer multiple than 2π ;
in the large M limit k can be taken as a continuous variable
varying in the first Brillouin zone). Note that under PBC the
wave functions ψ (x), as given by Eq. (8), are extended states
over the entire lattice, i.e., they are of Bloch type, rather than
being squeezed toward the edges as in a system with OBC.
The crystal energy bands Eβ (k) for β �= 0 are obtained from
the eigenvalue equation

Eβ (k)ψn = −(ik + 2π in/a + β )2ψn +
∑

m

Vn−mψm

≡
∑

m

Hn−m(k)ψl , (9)

where Vn = (1/a)
∫ a

0 dxV (x) exp(−2π inx/a) are the Fourier
coefficients of the periodic potential V (x). Equation (9)
clearly indicates that the energy spectrum in the non-
Hermitian regime β �= 0 is obtained from the spectrum in the
Hermitian limit β = 0 by the simple relation

Eβ (k) = Eβ=0(k − iβ ), (10)

i.e., after complexification of the Bloch wave number k (k →
k − iβ). This result is somehow analogous to the one found
in the tight-binding limit, where complexification of k corre-
sponds to the introduction of a generalized Brillouin zone to
describe the energy spectrum of the non-Bloch Hamiltonian
under OBC [10,13,20]. However, note that in our case Eq. (10)
relates the energy spectra of two distinct Bloch Hamiltonians,
one with β = 0 and the other one with β �= 0, and PBC are as-
sumed in both cases. Interestingly, in the Bloch (momentum)
space the matrix Hamiltonian H(k) defined by Eq. (9) satis-
fies the symmetry PT H(k) = H(−k)PT , with parity P and
time-reversal T operators defined by Pψn = ψ−n and T =
K (K is the element wise complex conjugation operation).
Therefore, as k spans the Brillouin zone, the eigenenergies
of the Ĥ appear in complex-conjugate pairs. In the Hermitian
limit β = 0, the energy spectrum under PBC coincides with
the one under OBC, with the exception of possible isolated
energies corresponding to edge (surface) Tamm states. As the
imaginary gauge β is increased from zero, i.e., after com-
plexification of the Bloch wave number k, under PBC each
band undergoes a continuous reshaping and describes rather
generally a closed curve Cn in the complex energy plane,
emanating from the corresponding straight segment In on the
real energy axis at β = 0 [Fig. 2(b)]. Such a result simply
follows from the Fourier form of the dispersion curve of each
band in the Hermitian limit and from the complexification of
k in the non-Hermitian regime [Eq. (10)]. An exception is
provided by the curve CN emanating from the highest-energy
(continuum) band IN , which describes an open curve CN . As
shown in Sec. III and schematically illustrated in Figs. 2(c),
2(d) and 2(e), successive band merging arises as β is in-
creased, until at large imaginary gauge fields only a single
band, described by an open curve in the complex energy plane,
is observed [Fig. 1(e)], which approaches the free-particle
dispersion curve [V = 0 in Eq.(1)]

Eβ (κ ) � V0 − (iκ + β )2. (11)

(−∞ < κ < ∞) in the large β limit. Note that in such a
limit the open curve is described by a parabola, depicted by
a dashed curve in Fig. 2(e). At each band merging point, the
underlying Hamiltonian becomes defective, corresponding to
the appearance of an exceptional point or spectral singularity
[93]. This result will be illustrated in Sec. III C within a
nearly-free electron model.

Since under PBC the energy spectrum is described by a set
of curves in complex energy planes, it can show a nontrivial
topology characterized by a nonvanishing spectral winding
number. According to previous works [7,38,52,68], for any
point-gap (basis) energy EB one can define a winding number
of the PBC energy spectrum by the relation

W (EB) =
∑ 1

2π i

∫ π

−π

dk
d

dk
log {Eβ (k) − EB}, (12)
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where the sum is extended over the various bands of the
crystal. Clearly, W (EB) �= 0 whenever the point-gap energy
EB is in the interior of one of the closed curves Cn (n < N), or
on the right side of the open curve CN , as shown by the shaded
areas in Fig. 2(b). We note that, even though the curve CN is
open, the winding number W is still quantized. Intuitively, this
follows from the fact that the curve closes sufficiently fast at
infinity, i.e., |Im(E )/Re(E )| → 0 as we move at infinity along
the curve CN . As β is increased and band merging occurs, a
similar scenario is found, with W (EB) �= 0 when EB is chosen
in the shaded areas internal to the distinct bands [Figs. 2(c)
and 2(d)]. In particular, in the large β limit |W (EB)| = 1 for
any base energy EB in the interior of the parabolic curve,
defined by Eq. (11).

C. Winding number, energy spectrum and edge states
in the semi-infinite lattice

A main result in non-Hermitian tight-binding models with
a nontrivial point-gap topology is provided by Theorem I of
Ref. [38], that relates the interior of the closed loops describ-
ing the PBC energy spectrum with the energy spectrum of the
system under SIBC. In Appendix A we show that such a main
result is valid also in the continuous model. This means that
any base energy EB, such that W (EB) �= 0, does belong to the
energy spectrum of Ĥβ under SIBC, i.e., there exists a wave
function (edge state) ψ (x) to Eq. (1) with eigenenergy E = EB

and with

ψ (0) = 0, lim
x→+∞ ψ (x) = 0. (13)

Moreover, as EB approaches the domain boundaries, i.e., EB

lies on the lines C1, C2,..., CN , the wave function ψ (x) becomes
an extended state, thus still belonging to the spectrum of Ĥβ

under the SIBC (4). It should be noted that the localized edge
states satisfying Eq. (13) under SIBC should not be confused
with the skin modes, which are observed under OBC in a finite
lattice.

III. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the general results presented
in the previous section by considering a few examples of
one-dimensional crystals with specific shape of potential V (x)
known in the literature, which cannot be fully described within
a tight-binding model. We recall that in the tight-binding
model the potential V (x) is written as a periodic sequence of
quantum wells Va(x) (atomic potentials)

V (x) =
∑

n

Va(x − na) (14)

with negligible overlapping between adjacent potential wells
in the lattice. In the Hemitian limit β = 0, a given bound state
(atomic orbital) ua(x) of the potential well Va(x) gives rise to
a tight-binding band with Bloch wave functions written as a
linear combination of atomic orbitals

ψ (x) =
∑

n

ψnua(x − na) (15)

with amplitudes ψn satisfying the eigenvalue equation [2]

Eψn =
∑

l

Hlψn−l . (16)

In the above equation, the hopping amplitudes Hl are given in
terms of overlapping integrals

Hl =
∫

dx u∗
a(x − la)Ĥβ=0 ua(x). (17)

The corresponding dispersion curve Eβ=0(k) of the
tight-binding band, originating from the atomic orbital
ua(x), is obtained from the Ansatz ψn = ψ0 exp(ikan)
(−π/a � k < π/a) and reads

Eβ=0(k) =
∑

l

Hl exp(−ikla). (18)

In the non-Hermitian case β �= 0, according to Eq. (10) the
dispersion curve Eβ (k) under PBC is obtained from Eq. (18)
after the replacement k → k − iβ. Correspondingly, the PBC
energy spectrum describes a closed loop in complex energy
plane with a point-gap topology and associated nonvanishing
winding number W (EB) for any base energy EB internal to the
loop [38,68]. In particular, the tight-binding Hatano-Nelson
model [74] is obtained in the nearest-neighbor tight-binding
limit Hl � 0 for l �= 0,±1, corresponding to a sinusoidal
dispersion curve Eβ=0(k) in the Hermitian limit and a curve
Eβ (k) describing an ellipse in complex energy plane for
β �= 0 [7].

While the tight-binding model is appropriate to describe
narrow bands separated by wide gaps, or couple of mini
bands separated by a small gap, it clearly fails to provide
a correct analysis of wide bands separated by small gaps,
and to describe the continuum band of high-energy electron
states. Even for narrow bands separated by large gaps the
tight-binding description becomes inadequate at large imagi-
nary gauge fields β owing to the phenomena of band merging
and non-Hermiitan delocalization of the atomic (orbital) wave
functions. Therefore, to correctly describe the energy spec-
trum under PBC one should resort to the general Bloch
formulation of wave functions in the framework of the con-
tinuous Schödinger equation.

A. The Lamé potential

The first illustrative example is provided by the Lamé
potential, which is an exactly solvable model of periodic po-
tential exhibiting a finite number of energy gaps. The Lamé
potential reads [94–97]

V (x) = N (N − 1){m sn2(x; m) − 1}, (19)

where N is a positive integer number (N � 2) and sn(x; m) is
a Jacobi elliptic function of real elliptic modulus parameter m
(0 < m < 1), i.e., sn(x; m) = sin ϕ with

x =
∫ ϕ

0

dθ√
1 − m sin2 θ

. (20)

The potential (19) is periodic with period a = 2K (m), where

K (m) =
∫ π/2

0

dθ√
1 − m sin2 θ

. (21)
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FIG. 3. Behavior of the Lamé potential [Eq. (19)] for m = 0.999
and for (a) N = 2, and (b) N = 3. The lattice period is a = 2K (m) �
9.682. In each period, the potential reproduces the reflectionless
Pöschl-Teller potential well (dashed curves), which sustains N bound
states with energies E1 = −1 in (a), and E1 = −4, E2 = −1 in (b).

is the first complete elliptic integral. Interestingly, the Lamé
potential has exactly (N − 1) gaps and N bands, as schemati-
cally shown in Fig. 2(a). The (2N − 1) band edges E0, E1,...,
E2N−2 are algebraic functions of the parameter m, i.e., they
are the roots of a certain polynomial, the coefficients of which
are polynomial in m [97]. In particular, for N = 1, i.e., for a
crystal with a single gap, the band edges read

E0 = m − 2, E1 = −1, E2 = −1 + m. (22)

In the limit m → 1, the period a diverges and, within each
period, the Lamé potential V (x) is very well approximated
by the reflectionless Pöschl-Teller potential well [94,98–100],
i.e., V (x) can be written as in Eq. (14) with

Va(x) = − (N − 1)N

cosh2 x
(23)

(see Fig. 3). The Pöschl-Teller potential well defined by
Eq. (23) sustains (N − 1) bound states with energies E1 =
−(N − 1)2, E2 = −(N − 2)2,..., EN−1 = −1. Therefore, in the
Hermitian limit β = 0 the periodic potential V (x) gives rise
to (N − 1) narrow tight-binding bands centered at around E1,
E2,..., EN−1, with the additional continuum band 0 < E < ∞
which cannot be described within a tight-binding approxi-
mation [see panels (a) in Figs. 4 and 5]. As β is slightly
increased above zero, the tight-binding bands describe near
ellipsoidal curves in complex energy plane, according to the
tight-binding analysis, while the continuum unbounded band
describes an open curve which goes to infinity. This is shown
in panels (b) of Figs. 4 and 5 for the case N = 2 and N = 3,
respectively. As β is further increased, a cascade of band
merging is observed [Figs. 4(c) and 5(c)–5(e)], until above a
critical value βc the energy spectrum is described by a single
open curve unbounded at infinity, which converges toward the
parabola of the free-particle problem in the large β limit, i.e.,
to the curve with Cartesian equation

Re(E ) � V0 − β2 +
(

Im(E )

2β

)2

(24)

[Figs. 4(d) and 5(f)]. To clarify the band-merging effect
and to calculate the critical value βc, let us focus our attention
on the N = 2 case, which is amenable for a simple analytical
study. For N = 2, in the Hermitian limit β = 0 the Lamé
potential sustains two bands I1 and I2, with band edge energies

FIG. 4. Energy spectrum under PBC of the Lamé potential (19)
for m = 0.999, N = 2 and for a few increasing values of the imag-
inary gauge field β. (a) β = 0 (Hermitian limit), (b) β = 0.55,
(c) β = βc � 0.5963, and (d) β = 0.7. The critical value β = βc,
above which band merging occurs, is given by Eq. (31).

given by Eq. (22) [see also Fig. 4(a)]. For m close to one,
in the interval −a/2 � x < a/2 the potential V (x) can be
approximated by the reflectionless potential (23), so that using
the supersymmetric properties of the Pöschl-Teller potential

FIG. 5. Energy spectrum under PBC of the Lamé potential (19)
for m = 0.999, N = 3 and for a few increasing values of the imag-
inary gauge field β. (a) β = 0 (Hermitian limit), (b) β = 0.48,
(c) β = 0.5, (d) β = 1.35, (e) β = 1.4, and (f) β = 1.6. The insets in
(b) and (c) show an enlargement of the ellipsoid loop C1 of the lowest
tight-binding band of the lattice, emanating from I1.
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FIG. 6. Behavior of the curve β = β(kI ), defined by Eq.(30), for
m = 0.999, corresponding to a lattice period a � 9.682. For β < βc

there are three allowed values of kI , while for β > βc there is only
one allowed value of kI .

Va(x) [100] the Bloch wave functions ψ (x) corresponding to
the energy E = k2 can be given in a simple form and read

ψ (x) = {−ik + tanh(x)} exp(ikx) (25)

with k real. For a nonvanishing imaginary gauge field β > 0, a
formal solution to the eigenvalue equation Ĥβψ (x) = Eψ (x)
with energy E = k2 is given by

ψ (x) = exp(−βx){−ikx + tanh(x)} exp(ikx), (26)

where k = kR − ikI can take rather generally complex values
with real and imaginary parts kR and −kI , respectively. When
β �= 0, to satisfy the PBC the allowed values of k in complex
plane should be taken such that∣∣∣ψ(

x = −a

2

)∣∣∣ =
∣∣∣ψ(

x = a

2

)∣∣∣. (27)

Since for a 	 1 one has tanh(±a/2) � ±1, from Eqs. (26)
and (27) one obtains

exp[2(β − kI )a] = k2
R + (1 − kI )2

k2
R + (1 + kI )2

(28)

with corresponding energy

E = k2 = (kR − ikI )2. (29)

For any given −∞ < kR < ∞, Eq. (28) is a transcendental
equation for kI = kI (kR), which admits up to three roots with
kI (−kR) = kI (kR) and kI (kR) ∼ β as |kR| → ∞. For β > βc,
only one root of the transcendental equation (28) is found. To
calculate the critical value βc, let us assume kR = 0, corre-
sponding to a real and negative energy E = −k2

I according to
Eq. (29). Then Eq. (28) can be solved for β, yielding

β = kI + 1

a
log

∣∣∣∣1 − kI

1 + kI

∣∣∣∣. (30)

The behavior of β versus kI , as given by Eq. (30), is shown
in Fig. 6. Clearly, for β < βc, there are three allowed values
of kI , corresponding to the three real energies E = −k2

I where
the two curves C1 and C2, emanating from bands I1 and I2,
cross the real energy axis [Fig. 4(b)]. On the other hand, for

FIG. 7. Energy spectrum under PBC of the binary potential (32)
for σ = 1.1 and lattice period a = 10. (a) Behavior of the potential
V (x) in one lattice period. The double-well potential sustains two
bound states with energies E1 = −σ 2 and E2 = −1 (solid horizontal
lines). (b)–(f) Numerically-computed energy spectrum under PBC
for a few increasing values of the imaginary gauge field β: (b) β = 0
(Hermitian limit), (c) β = 0.28, (d) β = 0.31, (e) β = 0.4, and (f)
β = 0.5.

β > βc there is only one allowed value of kI , corresponding
to a single real energy belonging to the energy spectrum [the
intersection of the open curve with the real energy axis in Figs.
4(d)]. The critical value βc, at which band merging occurs,
is the relative maximum of the curve β = β(kI ) of Fig. 6
defined by Eq. (30), and can be readily calculated by letting
(dβ/dkI ) = 0. This yields

βc =
√

1 − 2

a
+ 1

a
log

⎛
⎝1 −

√
1 − 2

a

1 +
√

1 − 2
a

⎞
⎠. (31)

B. The binary (double-well) potential

As a second illustrative example, let us consider a po-
tential V (x) that describes a binary lattice and assume that
in the interval (lattice period) −a/2 � x < a/2 the poten-
tial V (x) is approximated by the reflectionless double-well
potential [101,102]

V (x) � Va(x) = 2(σ 2 − 1)
σ 2 + sech2(x) sinh2(σx)

{tanh(x) sinh(σx) − σ cosh(σx)}2

(32)

with σ > 1 and a 	 1. The single potential well Va(x) sus-
tains two bound states with energies E1 = −σ 2 and E2 = −1,
spaced by �E = σ 2 − 1 [Fig. 7(a)]. The two energy levels are
almost degenerate in the σ → 1+ limit. In the periodic lattice,
two tight-binding minibands are thus generated in this limit

125109-6



NON-HERMITIAN SKIN EFFECT BEYOND THE … PHYSICAL REVIEW B 104, 125109 (2021)

[bands I1 and I2 in Fig. 7(b)], separated from a wide gap from
the third continuum unbounded band [band I3 in Fig. 7(b)].
As the imaginary gauge field β is slightly increased above
zero, the two mini bands are described by two closed loops
(ellipsoids) [curves C1 and C2 in Fig. 7(c)], until they merge
in a single band with energy spectrum describing a closed
loop and separated by the continuum band [Fig. 7(d)]. As
β is further increased, a second band merging is observed,
with the spectrum being described in complex energy plane
by a single open curve [Figs. 7(e) and 7(f)]. We note that a
tight-binding analysis could describe the band structure of the
two minibands, and their merging as the imaginary gauge field
is increased, however it cannot catch the entire band structure
and the merging of the mini bands with the continuum band at
large imaginary gauge fields.

C. The Mathieu (sinusoidal) potential

The third illustrative example is provided by the Mathieu
(sinusoidal) potential [103,104]

V (x) = V0 cos(2πx/a), (33)

which is not amenable for a tight-binding analysis, especially
in the shallow potential limit V0 
 (π/a)2. As compared to
the Lamé potential, in the Hermitian limit β = 0 the sinu-
soidal potential displays an infinite number of bands separated
by gaps, which become infinitesimally narrow as the energy
increases. Such gaps are related to the instability domains
(resonance tongues) in the problem of parametric resonance
[105] and arise in correspondence of the resonance energies
En = (π/a)2n2 (n = 1, 2, 3, ...). When a nonvanishing imag-
inary gauge field β > 0 is applied, the bands separated by the
many narrow gaps rapidly merge in a cascade process, until
above a critical value β = βc all the bands are merged and
the PBC energy spectrum in complex plane is described by
an open curve that goes to infinity, approaching the parabolic
curve (11) in the large β limit. The cascading process of band
merging is illustrated in Fig. 8.

The critical value βc becomes very small, with respect to
1/a, in the shallow potential limit and can be readily cal-
culated by applying the nearly-free electron model [2], or
equivalently the perturbation theory in the analogous problem
of parametric resonance [105]. In fact, the critical value βc

corresponds to the closing of the wider energy gap on the
real energy axis, near the energy E1 = (π/a)2 of the first
resonance tongue (n = 1). In the nearly-free electron model
and for a small value of the imaginary gauge field β, the
Schrödinger equation (1) can be reduced to a Dirac-like equa-
tion with a non-Hermitian term arising from a nonvanishing
value β. In the plane-wave (Bloch) basis, the Dirac Hamilto-
nian reads (details are given in Appendix B)

H (k) =
(

E1 + 2k0(k − k0 − iβ ) V0/2
V0/2 E1 − 2k0(k − k0 − iβ )

)
,

(34)

where we have set k0 = π/a and E1 = k2
0 . For β = 0, the

eigenenergies E±(k) of H (k) are given by the usual hyperbolic
curves of the Dirac equation

E±(k) = E1 ±
√

4k2
0 (k − k0)2 + (V0/2)2, (35)

FIG. 8. Energy spectrum under PBC of the Mathieu (sinusoidal)
potential V (x) = V0 cos(2πx/a) for V0 = 1, a = 2π and for a few
increasing values of the imaginary gauge field β. (a) β = 0 (Hermi-
tian limit). Only three gaps, separating the bands I1, I2, I3 and I4, are
clearly visible, while the other higher-energy gaps are too small to
be visible. (b) β = 0.1. (c) β = 0.15. (d) β = 0.3. (e) β = 0.6, and
(f) β = 0.8. A cascade of band merging is observed, until the energy
spectrum in complex plane is described by a single open curve which
is unbounded at infinity [panels (e) and (f)].

which describe an avoided crossing of the bands near the edge
k = k0 of the Brillouin zone. Such relations approximate the
dispersion curves of upper and lower bands I2 and I1 near the
wider energy gap at E = E1 and for a Bloch wave number k
close to k0. Note that the width of the band gap is V0, which
corresponds to the difference (E+(k) − E−(k)) at the Bragg
wave number k = k0. According to Eq. (10), for a nonvanish-
ing imaginary gauge field β > 0 the energy dispersion curves
are obtained from Eq. (35) by the substitution k → k − iβ. At
k = k0, the energies E±(k) are real and the width of the gap
on the real axis reads

(E+(k0) − E−(k0)) =
√

(V0/2)2 − 4k2
0β

2. (36)

The critical value β = βc corresponds to the closing of the
energy gap on the real axis. From Eq. (36) one then obtains

βc = V0

4k0
= V0a

4π
. (37)

Note that, at k = k0 and β = βc, the Dirac Hamiltonian (34)
reduces to

H (k) =
(

E1 0
0 E1

)
+ V0

2

(−i 1
1 i

)
, (38)

which is a defective 2 × 2 matrix, i.e., it does not have a
complete basis of eigenvectors (the eigenvalue E1 of H (k)
has an algebraic multiplicity of 2 but a geometric multiplicity
1). This means that, at the critical value β = βc the touching
point of the two energy bands at k = k0 is an exceptional
point of the Hamiltonian. We note that a similar behavior, i.e.,
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appearance of exceptional points and spectral singularities at
the band merging points, is found in continuous models of
complex crystals with parity-time (PT ) symmetry [93] and in
multiband tight-binding models [106].

IV. CONCLUSIONS

In summary, we investigated the dependence of energy
spectrum on boundary conditions and the NHSE in the
framework of the one-dimensional continuous Schrödinger
equation for a quantum particle in a periodic potential with
an imaginary vector potential, beyond the usual tight-binding
approximation. The analysis reveals similarities and dif-
ferences between the continuous and tight-binding models,
that can be summarized as follows: (i) both models show
the NHSE under OBC, i.e., the eigenstates are exponen-
tially squeezed toward the lattice edges for any nonvanishing
imaginary gauge field; (ii) in both models the NHSE is
characterized by a nonvanishing point-gap topological wind-
ing number of the complex energy spectrum under PBC;
(iii) unlike the tight-binding model, where the PBC energy
spectrum is composed by closed curves in complex energy
plane, in the continuous model the PBC energy spectrum
always comprises an open curve, unbounded at infinity in
a half complex plane and emanating from the high-energy
states (nearly-free electronic states) of the Hermitian limit.
At high values of the imaginary gauge field such an open
curve describes the entire energy spectrum, as a result of a
sequence of band merging illustrated in Fig. 2; (iv) in both
models the interior of the PBC energy spectrum corresponds
to the energy spectrum of the non-Hermitian Hamiltonian
under semi-infinite boundary conditions with localized edge
states. Such results have been illustrated by considering three
significant examples of one-dimensional potentials, namely
the Lamé potential supporting a finite number of gaps, the
binary (double-well) potential supporting two tight-binding
narrow bands, and the Mathieu (sinusoidal) potential, where
the nearly-free electron model can be used to describe the
band structure in the shallow potential limit. Our results un-
ravel the close connection between point-gap topology of the
complex energy spectrum under PBC and the NHSE in contin-
uous non-Hermitian systems beyond the usual tight-binding
models, and is expected to stimulate further theoretical in-
vestigations on a rapidly developing area of research. For
example, the analysis could be extended by considerning in-
homogeneous (space-dependent) imaginary gauge fields, as
well as other kinds of non-Hermitian terms in the contin-
uous Schrödinger equation [107]. Also, continuous models
of non-Hermitian two-dimensional systems could be consid-
ered, where the second-order NHSE and corner states are
observed within the tight-binding models [22,56,58]. Finally,
the continuous non-Hermitian Schrödinger equation could be
of relevance to investigate dual Hermitian systems in curved
spaces [108].
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APPENDIX A: ENERGY SPECTRUM
OF THE SEMI-INFINITE LATTICE

Let us consider the spectral problem in a semi-infinite
lattice on the line x � 0, so that the Schrödinger equation (1)
should be supplemented with the SIBCs

ψ (0) = 0, max lim
x→+∞ |ψ (x)| < ∞. (A1)

In this Appendix it is shown that, for a given value of the
imaginary gauge field β, the energy spectrum of Ĥβ under
SIBC is provided by the domains in the interior of the PBC
energy curves C1, C2,..., CN , depicted by the shaded areas
in Fig. 1. Moreover, for any energy EB strictly internal to
such domains, the corresponding wave function is an edge
state, exponentially localized at around x = 0. To prove this
statement, let EB be a complex energy strictly internal to one
of such domains. Then there exists a value β ′ < β such that
EB belongs to the PBC energy spectrum of Ĥβ ′ : in fact, the
shaded domains shown in Fig. 1 can be obtained from the
union of all the curves Cn of PBC energy spectra, emanating
from the straight lines In, when the imaginary gauge field is
adiabatically increased from 0 to β. Therefore, there exists a
Bloch-type wave function f (x) such that

Ĥβ ′ f (x) = EB f (x) (A2)

with

| f (x + a)| = | f (x)|. (A3)

It can be readily shown that the wave function

ψ1(x) = f (x) exp[−(β − β ′)x] (A4)

is formally an eigenfunction of Ĥβ with the eigenenergy EB,
i.e.,

Ĥβψ1(x) = EBψ1(x). (A5)

Note that, since β > β ′, the wave function ψ1(x) exponen-
tially decays toward zero as x → ∞ like ∼ exp[−(β − β ′)x].
The other linearly independent solution to the second-order
differential equation Ĥβψ (x) = EBψ (x), namely

(∂x + β )2ψ (x) + −[EB − V (x)]ψ (x) = 0 (A6)

can be constructed from ψ1(x) as follows:

ψ2(x) = ψ1(x)
∫ x

0
dξ

exp(−2βξ )

ψ2
1 (ξ )

, (A7)

i.e.,

ψ2(x) = f (x) exp[−(β − β ′)x]
∫ x

0
dξ

exp(−2β ′ξ )

f 2(ξ )
. (A8)

Clearly, also ψ2(x) exponentially decays to zero as x → +∞.
The most general solution to the equation (A6) is thus given
by

ψ (x) = Aψ1(x) + Bψ2(x) (A9)
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with arbitrary constants A and B. If we choose the con-
stants such that Aψ1(0) + Bψ2(0) = 0, i.e., B = −A, one has
ψ (x) = 0 for x = 0 and limx→+∞ ψ (x) = 0. This proves that
E = EB belongs to the spectrum of Ĥβ for the semi-infinite
lattice and the corresponding wave function (A9) is an edge
state. As EB approaches the domain boundaries C1, C2,...,
CN , β ′ → β−, the decay length of wave function diverges
like ∼1/(β − β ′) and ψ (x) becomes an extended (Bloch-like)
wave function, thus belonging again to the energy spectrum of
Ĥβ under the SIBC.

APPENDIX B: THE NEARLY-FREE ELECTRON MODEL

In the shallow potential limit, we can apply the standard
nearly-free electron model to the Schrödinger equation (1) to
describe the energy dispersion curves near a narrow energy
gap. The analysis should be suitably extended to include a
nonvanishing imaginary gauge field. For the sake of defi-
niteness, we assume a shallow sinusoidal potential V (x) =
V0 cos(2πx/a), discussed in Sec. III C. Let k0 = π/a be the
Bloch wave number at the edge of the Brillouin zone and
E1 = k2

0 the energy of a free particle with momentum k0 in
the absence of the gauge field. For V0 
 E1 and for a small
value of β, we look for a solution to Eq. (1) of the form of two

counter-propagating plane waves

ψ (x) = ψ1(x) exp(ik0x) + ψ2(x) exp(−ik0x) (B1)

with carrier wave numbers ±k0 and envelopes ψ1(x), ψ2(x)
slowly varying on the spatial scale ∼1/k0. Applying standard
asymptotic methods and neglecting terms of order ∼β2, the
envelopes ψ1(x) and ψ2(x) satisfy the coupled equations

εψ1 = −2ik0
∂ψ1

∂x
− 2iβk0ψ1 + V0

2
ψ2, (B2)

εψ2 = 2ik0
∂ψ2

∂x
+ 2iβk0ψ2 + V0

2
ψ1. (B3)

where we have set ε = E − E1. For β = 0, Eqs. (B2) and
(B3) correspond to a one-dimensional Dirac equation for a
massive and freely moving relativistic particle in the Weyl
representation. The corresponding dispersion curves are given
by Eq. (35) in the main text, which are readily obtained from
Eqs. (B2) and (B3) after the Ansatz ψ1,2(x) = A1,2 exp[i(k −
k0)x] with constant amplitudes A1 and A2. For a nonvanishing
value of β, the Dirac equation becomes non-Hermitian and in
the Bloch basis is described by the 2 × 2 matrix H (k) given
by Eq. (34) in the main text, i.e.,

E

(
A1

A2

)
= H (k)

(
A1

A2

)
. (B4)
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