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Spin-current Kondo effect: Kondo effect in the presence of spin accumulation
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We present a detailed theoretical description of the influence of the spin accumulation in metallic Fermi leads
on the Kondo effect in systems such as quantum dots and Kondo alloys. We discuss an interplay of the spin
accumulation, magnetic field, and ferromagnetic leads spin polarization on the Kondo spin-dependent densities
of states, conductance, and resistance. It has been shown that the presence of the above-mentioned factors by
breaking the spin symmetry leads to the suppression of the Kondo effect. However, for appropriately selected
parameter values, these effects can compensate each other, which may lead to the restoration of the Kondo effect
in the analyzed systems. We also address some recent experiments related to the spin current in the Kondo alloys.
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I. INTRODUCTION

The Kondo effect is related to a screening of the quantum
dot (or impurity) spin by nearby free electrons, therefore
it takes place when the dot is magnetic. Below a certain
characteristic temperature TK, called the Kondo temperature,
the unpaired electron in the quantum dot hybridizes with the
conduction band states in the leads, which generates a Kondo
resonance [1–4].

In the view of spintronics the important issue is the
Kondo screening in the presence of spin effects due to, e.g.,
magnetic field, ferromagnetic leads, or nonequilibrium spin
accumulation. In this paper we focus on the spin accumulated
nano-systems. The nonequilibrium spin accumulation can be
defined as the energy difference between electrochemical po-
tentials of electrons with the opposite spin directions in a
given conducting material that is induced by the presence
of the nonequilibrium spin current. The spin accumulation
can be realized experimentally by spin injection to Kondo
alloys [5] or electrodes of the quantum dot system [6]. The
best system allowing for studying of the spin accumulation
is nonlocal lateral spin valve (LSV) [7–14], where the spin
current J is separated from the charge current I . Use of LSV
geometry allows for isolation from other spin-related phenom-
ena, such as spin-dependent interface scattering, anisotropic
magnetoresistance, and Hall effects. The influence of spin
accumulation on the Kondo effect has also been the subject of
theoretical research in the systems of nonmagnetic conductor
containing magnetic impurities [15], a quantum dot (QD) cou-
pled to a normal and ferromagnetic lead [16], a QD coupled
to one normal and one spin accumulated lead [17], and a QD
coupled to a normal and superconducting lead [18]. In this
work we present the extension of these research by exploring
the interplay of various spin effects. Our main focus will not
be the way the spin accumulation is generated (that can be
found in Refs. [5–14]) but rather the theoretical analysis of its

influence on the behavior of densities of states on the quantum
dot (QD) in the Kondo regime, coupled to leads in which spin
accumulation occurs. In this way spin accumulation modifies
the conductance signal of the dot in relation to the spin-
dependent electrochemical potentials in the leads. The spin
accumulation is found out to be another method of modifying
the behavior of systems with the QD coupled to conductors
apart from the ferromagnetic lead polarization [19–36] and
magnetic field [37–41] effects. Next, we discuss the interplay
of the spin accumulation, magnetic field, and ferromagnetic
leads spin polarization on the Kondo spin-dependent densities
of states, conductance, and resistance. In the presence of the
above-mentioned factors, breaking the spin symmetry leads
to the suppression of the Kondo effect. However, appropriate
tuning of the system parameters can lead to the restoration
of the Kondo effect in the analyzed systems, by mutual com-
pensation of the discussed effects. We will also show that the
description of the QD by the Anderson model in the presence
of spin accumulation can be referred also to the mentioned
Kondo alloys (conductors with magnetic impurities [5]).

II. MODEL

The considered system is schematically shown in Fig. 1.
The system consists of a quantum dot coupled to a source
and drain leads. The spin accumulation in the leads can be
obtained by injection of nonlocal spin currents JL, JR [5,6,12].
The analyzed system setup is similar to the one presented in
Ref. [42].

We model the QD and the Kondo alloy impurity by the
Anderson Hamiltonian:

H =
∑
rkσ

εrkσ c†
rkσ

crkσ + ε0

∑
σ

d†
σ dσ + Ud†

↑d↑d†
↓d↓

+
∑
rkσ

(Vrkσ d†
σ crkσ + V ∗

rkσ c†
rkσ

dσ ) + gμBBSz, (1)
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FIG. 1. The analyzed system setup. The quantum dot (QD) is
coupled to source L and drain R of nonlocal lateral spin valve leads.
The spin accumulation in the leads is obtained by nonlocal spin
currents JL, JR, which results from spin polarized charge currents
IL, IR from ferromagnetic leads F to normal leads. The direction
of the spin current JL(R) and thus the spin accumulation �μL(R) =
μL(R)↑ − μL(R)↓ can be controlled by the direction of the charge
currents IL(R). Arrows in the figure indicate the direction of the spin
current J and the ferromagnetic leads magnetization direction.

where crkσ (c†
rkσ

) is the annihilation (creation) operator for
electrons with momentum k and spin σ =↑,↓ in one of
the two leads, r = {L, R}, and dσ (d†

σ ) is the annihilation
(creation) operator for a σ -spin electron in the QD (impu-
rity), Sz = (d†

↑d↑ − d†
↓d↓)/2, and the last term describes the

Zeeman energy of the dot (impurity), �ε = ε↑ − ε↓ = gμBB,
εσ = ε0 ± gμBB/2. We assume symmetric leads coupling and
neglect the k dependence of the tunnel amplitudes, VLk =
VRk = V . The spin accumulation in a lead r is defined by
the difference between the spin-up and spin-down chemical
potentials, �μr ≡ μr↑ − μr↓, and is expressed in the Fermi
functions:

frσ (ε) = 1

e(ε−μrσ )/kBT + 1
, (2)

by the spin dependent chemical potentials μrσ .
Following Meir and Wingreen’s calculations [43–45], for

the case of proportional couplings to the leads, �Lσ (ω) =
λ�Rσ (ω), we can express the transport current as I = ∑

σ Iσ ,
with:

Iσ = e

h̄

∫
dω

�Lσ (ω)�Rσ (ω)

�Lσ (ω) + �Rσ (ω)
[ fLσ (ω) − fRσ (ω)]ρσ (ω),

(3)

where �L(R)σ = 2π |V |2νL(R)σ ; we assume a flat leads den-
sity of states νL(R)σ (ω) = ν that can be spin dependent for
the ferromagnetic electrode (see Sec. IV), and ρσ (ω) =
−(1/π )ImGret

σ (ω) denotes the quantum dot density of states
(DOS). Without loss of generality, we consider strong
Coulomb interactions (U → ∞), which simplify the retarded
Green’s function to:

Gret
σ (ω) = 1 − 〈nσ̄ 〉

ω − εσ − �0σ (ω) − �1σ (ω)
. (4)

As we will show later, the assumption of infinite Coulomb
interactions has no influence on the considered Kondo
physics, despite the omission of certain details of the sys-
tem. The average occupation of the QD with spin σ can be
expressed as:

〈nσ 〉 = − i

2π

∫
dωG<

σ (ω)

= 1

2π

∫
dω

[−2ImGret
σ (ω)

]
f̄σ (ω), (5)

where G< is the lesser Green function, and f̄σ (ω) is
defined as:

f̄σ (ω) = �Lσ (ω) fLσ (ω) + �Rσ (ω) fRσ (ω)

�Lσ (ω) + �Rσ (ω)
. (6)

The self-energies are given by:

�0σ (ω) =
∑

rk

|V |2
ω − εrkσ + i0+ , (7)

�1σ (ω,�ε̃) =
∑

rk

|V |2 frσ̄ (εrkσ̄ )

ω − σ�ε̃ − εrkσ̄ + ih̄/(2τσ̄ )
. (8)

The above derivation was made using equations of motion
method (EOM), which gives proper Kondo peaks for finite
magnetic fields. The slave boson technique in the noncrossing
approximation does not describe properly the influence of
magnetic fields, when the mean field approximation over-
estimates the magnetic order, especially for large U , since
it neglects quantum fluctuations [44,46,47]. The self-energy
�0σ (ω) Eq. (7) is the exact self-energy of the noninteracting
case [48]. The Kondo peak for spin σ results from the self-
energy �1σ (ω,�ε̃), Eq. (8), due to the virtual intermediate
state related to occupation of the site by the electron with
opposite spin σ̄ . Due to the sharp Fermi surfaces at a low
temperature, Re[�1σ (ω,�ε̃)] grows logarithmically at ω =
μrσ ± �ε̃ generating peaks in the DOS near those energies.

Proceeding as in Ref. [19], we extend the standard deriva-
tion [43–45] and replace in Eq. (8) �ε ≡ ε↑ − ε↓ → �ε̃ ≡
ε̃↑ − ε̃↓, where the energy ε̃σ is calculated self-consistently
using the relation describing the renormalized quantum dot
(impurity) energy:

ε̃σ = εσ + Re(�0σ (ε̃σ ) + �1σ (ε̃σ ,�ε̃)), (9)

where the real part of the denominator of Eq. (4) van-
ishes [4]. This procedure simulates higher-order contributions
and the influence of the renormalization of the dot-level ε̃σ

on spin fluctuations. Similar to Refs. [43–45] we introduce
the spin-dependent lifetime τσ derived by the second-order
perturbation theory:

1

τσ

= 1

h̄

∑
r, r′ = L, R

σ ′

�rσ�r′σ ′(μr′σ ′ − μrσ + ε̃σ − ε̃σ ′ )

× μr′σ ′ − μrσ + ε̃σ − ε̃σ ′

(μrσ − ε̃σ )(μr′σ ′ − ε̃σ ′ )
, (10)

which describes decoherence due to a finite bias voltage
VLR = 1

2e

∑
σ (μLσ − μRσ ), the spin accumulation, or a level

splitting �ε̃, and effectively takes into account the energy
relaxation [49]. The lifetime of the intermediate state, giving
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rise to �1σ (ω,�ε̃), Eq. (8), becomes infinite at the zero-field
and zero-temperature equilibrium, but the true peak in the
DOS has an amplitude corresponding to the unitarity limit.
In the presence of the bias voltage VLR or a magnetic field B,
the intermediate state acquires finite lifetime τσ̄ , which cuts
off the logarithmic divergence of Re[�1σ (ω,�ε̃)] and leads
to the suppression of the peak amplitude [44].

Spin-dependent densities of states on a QD (impurity)
ρσ (ω) are the most important qualities of the model, since
they are the basis to calculate the transmission of the system
in case of coupling of the QD to the leads [Eq. (3)] or the resis-
tivity of the alloys with the magnetic impurities in the linear
response [Eq. (11)]. In the first case the nonlinear response
results from opening of the transport window with the electro-
chemical potentials in which case the corresponding range on
the energy scale of the densities of states includes the Kondo
peaks. These peaks give their contribution to the conductance
of the system in form of distinguishable peaks in the dI/dVLR

signal. The linear response resistivity of the Kondo alloys can
be given by the relation [40]:

R−1 = ne2

2m

∫ [∑
σ

C1ρ
−1
σ (ω)

(
−∂ fσ (ω)

∂ω

)]
dω, (11)

where C1 is a constant dependent on the concentration of the
Kondo impurities. We can apply the above equation despite
nonequilibrium spin accumulation Fermi level spin splitting,
since for each of the spins separately the system remains in
the linear response regime.

III. QUANTUM DOT COUPLED TO NORMAL
ELECTRODE AND ONE WITH SPIN ACCUMULATION

First, we consider the system with a quantum dot coupled
to a normal electrode and one with spin accumulation. In
Fig. 2 we show the DOS for the quantum dots for various
situations. As a reference system we have taken the equilib-
rium case of no spin accumulation [Fig. 2(a)]. In this case
no spin relaxation occurs, as it can also be concluded from
Eq. (10), and the densities of states for both spins are iden-
tical, with Kondo peaks centered at the energy ω = 0. The
presence of the spin accumulation, �μR = 0.2�, in the right
lead causes a splitting of the Kondo peaks for both spins
[Fig. 2(b)]. However, as shown in Refs. [37–41], the magnetic
field yields the shifting of the Kondo resonances [Fig. 2(c)].
Since both the magnetic field and the spin accumulation have
an impact on the position of the Kondo peaks, it is possible
to counterbalance the effect of the spin accumulation by the
properly tuned external magnetic field B [see Fig. 2(d)].

The Kondo peak results from successive spin-flip processes
which effectively screen the local spin on the quantum dot at
zero bias. In accordance with self-energy �1σ [Eq. (8)], in the
electron current transmission process, which is accompanied
by the spin flip process, the overall energy balance must be
maintained, which means that the energy difference for the
spin-flip processes in the quantum dot must correspond to
the energy difference between the Fermi levels with opposite
spins in the electrodes for the initial and final states:

�ε̃ = ε̃↑ − ε̃↓ = gμB(B + Bex(p)) = μL↑ − μR↓
= μR↑ − μL↓, (12)

FIG. 2. Spin-dependent DOS, calculated for quantum dot cou-
pled to: two normal leads [(a), (c)], one normal and one spin
accumulated lead [(b), (d)]. (a) In the absence of Zeeman splitting
B = 0, spin accumulation �μ = 0, (b) gμBB/� = 0, �μR/� = 0.2,
(c) gμBB/� = 0.1, �μ/� = 0, (d) gμBB/� = 0.1, �μR/� = 0.2.
The other parameters are VLR = 0, kBT/� = 0.005, and ε0/� = −2.
Details of the Kondo peaks are shown in the insets. The rect-
angles on both left and right sides of each plot pair represent
spin-dependent chemical potentials μL↑/↓ and μR↑/↓ for left and right
lead, respectively.

where gμBBex(p) = �ε̃ − �ε define the effective exchange
magnetic field due to the presence of the spin polarization
p in the ferromagnetic leads. Occurrence of the zero-bias
anomaly requires the fulfillment of both equalities gμB(B +
Bex(p)) = μL↑ − μR↓ = μR↑ − μL↓. The split Kondo peak in
the conductance is observed when only one equality from
Eq. (12) is fulfilled, namely gμB(B + Bex(p)) = μL↑ − μR↓
or gμB(B + Bex(p)) = μR↑ − μL↓. The above result is inde-
pendent of our assumption of infinite Coulomb interactions,
U → ∞, since the zero-bias anomaly depends solely on the
magnetic field.

Observed effects in the DOS are reflected in the conduc-
tance. In Figs. 3(a)–3(d) we show the differential conductance
(G = dI/dVLR) as a function of the transport voltage VLR.
For normal leads one can observe well-known conduc-
tance maximum at VLR = 0, Fig. 3(a), which is split in the
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FIG. 3. (a)–(d) Total differential conductance (solid lines) and
spin contributions (spin down—dashed lines, spin up—dot-dashed
lines) vs the applied bias voltage eVLR/�, for (a), (c) two nor-
mal leads and (b), (d) one normal and one spin accumulated lead.
(a) Zeeman splitting gμBB/� = 0, the spin accumulation �μr/� =
0, (b) gμBB/� = 0, �μR/� = 0.2, �μL/� = 0, (c) gμBB/� = 0.1,
�μr/� = 0, (d) �μR/� = 0.2, �μL/� = 0, gμBB/� = 0.1 [see
Eq. (12)]. (e) The average spin occupation of the quantum dot 〈nS〉
vs bias voltage, for two normal leads (solid line), one normal and one
spin accumulated lead with B = 0 (dot-dashed line) and gμBB/� =
0.1 (dashed line). The other parameters are kBT/� = 0.005 and
ε0/� = −2.

presence of the external magnetic field [Fig. 3(c)]. Similar
peak splitting can be observed for the system with a single
spin accumulated lead, without magnetic field [Fig. 3(b)]. In
this system zero-bias maximum can be restored by applying
the appropriate magnetic field [see Eq. (12)], gμBB = �μR/2
[Fig. 3(d)]. However, comparing Figs. 3(a) and 3(d), it can be
seen that the zero-bias peak amplitude has decreased for the
system with restored zero-bias maximum, which is a result of
nonequilibrium energy balance for spin up and down between
the left and right leads. The observed effect is also confirmed
in Fig. 3(e), where we show the average spin occupation
of the QD:

〈nS〉 ≡ 〈n↑〉 − 〈n↓〉, (13)

]
h/ e[ 

G
2
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g B =
B

/ 0.3
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0

-0.1

-0.2

0.3-0.3

FIG. 4. Total differential conductance vs the applied bias volt-
age eVLR/� for different magnetic field B, in the system with one
normal and one spin accumulated lead, �μL/� = 0, �μR/� = 0.2,
kBT/� = 0.005, and ε0/� = −2. For the magnetic field satisfying
Eq. (12) one can observe nonsplit Kondo peak at zero bias.

where 〈nσ 〉 is defined by the Eq. (5). For QD coupled to
normal leads 〈nS〉(VLR) = 0, that means full spin symmetry.
As one can observe, the spin accumulation breaks the spin
symmetry, and the properly tuned magnetic field does not
fully recover the spin symmetry in the system. However, re-
covery of the zero-bias conductance peak indicates that some
Kondo correlations are present in the system.

The effect of the magnetic field on the conductance is
shown in Fig. 4. As one can see from the plot, the magnetic
field affects the magnitude of the splitting in the conductance
peaks.

IV. EFFECT OF THE LEAD SPIN POLARIZATION

As shown in Refs. [19–36], effects of magnetic field and
ferromagnetic lead spin polarization on the Kondo effect in
the quantum dot can compensate each other. Therefore, we
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FIG. 5. (a) DOS for spin down (dashed line) and spin up (dot-
dashed line) and (b) the total differential conductance (solid lines)
and spin contributions (spin down—dashed lines, spin up—dot-
dashed lines) vs the applied bias voltage VLR, for a quantum dot
coupled to ferromagnetic and spin accumulated leads, spin polariza-
tion pL = −0.157, pR = 0, �μL/� = 0, �μR/� = 0.2, kBT/� =
0.005, and ε0/� = −2. Details of the Kondo peaks are shown in the
inset.
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FIG. 6. Spin-dependent DOS, calculated for a quantum dot cou-
pled to (a) two normal leads, (b)–(d) two spin accumulated leads,
(b) and (c) with symmetrical spin accumulation �μL = �μR =
0.2�, and (d) antisymmetrical spin accumulation �μL = −�μR =
0.2�. (a), (b), (d) in the absence of the Zeeman splitting B = 0,
(c) Zeeman splitting gμBB/� = 0.2. The other parameters are VLR =
0, kBT/� = 0.005, and ε0/� = −2. Details of the Kondo peaks are
shown in the insets. The rectangles on both left and right sides of
each plot pair represent spin-dependent chemical potentials μL↑/↓
and μR↑/↓ for left and right lead, respectively.

have also examined the influence of the spin polarization
on the studied system. In this case we replaced the normal
left electrode with the ferromagnetic one. The results are
shown in Fig. 5. We define the left lead spin polarization
with pL = (νL↑ − νL↓)/(νL↑ + νL↓). In the presence of the
appropriate spin polarization one can also observe zero-bias
conductance maximum without a spin splitting in the absence
of the external magnetic field, so the Kondo effect can be
restored, however the amplitude of the Kondo peak is de-
creased, since this system is in a nonequilibrium state for
each spin component. A similar analysis was carried out in
Ref. [16], however its authors considered one ferromagnetic
lead with spin accumulation, which due to fast spin relax-
ation times in ferromagnetic materials could be hard to obtain

g B/ =B 0.4

0.3

0.2
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0

0.1

0

�0.1

�0.2

0.0 0.1 0.2-0.2 -0.1
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e[
G

2

0.2

0.4

0.6

0.8

0.2

0.4

0.6]
h/

e[
G

2

(a)

(b)g B/ =B 0.2

FIG. 7. Total differential conductance vs the applied bias volt-
age eVLR/� for different magnetic field B in the system with two
spin accumulated leads, (a) with the symmetrical spin accumulation
�μL = �μR = 0.2� and (b) the antisymmetrical spin accumulation
�μL = −�μR = 0.2�; kBT/� = 0.005 and ε0/� = −2. For mag-
netic field satisfying Eq. (12) one can observe Kondo peaks.

experimentally. Our approach allows for the separation of the
spin accumulation and the spin polarization to different leads.

V. QUANTUM DOT COUPLED TO TWO LEADS
WITH SPIN ACCUMULATION

The second considered system is the QD coupled to
two spin accumulated leads, in two possible configurations:
(i) the symmetrical spin accumulation, �μL = �μR, and
(ii) the antisymmetrical spin accumulation, �μL = −�μR.
In the first case, the spin accumulation does not cause the
splitting of the Kondo peaks; in the spin-dependent DOS for
VLR = 0, however, it causes the spin shifting of the Kondo
peaks [Fig. 6(b)], opposite to the situation from Fig. 2(b).
Similarly to the previously considered system, the effect of
the spin accumulation can be counterbalanced by the magnetic
field, Fig. 6(c), according to Eq. (12). The conductance vs
bias voltage for the different magnetic field values is shown
in Fig. 7(a). Similarly to the previous studied system, Fig. 4,
the magnetic field affects the size of the zero bias anomaly
splitting. In Fig. 8(a), we show the differential conductance for
symmetrical spin accumulation �μL = �μR = 0.2�. As one
can see from Fig. 8(b) the properly tuned magnetic field (we
set gμBB = �μL = �μR to restore zero-bias peak) restores
the zero-bias maximum. However, in this system setup, the
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FIG. 8. Total differential conductance (solid lines) and spin con-
tributions (spin down—dashed lines, spin up—dot-dashed lines) vs
the applied bias voltage VLR, for a quantum dot coupled to two spin
accumulated leads: (a), (b) with the symmetrical spin accumulation
�μL = �μR = 0.2� and (c) the antisymmetrical spin accumu-
lation �μL = −�μR = 0.2�. Zeeman splitting [(a), (c)] B = 0,
(b) gμBB/� = 0.2 [see Eq. (12)]. (d) The average spin occupation
of the quantum dot 〈nS〉 vs bias voltage, for two normal leads (solid
line), for two symmetrically spin accumulated leads, �μL = �μR,
with B = 0 (dot-dashed line) and gμBB/� = 0.2 (dashed line), and
for two antisymmetrically spin accumulated leads, �μL = −�μR,
with B = 0 (dotted line). The other parameters are kBT/� = 0.005
and ε0/� = −2.

peak amplitude remained the same as in Fig. 3(a). This is
a result of conserved energy balance for spin up and down
between left and right electrode. Therefore, for each spin
component separately the system remains in equilibrium. Also
in this case the observed effect is confirmed by the average
spin occupation of the QD 〈nS〉 [see Fig. 8(e)]. The properly
tuned magnetic field, gμBB = �μL = �μR, fully recovers
the SU(2) symmetry, so the strong coupling limit of the Kondo
effect is possible in the system.

In the second considered system, due to the effect of the
antisymmetrical spin accumulation, �μL = −�μR, one can
observe the zero-bias conductance maximum [Fig. 8(c)]. In
the spin-dependent DOS the Kondo peaks are symmetrically
split for both spins, and their position corresponds to leads
chemical potentials [Fig. 6(d)]. Unlike the symmetrical case,
in this system, the spin accumulation affects the amplitude
of the zero-bias anomaly; see Fig. 9(a). As the spin accumu-
lation increases, for the antisymmetric system, the zero bias
anomaly peak height decreases, while for the symmetrical
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FIG. 9. Total differential conductance G for eVLR/� = 0 vs (a)
spin accumulation �μr , for the symmetrical �μL = �μR = �μ

and the antisymmetrical �μL = −�μR = �μ system, (b) spin po-
larization p for system with ferromagnetic leads in antiparallel
configuration pL = −pR = p. Magnetic field for the symmetrical
system gμBB = �μr and for the antisymmetrical and system with
ferromagnetic leads B = 0. The other parameters are kBT/� = 0.005
and ε0/� = −2.

system the peak height is constant (in this case τ−1
σ → 0).

In comparison to the system with two ferromagnetic leads
without spin accumulation in the antiparallel configuration
pL = −pR = p [19], the height of the zero bias anomaly peak
decreases as a function of 1 − p2, which is shown in Fig. 9(b).
Same as before, the zero-bias conductance peak indicates that
some Kondo correlations are present in the system.

For the above-mentioned results the relevant parameter is
the spin relaxation time τs f , which should be longer than
τK = h̄/(kBTK ). For example, as Ref. [7] shows, the spin-flip
time for Cu wire, τs f = 42 ps at 4.2 K, and 11 ps at room tem-
perature. The Kondo temperature for Cu(Fe) wire TK = 30 K,
as shown in Ref. [12], indicating relaxation τK � 10 ps, which
is sufficient for the experimental observation of the discussed
effect.

VI. SPIN CURRENT IN KONDO ALLOYS

The Anderson model can also be used for the description
of the transport properties of the Kondo alloys. In the ex-
periments [5,12], spin current injection into the Kondo alloy
partially cancels the Kondo effect observed as a logarith-
mic increase of resistance with lowering of the temperature.
Also the resistivity of the system is dependent on the current
direction. The authors of these works concluded that the
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FIG. 10. Resistance R vs magnetic field B calculated for
the Kondo impurity in alloy without spin accumulation (solid
lines) and spin accumulated alloy: �μ = 0.2�—dashed lines and
�μ = −0.2�—dotted lines, (a) kBT/� = 0.005 (b) kBT/� = 0.2;
ε0/� = −2.

presence of the local spin accumulation induced by the spin
current was the reason for these effects. We show here in de-
tail how the alloy magnetic impurities, modeled as Anderson
QDs in the presence of spin accumulation, can explain the
mentioned phenomena. In this situation however, the increase
in resistivity instead of conductance increase is observed in
the linear response regime; the Kondo state plays the role of
the scatterer in the electron movement through the metal. The
Kondo peak structure appearing in the calculated resistivity
signal (Fig. 10) according to Eq. (11) is analogous to the
conductance peak appearing for quantum dots. Both spins’
contribution for the total resistivity can be calculated sepa-
rately, so if the spin accumulation occurs in the system, the
peak in resistivity for an unbiased system moves out from the
zero-bias regime, as can be seen in Fig. 10, where the peak
position change is probed by plotting the resistance as a func-
tion of the external magnetic field. The peak position depends
on the value of the spin accumulation due to a dependence of
the Fermi function on the spin accumulation as in Eq. (11).

Similarly, we can analyze the resistance vs spin accumu-
lation dependence; see Fig. 11. In the absence of the external
magnetic field, increasing spin accumulation lowers the re-
sistance value. The magnetic field causes the shift of the
resistance peak, similarly to the previous considered case. The
correctness of our model is confirmed by the experimentally
observed dependence of the spin signal �RS versus current I
in Ref. [12], which is the measure of the spin accumulation

]
u.a[ 

R

2
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8

0.2 0.40.0

/
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FIG. 11. Resistance R vs spin accumulation �μ calculated for
the Kondo impurity in alloy with spin accumulation �μ, for mag-
netic field: B = 0—solid line, gμBB/� = 0.2—dashed line and
gμBB/� = −0.2—dotted line; kBT/� = 0.005; ε0/� = −2.

in the nonlocal lateral spin valve (LSV) geometry. In Fig. 12
we compare our results with those obtained by K. Hamaya
et al. [12]. In the experiment authors measure the spin valve
signal �RS for a Co2FeSi-Cu-Co2FeSi LSV, which depends
on the change in �μ in the host Cu.

VII. CONCLUSION

We studied the influence of the spin accumulation in the
leads on conductance in Kondo systems such as a quantum dot
coupled to (i) one normal and one spin accumulated lead and
(ii) two spin accumulated leads. We developed the theoretical
model of the systems and analyzed its properties, which made
it possible to study the mutual influence of various factors
such as spin accumulation, external magnetic field, and spin
polarization in the case of using ferromagnetic electrodes on
the spin-dependent density of states, and on the electrical
conductivity and resistance for the quantum dot and magnetic
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FIG. 12. Resistance R vs spin accumulation �μ calculated for
the Kondo impurity in alloy with spin accumulation �μ (left and
down axes), and �RS vs current I generating the spin accumulation
(up and right axes) in the LSV (data from Ref. [12]). The other
parameters are B = 0, kBT/� = 0.005, and ε0/� = −2.
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impurity. It has been shown that the presence of these factors
by breaking the spin symmetry leads to the suspension of the
Kondo effect. However, surprisingly, the effects derived from
the above-mentioned factors can, for appropriately selected
parameter values, compensate each other, which may lead to
the restoration of the Kondo effect in the analyzed systems.
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Schön, and J. von Delft, Kondo Effect in the Presence of
Itinerant-Electron Ferromagnetism Studied with the Numerical
Renormalization Group Method, Phys. Rev. Lett. 91, 247202
(2003).

[21] M. Braun, J. König, and J. Martinek, Theory of transport
through quantum-dot spin valves in the weak-coupling regime,
Phys. Rev. B 70, 195345 (2004).

[22] A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose,
L. A. K. Donev, P. L. McEuen, and D. C. Ralph, The kondo ef-
fect in the presence of ferromagnetism, Science 306, 86 (2004).

[23] Y. Utsumi, J. Martinek, G. Schön, H. Imamura, and S.
Maekawa, Nonequilibrium Kondo effect in a quantum dot cou-
pled to ferromagnetic leads, Phys. Rev. B 71, 245116 (2005).

[24] J. Martinek, M. Sindel, L. Borda, J. Barnaś, R. Bulla, J. König,
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