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Non-Hermitian Hubbard model without the sign problem
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We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms
are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum
Monte Carlo simulation is free from the negative sign problem. We analyze the antiferromagnetic order and its
suppression by the non-Hermiticity.
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I. INTRODUCTION

Non-Hermitian quantum systems, that is, quantum sys-
tems whose Hamiltonian is no longer Hermitian due to
interactions with environments or measurements, have been
intensively discussed both theoretically and experimentally in
recent years. Quantum phenomena established in Hermitian
quantum systems, such as topological phases of matter, have
been extended to incorporate the non-Hermiticity (see, e.g.,
Refs. [1,2] for reviews). Most of the previous studies con-
centrated on single-particle physics (including the excitations
around mean fields), and the study of genuine many-body
physics is still in the very early stages [3–7]. In particular,
the development of reliable numerical methods to simulate
non-Hermitian quantum many-body systems is in progress.

Quantum Monte Carlo methods are the most powerful
numerical tools to study the nonperturbative properties of
quantum many-body systems. The expectation values of quan-
tum operators are stochastically evaluated on the basis of the
partition function. The integrand of the partition function must
be semipositive definite; otherwise the negative sign prob-
lem harms the importance sampling. Non-Hermiticity usually
makes the partition function complex and violates the semi-
positivity. This is, however, not always the case. For example,
in the determinant quantum Monte Carlo algorithm [8,9], even
if each fermion has a non-Hermitian matrix and complex-
valued determinant, the complex phase can be canceled
between multicomponents of fermions, and the total partition
function can be semipositive. Such non-Hermitian quantum
systems can be handled in a quantum Monte Carlo study.

In this paper, we study the Fermi-Hubbard model with
non-Hermitian terms. The Hubbard model is the simplest
model to describe the magnetic properties of electrons in
transition metals [10–12]. Despite its simplicity, it exhibits
surprisingly rich phenomena such as the Mott insulator and
antiferromagnetism, and it is also a model of high-temperature
superconductors [13]. The conventional Hubbard model, i.e.,
the one-band nearest-neighbor Hubbard model on a square lat-
tice, is semipositive at half filling, so that the quantum Monte
Carlo simulation has achieved great success [14,15]. We in-

troduce asymmetric hopping terms, which are known in the
Hatano-Nelson model [16,17], to construct a non-Hermitian
version of the Hubbard model [18,19]. Although the non-
Hermitian Hubbard model is not semipositive in general
cases, our model is exceptionally free from the sign problem.

We focus on the effect of the asymmetric hopping terms on
the antiferromagnetic order in the ground state of the Hubbard
model. We utilize two theoretical analyses: the mean-field cal-
culation and the quantum Monte Carlo simulation. First, using
the mean-field calculation, we reveal the mechanism that the
non-Hermiticity suppresses the antiferromagnetic order. Next,
as full nonperturbative analysis, we compute the antiferro-
magnetic structure factor in the determinant quantum Monte
Carlo simulation. The ground state of the non-Hermitian Hub-
bard model can be realized by initially preparing the ground
state of the Hermitian Hubbard model and adiabatically ramp-
ing up the strength of the asymmetric hopping [4]. The method
to observe (the suppression of) the antiferromagnetic order is
the same as that in the Hermitian system.

The rest of the paper is organized as follows. In Sec. II,
we describe our model and discuss the breakdown of the
antiferromagnetism by the non-Hermiticity on the basis of the
mean-field approximation. In Sec. III, we show the result of
the determinant quantum Monte Carlo simulation. Section IV
is devoted to discussion of more general conditions to get the
sign-free non-Hermitian Hamiltonian.

II. NON-HERMITIAN HUBBARD MODEL

We consider a non-Hermitian extension of the Fermi-
Hubbard model; the hopping parameters are imbalanced and
spin dependent. The model Hamiltonian is

H = −
∑

r,i

{
(t + κδix )c†

r cr+ei + (t − κδix )c†
r+ei

cr
}

−
∑

r,i

{
(t − κδix )d†

r dr+ei + (t + κδix )d†
r+ei

dr
}

+
∑

r

U

(
c†

r cr − 1

2

)(
d†

r dr − 1

2

)
. (1)
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There are three parameters: t is the symmetric hopping pa-
rameter, κ is the asymmetric hopping parameter, and U is the
coupling constant of the on-site repulsion. The asymmetric
hopping term breaks the Hermiticity of the Hamiltonian. In
this paper, we consider the two-dimensional square lattice
r = (x, y) and the imbalanced hopping only in the x direction,
while these are generalizable to higher or lower dimensions.

By the continuous Hubbard-Stratonovich transformation,
the Hamiltonian is written as

H = H↑ + H↓ +
∑

r

U

2
s2

r , (2)

with

H↑ = −
∑

r,i

{
(t + κδix )c†

r cr+ei + (t − κδix )c†
r+ei

cr

+ Usr

(
c†

r cr − 1

2

)}
(3)

and

H↓ = −
∑

r,i

{
(t − κδix )d†

r dr+ei + (t + κδix )d†
r+ei

dr

− Usr

(
d†

r dr − 1

2

)}
,

(4)

where sr is the auxiliary field. The Hamiltonians (3) and (4)
are not Hermitian at nonzero κ , so their energy spectra are
complex.

The repulsive Hubbard model exhibits antiferromagnetism.
The generation of the antiferromagnetic order can be analyzed
in the mean-field approximation [13]. The mean field is de-
fined by the staggered magnetization

B = 〈
(−)x+y(c†

r cr − d†
r dr)

〉
. (5)

The single-particle fermion energies are given by

ε↑p = ±
√

4{t (cos px + cos py) + iκ sin px}2 + U 2B2 (6)

and

ε↓p = ±
√

4{t (cos px + cos py) − iκ sin px}2 + U 2B2. (7)

The positive and negative signs are taken for the excited and
ground states, respectively. The dispersion relation of each
spin is complex, but the sum ε↑p + ε↓p is real. The ground
state has the total energy

E = 2Re
∑

p

εp + U

2
B2V (8)

with

εp = −
√

4{t (cos px + cos py) + iκ sin px}2 + U 2B2. (9)

The momentum sum
∑

p is performed only in half of the
Brillouin zone to satisfy half filling. The ground-state en-
ergy is shown in Fig. 1. At κ = 0, these equations reproduce
the famous properties of the Hermitian Hubbard model; the
antiferromagnetic order B �= 0 is energetically favored, and
the fermion spectrum is gapped. When the non-Hermitian
parameter κ is turned on, the solution with B = 0 appears.

FIG. 1. Ground-state energy E as a function of the antiferromag-
netic mean field B. The coupling constant is U/t = 1, and the lattice
volume is V = 82. The solid circles are the minima.

The solution with B �= 0 still exists but becomes metastable. A
discontinuous jump from B �= 0 to B = 0, i.e., the first-order
phase transition, happens at a certain value of κ . Another
curious behavior is the appearance of cusps in the dispersion
relations. These behaviors originate from the non-Hermiticity.
Let us consider the fermion modes with cos px + cos py = 0.
The dispersion relation

εp =
{

−i
√

4κ2 sin2 px − U 2B2
(
B2 < B2

ex

)
−

√
−4κ2 sin2 px + U 2B2

(
B2 > B2

ex

) (10)

turns from pure imaginary to real at the exceptional point
B2

ex ≡ 4κ2 sin2 px/U 2. Typical cases are shown in Fig. 2. The
mode of the momentum (px, py) = (3π/4, π/4) makes the
cusp at B2

ex = 2κ2/U 2 = 0.18t (yellow line) and the mode of
(π/2, π/2) makes the cusp at B2

ex = 4κ2/U 2 = 0.36t (blue
line). Since the imaginary part does not contribute to the total
energy (8), these modes do not favor the nonzero value of B
below the exceptional point. Therefore the antiferromagnetic
order cannot be formed at large κ .

The mean-field analysis predicts that the non-Hermitian
term suppresses the antiferromagnetic order. The prediction
should be verified in full quantum analysis. We do that by the
quantum Monte Carlo method in the next section.

III. QUANTUM MONTE CARLO SIMULATION

We performed the determinant quantum Monte Carlo
simulation [8]. The partition function Z = Tr(e−βH ) is
written in the imaginary-time formalism. By the Suzuki-
Trotter decomposition and the discrete Hubbard-Stratonovich
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FIG. 2. Single-particle fermion energy εp with the momentum
(px, py ). The “total” stands for 2Re

∑
p[εp(B) − εp(0)]/V . The pa-

rameters are U/t = 1, κ/t = 0.3, and V = 82.

transformation [15], it becomes

Z =
∑

{sr(τ )}
tr

∏
τ

e−�τK↑e−V↑(τ )tr
∏
τ

e−�τK↓e−V↓(τ ). (11)

The auxiliary field takes two values sr(τ ) = ±1, and the imag-
inary time is discretized as τ = 0, �τ, . . . , β − �τ . The spin
Hamiltonians are given by

K↑ = −
∑

r,i

(t + κδix )c†
r cr+ei + (t − κδix )c†

r+ei
cr, (12)

K↓ = −
∑

r,i

(t − κδix )d†
r dr+ei + (t + κδix )d†

r+ei
dr (13)

and

V↑(τ ) =
∑

r

λsr(τ )

(
c†

r cr − 1

2

)
, (14)

V↓(τ ) = −
∑

r

λsr(τ )

(
d†

r dr − 1

2

)
, (15)

where cosh λ = eU�τ/2. On a bipartite lattice and at half fill-
ing, the spin-down Hamiltonian can be rewritten as

K↓ = −
∑

r,i

(t + κδix )d†
r dr+ei + (t − κδix )d†

r+ei
dr (16)

and

V↓(τ ) =
∑

r

λsr(τ )

(
d†

r dr − 1

2

)
(17)

by the particle-hole transformation d†
r ↔ (−1)x+ydr. This is

the same as the spin-up Hamiltonian. Therefore the partition
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FIG. 3. Antiferromagnetic structure factor SAF/V as a function of
κ . The positive value of SAF/V in the thermodynamic limit V → ∞
implies the presence of the antiferromagnetic order. The coupling
constant is U/t = 4. The error bars are the statistical errors.

function is equivalent to

Z =
∑

{sr(τ )}

[
tr

∏
τ

e−�τK↑e−V↑(τ )

]2

=
∑

{sr(τ )}
e
∑

τ,r λsr(τ )

[
det

(
1 +

∏
τ

e−�τk↑e−v↑(τ )

)]2

, (18)

where k↑ and v↑ are defined as K↑ = ∑
r,r′ c†

r [k↑]rr′cr′ and
V↑(τ ) = ∑

r,r′ c†
r [v↑(τ )]rr′cr′ − ∑

r λsr(τ )/2, respectively.
The squared form ensures semipositivity because each
determinant is real.

We adopted the stabilization techniques to keep the nu-
merical accuracy during the computation of a long matrix
chain associated with the imaginary-time evolution [15,20].
We fixed the Suzuki-Trotter discretization with �τ = 0.1/t .
The discretization errors are small enough compared with
the statistical errors in the final results. The statistical errors
were estimated by the jackknife method. We computed the
antiferromagnetic structure factor of the ground state

SAF

V
= lim

β→∞

〈[
1

V

∑
r

(−)x+y(c†
r cr − d†

r dr)

]2〉
. (19)

In the mean-field approximation, the structure factor is given
by SAF/V = B2. We performed the simulation at βt = 12,
14, 16, and 20 and then extrapolated to the zero temperature
βt → ∞. The obtained results are shown in Fig. 3. The data
with three lattice volumes V = 82, 102, and 122 are plotted.
To see whether the antiferromagnetic order survives in the
thermodynamic limit, the data were extrapolated to V → ∞
by the linear least-squares fitting of the 1/

√
V dependence

of SAF/V as SAF/V = a + b/
√

V according to the spin-wave
theory [15]. The data point at κ = 0 is consistent with the
known result limV →∞ SAF/V � 0.05 [15]. The presence of
the antiferromagnetic order can be judged by the sign of
limV →∞ SAF/V ; if it is positive, the antiferromagnetic order
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FIG. 4. Antiferromagnetic structure factor SAF/V near the criti-
cal κ . The blue dotted line shows the weighted least-squares linear
fit of the thermodynamic limit V → ∞. The coupling constant is
U/t = 4. The error bars are the statistical errors.

exists, and if it is negative, the antiferromagnetic order does
not exist [15]. We can see that the antiferromagnetic order
disappears with increasing κ . The region near the critical κ

is magnified in Fig. 4. We estimated the critical κ as κc =
0.0317 ± 0.0014 by the linear fit near the transition point,
although the data largely fluctuate. We cannot identify the
reason for the fluctuation, but it could be due to statistical and
systematic errors in the double extrapolation.

We obtained qualitatively consistent results with the
mean-field prediction. Non-Hermiticity destroys the antifer-
romagnetic order. At the quantitative level, the critical value
of κ is largely different between the mean-field and quantum
Monte Carlo calculations. This is not very surprising because
two dimensions are the lowest bound for the phase transition
and the opposite limit to the validity of the mean-field approx-
imation. Our results suggest that the antiferromagnetic order
is more easily destroyed in the full quantum analysis than in
the mean-field analysis.

IV. GENERALIZATION

In this paper, we studied the non-Hermitian Hubbard model
without the sign problem. The model can be extended to other

forms of the Hamiltonian. The total fermion determinant is
semipositive definite as long as two fermion determinants are
complex conjugate. The conjugate pair is generalizable to

H↑ =
∑

r,i

{
Ar,ic

†
r cr+ei + Br,ic

†
r+ei

cr + Cr

(
c†

r cr − 1

2

)}
(20)

and

H↓ =
∑

r,i

{
B∗

r,id
†
r dr+ei + A∗

r,id
†
r+ei

dr + C∗
r

(
d†

r dr − 1

2

)}
.

(21)

The coefficients Ar,i, Br,i, and Cr,i are complex. This general
form, for example, includes the current-current interaction;
the Hubbard-Stratonovich transformation is given by

egJ↑r,iJ↓r,i =
∫

dn e− g
2 n2−gn(J↑r,i+J↓r,i ) (22)

with

J↑r,i = i(c†
r cr+ei − c†

r+ei
cr), (23)

J↓r,i = i(d†
r dr+ei − d†

r+ei
dr). (24)

Combining two conjugate fermions is a standard strategy to
construct sign-problem-free fermion systems. This standard
strategy is well known, and a more general strategy is also
known in lattice quantum chromodynamics [21]. They might
be useful for finding other classes of sign-problem-free non-
Hermitian systems.
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