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Collective electronic excitations in charge density wave systems: The case of CuTe
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The study of neutral electronic excitations directly probed by electron energy loss spectroscopy experiments
allows obtaining important insight about the physical origin of the charge density wave (CDW) transition
in solids. In particular it allows us to disentangle purely phononic mechanisms from the excitonic insulator
scenario which is associated to a purely electronic mechanism. As a matter of fact, while the the loss function
of the excitonic insulators should display negative dispersive features associated to the softening of neutral
electronic excitations at the CDW wave vector above the critical temperature, no softening is expected when
the driving force is purely phononic. Here we perform a microscopic analysis of the dynamical charge response
of CuTe, a material that displays a low-temperature Peierls-like CDW instability. By means of first-principles
time-dependent density functional calculations of the loss function, we characterize the plasmon dispersion along
the different directions, highlighting the role of the intrinsic structural anisotropy and the effects of the crystal
local fields that are responsible for the periodic reappearance of the spectra of the first Brillouin zone as well as
the formation of an acousticlike plasmon. Finally, we demonstrate that also in this system, in analogy with other
materials displaying excitonic insulator instability, the low energy region of the loss function presents negative
dispersive structures at momentum transfer close to the CDW wave vector. This is a feature common to both
excitonic insulator transition and Peierls distortion that further highlights how the difference between the two
mechanisms is at most quantitative.
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I. INTRODUCTION

Charge-density-wave (CDW) states in low-dimensional
electronic systems are among the most actively studied phe-
nomena in condensed matter physics [1,2]. The experimental
consequences of the CDW order include the appearance of
a lattice distortion, the softening of phonon modes, and the
appearance of an excitation gap in the single-particle spec-
trum. An intense debate has been created over the years
about the origin of the CDW phase transition in the different
materials. Several explanations have been put forward: from
purely electronic mechanisms such as Fermi surface nestings
[3], van Hove singularities (saddle points) in the density of
states (DOS) [4], and excitonic effects [5] to electron-phonon
coupling [6,7] and Jahn-Teller distortion [8]. Among them, the
excitonic insulator picture [5] which is tightly linked with the
Bose-Einstein condensation phenomena is probably the most
appealing one. Here due to the attractive electron-hole inter-
action induced by exchange-correlation effects, spontaneous
bound electron-hole pairs (excitons) with a given wave vector
can be formed at zero energy cost if the exciton binding energy
is large enough. Excitons being bosonic like excitations, they
can condensate below a given critical temperature in analogy
with the Cooper pairs in superconductivity. The new ground
state is characterized by a CDW order with periodicity set by
the exciton wave vector and by a change of the electronic
band structure. In addition, the electric field caused by the

CDW in general leads to the displacement of the positive ions
from their ideal equilibrium positions giving rise to a periodic
lattice distortion.

Nevertheless, despite the large efforts in the search of the
excitonic insulator state, a conclusive experimental evidence
for the existence of this phase remains elusive. This hap-
pens because an excitonic insulator is extremely difficult to
disentangle from the Peierls distortion [9] which is character-
ized by the same outcome: a novel ground state with lower
symmetry exhibiting a CDW, a periodic lattice distortion,
and a gap in the electronic band structure. In this case the
CDW order arises from the cooperation between the electron-
phonon coupling and the strong enhancement of the electronic
susceptibility at the CDW wave vector often ascribed to the
Fermi surface nesting. The interplay of the two effects gives
rise to the complete softening of a phonon mode (large Kohn
anomaly) [10] that results in a lattice distortion.

The dynamical charge-density response is a key quantity
for setting the CDW in both excitonic insulator and Peierls
mechanisms, because it provides the renormalization of the
electron-hole and electron-phonon interactions. Thus, its in-
vestigation is of utmost importance for understanding the
electronic properties of CDW systems. Moreover it contains
all the information about the neutral electronic excitations that
are strongly affected by the CDW order. For example, quan-
tum fluctuations associated to the CDW enhance the damping
of the collective excitations (plasmons) and push them to
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higher energy due to the presence of a CDW gap [11]. The dis-
covery of an unusual negative plasmon dispersion in several
CDW materials above the critical temperature drove differ-
ent authors to ascribe this behavior to the CDW instability
[12–14]. This is seemingly in contrast with the common idea
that the softening of low energy incoherent excitations such as
excitons or electron-hole pairs and not plasmons should be a
peculiarity of purely electronically unstable systems (i.e., the
excitonic insulators) [15–19] and is considered as experimen-
tal evidence that allows disentangling the excitonic insulator
from the Peierls transition [18].

In this paper, in order to better understand the relation
between the CDW instability and the dispersion of neutral
electronic excitations, we performed an extensive study of
the charge-density response in CuTe, a material that, as ob-
served in recent angle resolved photoemission spectroscopy
(ARPES) experiments [20], displays a CDW order below
335 K. In particular, first principles density functional theory
(DFT) calculations of the electronic structure and phonon
dispersion demonstrated that the CDW order is induced by
the interplay between electron-phonon coupling and a strong
enhancement of the electronic susceptibility at the CDW wave
vector qN [20,21]. The latter has been ascribed to the presence
of a nested Fermi surface arising from the quasi 1D electronic
structure. All these features suggest that the CDW in this
system is a Peierls-like transition.

Our study reveals that, in general, the plasmon softening is
not related to the CDW instability but that it is a pure band
effect common to both CDW systems as well as materials
that do not display CDW transition. As a matter of fact, the
plasmon dispersion is not only set by the behavior of the
metallic bands involved in the CDW pairing but strongly
depends on high-energy interband transitions [22] that are
weakly affected by the CDW ordering. On the other hand,
the CDW instability is tightly linked with the presence of
negative dispersive structures in the low energy region of
the loss function associated to incoherent excitations such as
excitons or electron-hole pairs. However, this behavior is a
feature common to both the excitonic insulator transition and
the Peierls distortion. Finally, we characterize the plasmon
dispersion along the different crystal directions, highlighting
the role of the intrinsic structural anisotropy and the effect
of the crystal local fields that are responsible for the periodic
reappearance of the spectra of the first Brillouin zone as well
as for the formation of an acousticlike plasmon [23].

This paper is organized as follows: In Sec. II we sum-
marize the computational method while in Sec. III, after
a brief overview of the electronic and structural properties
of CuTe, we will analyze the behavior of the high energy
plasmonic excitations. The last part of this section is fo-
cused on the low energy excitations and their link with the
CDW instability. Finally the last section is devoted to the
conclusions.

II. THEORETICAL FRAMEWORK AND
COMPUTATIONAL DETAILS

In the present work, the key quantity is the loss function
L(q, ω) = −Imε−1

M (q, ω), where q is the momentum transfer,
which can be measured by electron energy loss spectroscopy

(EELS) or inelastic x ray scattering (IXS). The loss function
can be written in terms of the real and imaginary parts of the
macroscopic dielectric function εM = ε1 + iε2:

L(q, ω) = ε2(q, ω)

[ε1(q, ω)]2 + [ε2(q, ω)]2
. (1)

In particular, plasmon resonances correspond to zeros of ε1

where the damping given by ε2 is not too large. On the other
hand, ε2 defines the incoherent part of L. It is associated to
the excitons and to the incoherent superpositions of electron-
hole pairs and dominates the loss function when ε1 is weakly
frequency dependent and very large with respect to ε2.

In the theoretical simulations [24], the macroscopic di-
electric function εM (q, ω) is obtained from the microscopic
dielectric function εG,G′ (qr, ω) as:

εM (qr + G, ω) = 1

ε−1
G,G(qr, ω)

, (2)

where G is a reciprocal-lattice vector and qr belongs to the
first Brillouin zone such that q = qr + G. The microscopic
dielectric function is directly linked to the charge-density re-
sponse function χ :

ε−1
G,G′ (qr, ω) = δG,G′ + vc(qr + G)χG,G′ (qr, ω). (3)

Within linear-response time-dependent density-functional
theory (TDDFT) [25], χ is calculated from the solution of
a Dyson-like equation connecting χ with its independent-
particle counterpart χ0:

χG,G′ (qr, ω) = χ0
G,G′ (qr, ω) +

∑
G1,G2

χ0
G,G1

(qr, ω)

× [
vc(qr + G1)δG1,G2 + f xc

G1,G2
(qr, ω)

]
×χG2,G′ (qr, ω). (4)

Here χ0 is built from ground-state Kohn-Sham (KS) eigenval-
ues εnk and orbitals φnk (with Fermi occupations fnk, volume
� and η → 0+):

χ0
G,G′ (qr, ω) = 1

�

∑
n,n′,k

fnk − fn′k+qr

ω + εnk − εn′k+qr + iη

×〈φnk|e−i(qr+G)·r|φn′k+qr 〉
× 〈φnk|e−i(qr+G′ )·r|φn′k+qr 〉 (5)

and fxc is the TDDFT kernel which has to be approximated.
Setting fxc = 0 corresponds to the random-phase approxima-
tion (RPA).

We calculated the ground state of CuTe using the DFT
framework with the local-density approximation (LDA) for
the exchange-correlation functional [26]. We adopted the ex-
perimental crystal structure from Ref. [20]. We employed the
plane-wave basis approach of the QUANTUM ESPRESSO code
[27] with norm-conserving Vanderbilt pseudopotentials [28].
Ground-state calculations converged with a 140 Ry cutoff.
For the linear-response calculations of the loss functions we
used YAMBO [29] and a 50 × 40 × 20 k-point grid in the
conventional unit cell. We adopted the RPA in all calculations
discussed in the following, since exchange-correlation effects
within the adiabatic local-density approximation to fxc do not
change qualitatively the results.
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FIG. 1. (a) Different views of the crystal structure of CuTe. In
the ball-and-stick representation, brown spheres are Cu atoms and
gray spheres are Te atoms. The black rectangle is the projection
of the unit cell. (b) Band structure in the orthorhombic Brillouin
zone. (c) For the high symmetry k points we follow the notation of
Ref. [20]. The zero of the energy is the Fermi level. (d) Top view of
the Fermi surface in the X -
-Y plane. The dashed lines delimit the
two different regions of the FS associated to heavy holes and light
electrons, respectively.

III. RESULTS AND DISCUSSION

The crystal structure of CuTe [Fig. 1(a)] is formed by slabs
of Te-Cu-Te layers that crystallize in an orthorhombic unit cell
consisting of one formula unit of CuTe. In particular, the Cu
atoms are arranged in a buckled square lattice encapsulated
between two layers of Te atoms which form a rectangular
lattice resulting in a quasi-1D chain structure along the a axis.

The electronic band structure [see Fig. 1(b)] displays three
dispersive bands crossing the Fermi level (metallic bands) that
are weakly hybridized with the other more flat bands below
−2 eV. While these fully occupied flat bands originate mostly
from Cu d states and are responsible for the in-plane Cu-Cu
covalent bonds, the dispersive bands are mainly related to
the p and s states of Te. In particular, the most dispersive
bands labeled with α and β are dominated by Te px (σ bond
along the a axis) and py (π bond along the a axis) states,
respectively. The third band (γ band) presents an spz character
and a higher hybridization with the Cu d states. However, the
hybridization between Te and Cu states is reduced when onsite
interactions for the Cu d states are included [21].

The quasi 1D arrangement of the Te atoms causes a strong
anisotropy in the dispersion of the metallic bands inside the
first Brillouin zone [see Fig. 1(c)]. Indeed, the α and β bands
are highly dispersive along the kx direction with a bandwidth
between 3 and 4 eV along the RT and SY symmetry lines and
weakly dispersive along the ky direction where the bandwidth
is halved. The dispersion is strongly reduced along the kz

direction as a consequence of the layered structure of the
system. The γ band, on the other hand, is characterized by a
weaker dispersion due the higher hybridization with the Cu
d states that are more localized. Interestingly, the α and β

bands lose their quasi-1D character along the 
X line where

FIG. 2. Loss function of CuTe as a function of momentum trans-
fer (x axis in the plot) along the 
Y direction (a) and the 
X direction
(b). The white dashed lines indicate the cuts of the loss function
reported in Fig. 3.

the dispersion becomes similar to that in the ky direction. This
behavior gives rise to a complex Fermi surface (FS) charac-
terized by several branches with different electronic character
[see Fig. 1(d)]. In particular, the FS can be split into two main
regions. The first one with |ky| < k0 (k0 ≈ 2.2 Å−1) involves
all the metallic bands and is characterized by heavy hole
pockets with quasi-2D behavior. The second one, on the other
hand, involves only the α and β bands with |ky| > k0 and is
characterized by light electron sheets with quasi-1D behavior.
This region presents a strong nesting factor at wave vector
qN = 0.78 Å−1 along 
X which has been associated with the
appearance of large Kohn anomalies in the phonon spectra and
plays a key role in the CDW phase transition of the system
[20,21]. In the following we will analyze the implications of
this intriguing electronic structure on the spectra of neutral
electronic excitations.

A. High energy collective excitations

Figure 2 shows the loss function of CuTe as a function
of in-plane momentum transfer q, which can be also directly
measured by electron energy-loss spectroscopy (EELS). The
anisotropy observed in the electronic band structure is re-
flected in the loss function as well. Indeed, while along the 
Y
line [panel (a) in Fig. 2] the spectrum is dominated by a sharp
and nondispersive peak at 2 eV, along the 
X line [panel (b)
in Fig. 2] it is characterized by several features with positive
dispersion. In particular, besides the main structure at 2.5 eV
for q → 0, corresponding to a strongly broadened peak, we
can clearly distinguish two other well defined peaks at lower
energies. The first one has a linear dispersion as a function
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FIG. 3. Real and imaginary parts of the dielectric function and
EELS spectrum evaluated at |q| = 0.15 Å−1 along the 
Y [panel
(a)] and 
X [panel (b)] symmetry lines. The EELS spectra have
been multiplied for a factor 5 × 102. The wave vector |q| = 0.15 Å−1

corresponds to the values 0.20Y and 0.16X along the 
Y and 
X
symmetry lines, respectively.

of q and goes to zero in the optical limit. The second one is
almost nondispersive and becomes visible only at large q.

To gain further insight into the nature of these excitations
we show in Fig. 3 the real (ε1) and imaginary (ε2) part of
the dielectric function. Comparing Fig. 3 and Fig. 2 we can
conclude that the main structures in the loss function are plas-
mon resonances since they correspond to zeros of ε1(q, ω). In
particular, the frequency of the non dispersive plasmon along
the 
Y line is located just above the peak at 0.6 eV in ε2(q, ω)
[see Fig. 3(a)] which is associated with intraband transitions
involving heavy-hole-like states with |ky| < k0. This means
that the sharp peak of the loss function in the 
Y direction
can be interpreted as a collective excitation of the heavy-hole-
like particles with quasi-2D character. In the following, we
will call this excitation “heavy plasmon” (hP). Quite different
is the situation along 
X [see Fig. 3(b)]. Here, besides the
intraband peak at 0.5 eV related to the heavy-hole states,
ε2(q, ω) displays also a more pronounced peak at 1.5 eV. This
feature is associated with the intraband transitions between
the highly dispersive α and β bands in the |ky| > k0 sector of
the first Brillouin zone, which induces two main effects in the
loss function. First, through the Kramers-Kronig relations, it
makes ε1 rise very fast at an energy just above the position
of the first peak in ε2 so that ε1 does not have zeros at lower
energies. As a consequence, the hP is redshifted and strongly
damped by independent electron-hole pair transitions. Sec-
ond, it gives rise to the higher energy plasmon at 2.5 eV.
This feature, which in the following we will refer to as “light
plasmon” (lP), is a collective excitation of the quasi-1D light
particles belonging to the nested region of the FS. Due to its
proximity to higher energy interband transitions involving the
Cu d states, it is strongly coupled with these excitations and
appears as a strongly broadened peak in the loss function. Fi-
nally, the weakly dispersive feature at about 0.6 eV in Fig. 2(b)
is related to dipole forbidden interband transitions between the

.
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FIG. 4. (a) Plasmon dispersion along the 
Y line for the bare hP
of CuTe evaluated in different approximations [i.e., full calculation
(black line), neglecting crystal local fields (red line), obtained from
the JDOS (green line)] and for the HEG plasmon (blue line). The
plasmon energy has been normalized to the energy of the smallest
q. The inset refers to the bare lP along 
X . (b) JDOS(q, ω)/|q|2 in
CuTe (solid lines) and in the HEG (dashed lines). The intensity has
been normalized in order to be the same at the smallest q.

three metallic bands that become visible at large momentum
transfer.

From this analysis, we can conclude that the interplay be-
tween quasi-1D and -2D behavior of the conduction electrons
in CuTe results in the formation of two kinds of collective
excitations namely hP and lP. The latter is visible only along
the 
X line while the former is always visible. However, while
along the 
Y line hP is almost nondispersive, along 
X it
is characterized by a linear dispersion typical of acousticlike
excitations.

In order to disentangle the behavior of the conduction
electrons and understand their role in the measurable EELS
spectra, in the calculations we can artificially suppress the in-
terband transitions. The resulting intrinsic plasmon dispersion
along 
Y is shown in Fig. 4(a) (black circles). Surprisingly,
we find that the hP energy decreases for increasing momentum
transfer, i.e., the dispersion is negative [a similar behavior is
found for the lP along 
X shown in the inset of Fig. 4(a)].
This is in striking contrast with respect to the behavior of the
layered electron gas (LEG) with infinite number of layers that
is often used as a reference system to model collective exci-
tations in layered metallic systems [30]. In this limit the LEG
is also equivalent to the homogeneous electron gas (HEG): In
both cases the plasmon dispersion in the RPA is positive and
parabolic. In the following for simplicity of analysis we will
refer to the HEG only.

This remarkable difference with respect to the HEG has
been found in other experimental and theoretical works on
CDW systems where the unusual negative plasmon dispersion
in the direction of the CDW wave vector has been ascribed to
the quantum fluctuations associated to the CDW instability
[12–14]. However, in the case of CuTe the intrinsic negative
plasmon dispersion is present also in the 
Y direction where
there is no evidence of any instability. This observation rules
out the CDW as possible origin of the plasmon softening
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suggesting that the intrinsic negative plasmon dispersion has
a completely different nature.

The first possibility is the fact that the electronic charge
in CuTe, contrary to the HEG, is spatially inhomogeneous.
Thus crystal local-field effects (LFE), which are related to
induced short-range spatial charge fluctuations [quantified by
the off-diagonal components of the microscopic dielectric
function ε−1

G,G′ in Eq. (3)], may alter considerably the plasmon
dispersion. In Fig. 4(a) we show the intraband plasmon dis-
persion obtained purposely removing the LFE in CuTe (red
circles). By comparing this result with the full calculation
(black circles), we can conclude that LFEs play a minor role
for the in-plane plasmon properties of CuTe and are not able
to change the plasmon dispersion that remains negative.

Therefore the difference with respect to the HEG must
reside in the electronic structure of CuTe itself. To pin down
the reason of the qualitatively different plasmon properties
it is convenient to express ε1 in terms of ε2 through the
Kramers-Kronig relations that in the present case take a sim-
pler structure. Indeed, in the absence of interband transitions,
as in the case of the HEG, ε2 = 0 above the plasmon fre-
quency and thus ε1 satisfies the relation [31]:

ε1(q, ω) = 1 − 2

π

∫ ω

0
dω′ ω

′ε2(q, ω′)
ω2 − ω′2 (6)

which is valid for ω close to ωb
P (ωb

P being the “bare” plas-
mon frequency obtained removing the interband transitions).
The frequencies ωb

P = ωb
P(q) for which ε1(q, ωb

P ) = 0 define
the plasmon dispersion. Moreover, in the HEG ε2 is pro-
portional to the joint density of states (JDOS): ε2(q, ω) ∝
JDOS(q, ω)/|q|2. Here the presence of a wide parabolic en-
ergy band gives rise to a sharp peak in the JDOS with strong
positive dispersion with q [see Fig. 4(b)]. In turn, the integral
in Eq. (6) is an increasing function of q, and the zeros of ε1

are shifted to higher frequencies progressively with q (ε1 < 0
for ω � ωb

P). The resulting plasmon [blue circles in Fig. 4(a)]
has a positive dispersion. A completely different behavior is
found in CuTe. Indeed, in this case the JDOS is strongly
broadened due to the appearance of new features below the
main peak as q increases [see Fig. 4(b)]. They are related
to the transitions between different bands crossing the Fermi
level or different sheets of the FS that are activated at finite q
and are always present as the electronic band structure departs
from the free electron dispersion. The broadening results in a
reduction of the amount of spectral weight transferred to the
high frequency region. Under these conditions, if the main
peak in the JDOS is not dispersive enough, the integral in
Eq. (6) will be a decreasing function of q. This is just what
happens in CuTe. As a matter of fact, using the JDOS of
CuTe in Eq. (6), we can calculate ε1 and its zero crossing that
defines the plasmon frequency when the oscillator-strength
matrix elements (ME) are neglected in Eq. (5). As we can see
from the green circles in Fig. 4(a), the plasmon dispersion is
still negative demonstrating that the intrinsic negative plasmon
dispersion in this system is a pure band structure effect. This
behavior is common to other CDW systems such as metallic
TMDs [31,32] as well as materials that do not display CDW
instability [33] such as doped molecular crystals [34] and
electrides [35]. In other words there is no correlation between

plasmon softening and CDW instability. On the contrary, as
we will discuss in the next section, the quantum fluctuations
of the CDW can be related with the low energy incoherent part
of the EELS spectra.

Finally, the higher energy interband transitions above the
plasmon frequency induce an effective screening on the long
range part of the Coulomb interaction responsible for the
collective excitations [36]. As a consequence, in a first ap-
proximation, their effect on the intraband plasmon can be
modeled through a renormalization of the bare plasmon fre-
quency. Thus the full plasmon frequency becomes: ωP(q) ≈
ωb

P(q)/
√

ε0(q), where ε0 is a background dielectric constant
associated with the interband transitions. Its effect is twofold:
(i) a redshift of the plasmon frequency; (ii) a reduction of
the intrinsic negative plasmon dispersion related to the fact
that ε0 is a decreasing function of q. In particular, due to the
proximity of the interband transitions to the plasmon energy
along the 
X line, screening effects are particularly strong on
the lP so that the slope of its dispersion switches to a positive
value. Along the 
Y line, on the other hand, the screening
is weaker and its effect is to suppress the intrinsic negative
dispersion of the hP without changing its slope. It is important
to note that along the 
X line the hP is screened also in the ab-
sence of interband transitions due to the intraband transitions
between light electron states associated to the α and β bands.
This metallic screening that diverges as 1/|q|2 for q → 0 is
responsible for the linear acousticlike dispersion of the hP
in the optical limit. Acoustic plasmons have been theorized
by Pines [23], who showed that they can occur in a two-
component electron plasma consisting of “slow” and “fast”
carriers. The latter can act to screen the repulsion between
the former, resulting in the appearance of a plasma mode
with a soundlike dispersion. This is, for instance, what has
been proved in MgB2 [37], which has two bands with π (fast
carriers) and σ (slow carriers) character that are metallic or in
other materials such as CaC6 [38], Pb [39], and Pd [40]. In the
present case, the two-component electron plasma consists of
quasi-2D heavy-hole-like states and quasi-1D light-electron
states that play the role of the “slow” and “fast” carriers,
respectively.

Being a layered material, CuTe is expected to exhibit
anisotropic electronic properties along the c axis. To validate
this expectation, we have also calculated the loss function for
momentum transfers q perpendicular to the Te-Cu-Te layers.
Figure 5(a) shows that a low-energy plasmon, corresponding
to the collective excitation of the heavy-hole states, is present
also for the out-of-plane direction at 0.4 eV. It shows almost
no dispersion at all, in analogy with its counterpart along 
Y .
In contrast to the in-plane spectra, where the collective modes
are restricted to a small fraction of momentum space (see
Fig. 2), in this case the plasmon peak is a long-lived feature
that remains visible also for q well beyond the first Brillouin
zone. However, in the spectra calculated without LFE [see
Fig. 5(b)] the plasmon peak fades away already within the first
Brillouin zone. We hence realize that the long-lived character
of the plasmon is a direct consequence of the strong LFE due
to the strong charge inhomogeneities normal to the layers.
It is a distinctive feature that plasmons in different layered
materials like MgB2 [41], graphite [42], TMDs [31,32], and
electrides [35] all have in common. The mechanism behind
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FIG. 5. Loss function of CuTe as a function of momentum trans-
fer (x axis in the plot) along the 
Z direction up to third Brillouin
zone calculated (a) with and (b) without local fields.

the reappearance of the first-Brillouin-zone spectra at larger
momentum transfers can be explained within a two-plasmon-
band model [43]. As a matter of fact, off-diagonal elements
of the dielectric matrix, i.e., LFE, are responsible for the cou-
pling between independent electron-hole excitations at large q
and the first-Brillouin-zone plasmon, inducing its persistence
in the spectra also in other Brillouin zones.

B. Low energy excitations and their link
with the CDW instability

So far we analyzed the behavior of the collective plasmonic
excitations of CuTe demonstrating that there is not a direct
link between the plasmon dispersion and the CDW instability.
However, previous studies pointed out that, even though the
driving force of the CDW phase transition is the electron-
phonon interaction, also the electron-electron scattering by FS
nesting of the quasi-1D Te p orbitals plays a key role in the
phonon softening.

Therefore, a natural question arises: What is the effect of
these scattering processes on the spectra of neutral electronic
excitations? To answer this question, in the following we will
focus on the low energy region of the loss function where the
spectrum is dominated by transitions among the three metallic
bands involved in the CDW pairing.

Figure 6 shows the low energy region of the loss function
along the 
X symmetry line for different values of the mo-
mentum transfer around qN . At small q, above 0.1 eV, the
spectra do not show any structure. However, as the momentum
transfer approaches the nesting qN = 0.78 Å−1, a shoulder
appears at 0.32 eV and remains visible up to q ≈ qN . Since
in this energy region ε1 is almost frequency independent, the

. . . . .

FIG. 6. Low energy region of the loss function for different val-
ues of the momentum transfer around qN in the 
X direction. The
red arrow indicates the position of the shoulder. Each curve has a
vertical offset for clarity reasons.

different features of the loss function are directly related to the
peaks of ε2 that define the incoherent part of the EELS spectra
[see Eq. (1)]. Thus, the nature of the shoulder can be directly
understood by analyzing the structure of the imaginary part
of the dielectric function. In Fig. 7(a), indeed, the shoulder is
clearly visible in ε2 as well. It is located below the main peak
at 0.6 eV that is related to the interband transitions between
metallic bands which are responsible for the appearance of
a non dispersive feature in the loss function at large q [see
Fig. 2(b)].

From the decomposition of ε2 into the different contribu-
tions arising from the three metallic bands, we can conclude
that the shoulder is related to the electron-hole pairs belonging

. . . . . .

FIG. 7. Imaginary part of the dielectric function evaluated at
q = 0.74 Å−1 (a) and q = 0.51 Å−1 (b). The gray region defines the
full spectrum while the red line is the contribution from intraband
transitions of the α and β bands. The blue line is the remaining
contribution.
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. . . . . .

FIG. 8. Real part of the static Lindhard function as a function
of the momentum transfer along 
X (a) and imaginary part of the
dynamical Lindhard function for different values of the momentum
transfer along 
X for the α (b) and β (c) bands.

to the nested bands α and β [red curve in Fig. 7(a)]. Moreover,
at smaller q [see Fig. 7(b)] the contribution of these bands
is blueshifted and results hidden by the dominant peak. As a
consequence the shoulder disappears. This demonstrates that
the appearance of the shoulder in the loss function at large q
is due to the progressive redshift of a peak in ε2 associated to
neutral excitations involving the nested bands. This behavior
does not change when both ME and crystal LFE are neglected
in the calculation of ε2 suggesting that it is a pure band effect.
In the following we will show that this behavior is tightly
linked with the CDW instability.

In a simplified independent particle picture, the CDW tran-
sition can be understood in terms of the Lindhard function
χ0 evaluated in the static limit (ω → 0). In our computational
framework it can be directly obtained neglecting the ME in
Eq. (5). In particular, the imaginary part of χ0 (χ ′′

0 ) reflects the
FS topology and allows one to quantify the FS nesting through
the evaluation of the nesting factor at a given q (i.e., the
quantity limω→0 χ ′′

0 (q, ω)/ω), while the real part (χ ′
0) gives

information about the stability of the system (i.e., a divergence
of χ ′

0 at some q could result in the formation of a CDW). For
both quasi-1D bands α and β, χ ′

0(q, ω = 0) displays peaks
for 0.6 Å−1 < q < 0.8 Å−1 [see Fig. 8(a)]. The strongest one
occurs at q ≈ qN (i.e., in proximity of a peak in the nesting
factor) for the α band and for this reason it has been ascribed
to the FS nesting.

Moreover, as shown in Refs. [20,21], it is responsible for
the appearance of large Kohn anomalies in the phonon band
structure. Interestingly, as we can infer from Fig. 8(b), the
progressive increase of χ ′

0(q, ω = 0) as q → qN is accompa-
nied by the redshift (or softening) of peaks in the spectrum
of χ ′′

0 (q, ω) which is associated to the presence of high den-
sity electron-hole pairs whose energy decreases as their wave
vector approaches qN . This is the physical origin of the shoul-
der observed in ε2. Indeed, when ME and crystal LFE are
neglected, ε2(q, ω) = − 4π

|q|2 χ
′′
0 (q, ω).

The correlation between the behavior of χ ′
0 and the neutral

excitations can be understood expressing χ ′
0 in terms of χ ′′

0

through the Kramers-Kronig relation:

χ ′
0(q, ω = 0) = 2

π

∫ ∞

0

χ ′′
0 (q, ω′)

ω′ dω′. (7)

As pointed out also in Refs. [6,7], the behavior of χ ′
0(q, ω =

0) is set not only by the nesting factor but also by the whole
spectrum of χ ′′

0 . In general, a negative dispersive peak in
χ ′′

0 (q, ω) causes a transfer of spectral weight to lower frequen-
cies and will result in an enhancement of χ ′

0(q, ω = 0). Thus,
a peak in χ ′

0 at some q should be associated to both Kohn
anomalies in the phonon spectra as well as to the presence
of high density electron-hole pairs whose energy decreases
as their wave vector approaches q. These excitations give
rise to negative dispersive features in the incoherent part of
the EELS spectra. In particular, when the energy of these
excitations goes to zero, χ ′′

0 (q, ω = 0) takes a finite value and
χ ′

0(q, ω = 0) diverges. This is just what happens in the case
of the 1D electron gas that in an independent particle picture
is electronically unstable.

It is important to note that in an interacting system an
electronic instability corresponds to a divergence of the the
real part of the full charge-charge response function χ ′ instead
of χ ′

0. This means that the system is characterized by peaks
in χ ′′ (i.e., neutral excitations related to the superposition of
interacting electron-hole pairs) that soften at a given wave
vector. In principle, being χ ′ bound by the Coulomb potential
[see Eq. (4)], it could remain finite even if χ ′

0 diverges. In
other words, in real materials the complete softening of a
finite number of neutral electronic excitations is prevented by
the repulsive Coulomb potential. Under these conditions the
system is electronically stable even if χ ′

0 diverges or presents
a strong peak at some q and the electron-phonon interac-
tion plays a key role in setting the CDW phase transition
also called Peierls distortion. Moreover, the enhancement of
χ ′

0(q, ω = 0) is directly linked to the appearance of peaks in
the low energy region of the loss function. This is just the
case of CuTe. However, in the alternative scenario namely
excitonic insulator, exchange-correlation effects beyond the
RPA could induce a complete softening of electronic excita-
tions at some q. These excitations are associated to a peak
in the low energy region of the loss function characterized
by negative dispersion whose energy goes to zero at wave
vector close to q [14,18]. In this case χ ′ diverges and the
CDW is stabilized also without electron-phonon interaction.
Our study suggests that the presence of negative dispersive
peaks in the low energy region of the loss function is a feature
common to both mechanisms. The difference is actually only
quantitative. While in the excitonic insulator the energy of
the negative dispersive peak goes to zero at the CDW wave
vector, in the Peierls distortion it reaches a finite value and the
system is electronically stable in absence of electron-phonon
interaction.

IV. CONCLUSIONS

In summary, we performed an extensive study of neutral
electronic excitations in CuTe through first-principles calcu-
lation of the loss function. We have shown that the intrinsic
negative plasmon dispersion in this material is a pure band
effect common to other CDW systems as well as to systems
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that do not display CDW order. This behavior can occur when
the electronic band structure departs from that of the homoge-
neous electron gas as a consequence of the confinement of the
electronic wave functions and multiband effects. Therefore
there is no correlation between plasmon softening and CDW
instability. On the other hand, the CDW instability is tightly
linked with the presence of negative dispersive structures in
the incoherent part of the loss function involving incoher-
ent electron-hole pairs superpositions such as excitons and
resonant excitations that occur together with the phonon soft-
ening. This is a feature common to both excitonic insulators
and Peierls unstable systems that further highlight how the
difference between the two scenarios is at most quantitative
[17,44,45]. While in the excitonic insulator the energy of
the negative dispersive peak goes to zero at the CDW wave
vector, in the Peierls distortion it reaches a finite value. This
different quantitative behavior can be used to disentangle the
two mechanisms.

In addition, we predicted the existence of an acoustic plas-
mon for momentum transfer along the 
X symmetry line.
This is a peculiarity of CuTe and is related to the coexistence
of electronic states with quasi-2D and quasi-1D character that
behave as “slow” and “fast” carriers, respectively. According
to Pines’ theory [23], the latter screen the repulsion between
the former, resulting in the appearance of a plasmon mode
with a soundlike dispersion. Finally, we have predicted the
plasmon dispersion along the direction perpendicular to the
layers, with the reappearance around Bragg reflections of the
plasmon of the first Brillouin zone.
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