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In this work, we theoretically study transverse magnetic focusing in a two-dimensional electron gas with strong
Rashba spin-orbit interaction when proximitized along its edge with a superconducting contact. The presence
of superconducting correlations leads to the emergence of chiral Andreev edge states which—within this weak
magnetic field regime—may be pictured as states following semiclassical skipping orbits with an alternating
electron-hole nature. The spin-orbit-induced splitting of the Fermi surface causes these carriers to move along
cyclotron orbits with different radii, allowing for their spatial spin separation. When Andreev reflection takes
place at the superconducting lead, scattered carriers flip both their charge and spin, generating distinguishable
features in the transport properties of the device. In particular, we report a notable enhancement of the separation
between the spin-split focal points, which scales linearly with the number of Andreev scattering events at the
anomalous terminal. We support our results by calculating conductance maps to arbitrary points in the sample
that provide a complete image of the ballistic electron-hole cyclotron paths.
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I. INTRODUCTION

Chiral Andreev edge states are one-way hybrid electron-
hole modes that propagate along the interface of a Hall sample
and a superconductor (SC) but remain bounded in the per-
pendicular direction due to both the magnetic field and the
superconducting gap confinement. The hybrid nature of this
distinctive type of edge state is rooted in the proximity effect:
the conventional edge states living at the boundary of the
Hall region acquire superconducting correlations via succes-
sive Andreev reflections at the interface with the anomalous
contact [1-3], ultimately leading to a coherent superposition
of propagating modes with opposite charges. Since backscat-
tering is not allowed, the carriers circulate chirally in the
direction determined by the external magnetic field.

Transparent interfaces between superconducting alloys and
samples in the Hall regime are now within experimental reach
[4-9], providing the condensed-matter community with an
exciting playground for probing transport phenomena oc-
curring along the boundary of these two phases of matter.
Indeed, interference of chiral Andreev edge states in the quan-
tum Hall (QH) regime has just been reported [10]. Several
theoretical studies have focused on the large magnetic field
limit—more specifically, on the mechanisms by means of
which an edge-mediated current may flow in a SC-QH-SC
Josephson junction with only one filled Landau level [11-16].
Substantial experimental advances have also been made in this
direction [17-20].

On the other hand, weak magnetic field regimes with
large filling fractions have been scarcely analyzed [21-23].
Within this range of fields, the semiclassical skipping orbits of
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electronic and holelike states have only recently been imaged
in a magnetic focusing setup in Ref. [24]. By using scanning
gate microscopy techniques [25], the Andreev-reflected carri-
ers have been successfully detected while following ballistic
cyclotron paths in a graphene sample. In this work, we pose
the question of what would happen if such magnetic focusing
experiments were to be performed in two-dimensional elec-
tron gases (2DEGs) with significant spin orbit (SO) coupling,
like the ones used in Refs. [4,7,9]. These experiments consist
of the injection of electrons into a 2DEG through a voltage-
biased contact. In the presence of a small magnetic field, the
carriers follow a skipping orbit trajectory which is essentially
determined by the shape of the Fermi surface, eventually
focusing at certain points along the edge [26,27]. By tuning
the magnetic field, the focal distance can be adjusted to match
the one of a detector lead. In this way, the collected carriers
give rise to an abrupt change in the conductance between the
two aforementioned contacts or the appearance of a voltage
[28,29]. Transverse magnetic focusing in SO-coupled systems
has been a useful technique to study spatial spin separation
in mesoscopic devices [30-34]. It is well known that the
presence of two spin-split Fermi surfaces leads to the exis-
tence of two different cyclotron paths, which translates into
a splitting of the focusing spectrum [35-39]. We here re-
port how this well-established phenomenon is modified when
allowing carriers to Andreev reflect at an intermediate ex-
tended superconducting terminal as depicted in Fig. 1. To this
end, we perform numerical simulations of the conductance
between the injector lead I and the collector lead C as a func-
tion of the external magnetic field. The focusing peaks show
clear signatures of Andreev reflection at the superconducting
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FIG. 1. Illustration of the geometry used to study the transverse
magnetic focusing. Two normal contacts (green), the injector lead
1 and the collector lead C, are attached to the bottom of a ribbon
(gray) of width W which is subjected to an external magnetic field
B = —Bz. These terminals are at a fixed distance L from each other.
A third superconducting terminal (SC) with a nonvanishing order
parameter A (blue) is placed in between the two normal contacts.

terminal. On the one hand, the sign of the conductance reveals
if the arriving particle is an electron or a hole, a fact which de-
pends on the number of bounces at the anomalous lead. More
interestingly, we notice that the Andreev-scattered particles
preserve their cyclotron radius due to the mixing of electronic
and hole states with opposite spins, making the spin-splitting
of the focusing peaks enhanced with respect to a conventional
focusing experiment.

The work is organized as follows. In Sec. II we present
the Hamiltonian model for the 2DEG, the normal and su-
perconducting leads along with their discretized tight-binding
version. In Sec. III we present the numerical results of the
conductance between the two normal leads as a function of
the external magnetic field, the strength of the spin-orbit in-
teraction, and the transparency between the 2DEG and the
superconducting terminal. To better illustrate our findings we
also show color maps of the electron and hole transmissions
to arbitrary points in the sample. This allows for a complete
imaging of the chiral Andreev semiclassical edge states. Fi-
nally, in Sec. IV we present a summary of our main results
and some concluding remarks.

II. MODEL HAMILTONIAN

The Hamiltonian of a 2DEG with Rashba spin-orbit inter-
action is given by
N nn an o 1
A = 5 (I + 1) + = (Lo — y0,) — Zgupo:B, (1)

2m*
where f[,, = p, +eA,/c with p, being the momentum and
A, the vector potential along the n direction, m* stands for
the effective mass, and o stands for the Rashba coupling
parameter. The Pauli matrices {c,} act in the spin space. The
magnetic field threading the sample is given by B = —BZ and
g is the effective gyromagnetic factor. We assume throughout
the work that the range of magnetic fields is such that B < B,,
with B, being the critical field of the superconducting termi-
nal. The numerical simulations are carried out performing a
space discretization of the model, so that the tight-binding
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Here ¢}, creates an electron at the 2DEG’s site r = x& +

yy with spin o, ay is the lattice spacing, &, =4t — u —
ogugB/2,t = h2/2m*a(2), A=a/2ay, = —Ba(z) is the flux
per plaquette, and &y = hc/e is the normal flux quantum. The
orbital effect of the magnetic field is included via the Peierls
substitution. We have used a Landau gauge where the vector
potential A = Byx. The two lateral normal contacts I and C are
described by narrow stripes of N sites with, for simplicity, no
spin-orbit coupling (o« = 0). We choose to gate voltage these
terminals so that they will have a single active channel at the
Fermi level. The superconducting terminal is modeled as a
square lattice with a Hamiltonian given by
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where s1 creates an electron at the superconductor’s site r
with spln a and a local pairing potential A has been included
to simulate superconductivity. The end sites of this terminal
are coupled with the 2DEG with a tunneling matrix element
y = t unless otherwise stated. From now on we choose ag = 5
nm and m* = 0.055 my, with mg being the electron mass. The
superconducting gap is taken to be A = 1 meV. Regarding the
geometry, we selected the normal leads to have Ny = 21 sites
with a fixed distance between each other of L = 249a,. The
superconducting terminal has N; = 190 sites and is placed
symmetrically in between the injector and the collector leads.
When applying a bias voltage in the injector lead I while
leaving the rest of the system to ground, the conductance
between I and the collector lead C can be obtained as

2
e
G=— Z (TS0 = Thoeo'): Q)
where
1S, = TrS6 T, 67, ©)
Thfr eoc’ — Tr[rfirgrréa’ga]‘ (7)

Here T/, (Thi’ .,) is the transmission coefficient of an elec-
tron with spin ¢’ from lead I as an electron (hole) of spin ¢ to
lead C and G" (G?) is the retarded (advanced) Green’s function

of the sample. We used a Bogoliubov—de Gennes spinor basis
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as a way of keeping track of electronic, hole, and spin sectors,
so that the spatial elements of the retarded propagator are
written as

G (w)=—i f d(t — 10t — 1) (W, 1), ¥, 1)),

®)
with Uf(r, 1) = (c:’ 1 c:’ LGy _Cr,T)' The elements of the
advanced Green’s function may be obtained in a similar fash-
ion. The coupling matrices of each lead m =1 and C are
defined as I'" = i(X;, — X)), where X, and X are the re-
tarded and advanced self-energies of the mth terminal [40]. All
these frequency-dependent quantities are evaluated at v = 0
(in our formulation, the Fermi energy scale is given by pu,
which we choose to be & = 20 meV).

The calculations are performed by considering the 2DEG
to be an infinite ribbon of width W = 500ay, so that the prop-
agators of the system without contacts can be calculated by
Fourier transforming along the x direction. The self-energies
of the normal and superconducting leads are then simply
included by using the Dyson equation of motion.

III. NUMERICAL RESULTS

We show in Fig. 2 the conductance G as obtained from
Eq. (5) for different values of the spin-orbit coupling. For
o = 0 [Fig. 2(a)], a series of equidistant peaks with alternating
signs can be appreciated. A simple semiclassical picture ex-
plains this behavior: a well-defined peak develops whenever
the condition 2ryN = L holds, with ry being the cyclotron
radius and N an integer that labels the peak number. Recall
that within this setup normal incidence along the edge is
ensured, making the skipping orbits to be well described by
semicircles: the collector lead matches a focal point whenever
its distance from the injecting contact (L) becomes commen-
surate with the diameter of the orbit (2ry). For an odd N, there
are zero or an even number of bounces at the superconducting
lead along the ballistic path, resulting in a positive (electron-
like) conductance. Conversely, the even peaks are dominated
by a holelike transmission caused by an odd number of An-
dreev reflections at the superconductor, leading to a negative
depletion of the conductance. In the experiment of Ref. [24],
the first two peaks of Fig. 2(a) were successfully detected.
The cyclotron radius can be obtained as ry = vp/w,., with
vp = +/2//m* being the Fermi velocity and w, = eB/m*c the
cyclotron frequency. With the parameters chosen in Sec. I,
this would lead to a positive (odd N) or negative (even N)
enhancement of the conductance at BN) = NB, with By ~
0.09 T, in good agreement with the numerical data. The width
of the peaks reflects how sensitive the focusing condition is to
the magnetic field: since the cyclotron radius is proportional
to B~!, as B grows larger, larger variations of its magnitude
are allowed while preserving the focusing of a finite-size
beam into a finite-size contact. As a matter of fact, the width
of the peaks scales linearly with the magnetic field due the
particular power-law dependence of the cyclotron radius with
the magnetic field.

As the spin-orbit coupling « is increased [Figs. 2(b) and
2(c)], all the focusing peaks split in two. Notably, the splitting
increases linearly with the peak number as AB® = NAB",
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FIG. 2. Conductance between the injector lead I and the collector
lead C as obtained from Eq. (5) as a function of the external magnetic
field. The parameters are the ones described in Sec. II. In panel (a),
a = 0; in panel (b), « = 10 meV nm; and in panel (¢), @ = 20 meV
nm.

with AB) being the splitting of the first peak. This stands
in contrast with the well-known conductance spectra of fo-
cusing setups without superconducting terminals, where the
odd peaks are expected to be split while the even ones are not
[30,35]. To better understand these phenomena, it is useful
to bear in mind the spin texture of the Fermi surface defined
by Eq. (1). With large filling fractions and negligible Zeeman
splitting, the eigenfunctions at a given energy have their spin
lying in the x-y plane as depicted in the right side of Fig. 3. The
two disconnected parts of the Fermi surface are characterized
by the wave vectors

2um*
ki = \/7 +

In real space, this leads to different classical orbit radii
[35-39] coexisting within the same energy,

2
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(8) Normal scattering

FIG. 3. (a) Semiclassical trajectories with normal scattering at
the edge of the sample. On the right-hand side we show the Fermi
surface of the 2DEG with Rashba spin-orbit coupling and negligible
Zeeman splitting. The arrows indicate the in-plane spin alignment
of the eigenfunctions of Eq. (1) in the semiclassical limit. We part-
ner the equal-spin electron pairs (solid and dashed circles) that are
involved in a normal scattering event at the edge of the sample.
(b) Semiclassical trajectories with Andreev reflection at an inter-
mediate superconducting terminal (green slice). Red curves indicate
electronlike carriers, while the blue ones are holelike. On the right-
hand side we partner the Cooper pairs on the Fermi surface that
are transferred at each Andreev scattering event. The hollow circles
indicate the spin of the missing carrier which is left behind as a
holelike excitation.

which are correspondingly associated with the two cyclotron
trajectories O illustrated on the left side of Fig. 3(a). Here
lp = +/hc/eB stands for the magnetic length. The spin texture
suggests that, in an adiabatic picture, an electron injected at
lead I with positive momentum along the y axis and spin along
the positive (negative) X direction would undergo a precession
which is well described by the O_ (O,) path, eventually
reaching the edge of the sample with its spin pointing along
—X (%). The first two conductance maximums indicated in
Fig. 2(c) as B{ and B are obtained when the magnetic field is
respectively tuned in such a way that 2r_ = L and 2r, =L,
so that electrons are adequately collected at the C collector
without intermediate scattering events. Their splitting is then
determined by

m*c

Lhe

2hc
ABY =B — B¢ = "~ (k, —k_) =4—a. (11)

el
For the parameters of Fig. 2(c), the above expression leads to
ABW = 17 mT, correctly capturing the splitting observed in
the numerical simulation. If during the ballistic path normal
scattering takes place at the edge of the sample, the two orbits
O_ and O mix due to spin conservation: scattered electrons
can only be reflected to their equal-spin partner, correspond-
ingly encircled on the right side of Fig. 3(a) with solid or
dashed lines. Such spin-preserving scattering gives rise to a
skipping trajectory along the edge where states with a large
orbital radius are reflected onto states with a small orbital
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FIG. 4. Partial contributions of the electron and hole transmis-
sions that dominate the conductance of Fig. 2(c). Here the spin
quantization axis is taken along the % direction. The transmission
coefficients are obtained from Egs. (6) and (7).

radius and vice versa, as shown on the left side of Fig. 3(a).
This effect ultimately leads to a unique unpolarized second
focusing peak in conventional magnetic focusing experiments
[35]. On the other hand, when a superconducting lead is at-
tached halfway between the lateral normal contacts, Andreev
reflection takes place at the edge of the sample. As illustrated
in Fig. 3(b), Andreev-scattered carriers bear not only an oppo-
site charge but also an opposite spin, so that a singlet Cooper
pair is transferred between the sample and the superconductor
at each bounce. As sketched with the encircled pairs on the
right-hand side of Fig. 3(b), the superconducting terminal
takes the incident electron and another one with opposite spin
and quasimomentum so that the corresponding holelike exci-
tation which is left behind follows the motion of the missing
electron. Interestingly, an injected electron with a given spin
along the X direction will then follow a cyclotron motion with
alternating electron-hole character, but with a well-defined
cyclotron radius on account of the conservation of the band
index +£. This eventually produces an enhanced separation
of the subsequent peaks in the conductance spectra. In par-
ticular, the illustration of Fig. 3(b) represents the condition
4r_ = L where the conductance reaches the first minimum at
Bﬁ‘ [see Fig. 2(c)]. Within this picture, it is clearly seen that
the separation between the first and the second holelike dips
AB® = B! — B will be twice AB). With each additional
Andreev scattering event at the superconductor, the relative
path difference between the O, and the O_ trajectories gets
linearly increased, explaining the amplified splitting observed
in Fig. 2(c).

In Fig. 4, we show the partial contributions that dominate
the conductance of Fig. 2(c), namely, the electron-electron and
electron-hole transmission coefficients [see Eqgs. (6) and (7)]
that involve a spin flip along the ¥ direction. These results are
consistent with the semiclassical picture discussed above: the
first and second electronic peaks are almost entirely polarized
along the negative and positive x axis, respectively, a clear
manifestation of the spin rotation effect induced by the cou-
pling of spin and momenta along the cyclotron motion. The
second pair of holelike dips can be understood as the outcome
of one electronic and one holelike spin rotation connected
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FIG. 5. Density plots of different transmission coefficients from the injector lead I to arbitrary points in the 2DEG. The color scale is in
arbitrary units, with red being a positive conductance and blue a negative one. The spin-orbit coupling parameter is taken to be « = 20 nm eV
as in Fig. 2(c). In panels I(a)-1(c), the magnetic field is chosen to be B! = 0.179 T, and in panels Il(a)-1I(c), B = 0.268 T. In panels I(a) and

II(a), we show the electron-electron contribution to the conductance (Zaa, T

,), and in panels I(b) and II(b), we show the electron-hole

eo,eo

transmission with its corresponding sign (— >, 7,7, ). In panels I(c) and II(c), the total conductance is shown. The position of the injector
lead I is delimited with a brown line and the region where the superconducting terminal is attached is indicated with a black one. Dashed and
solid lines indicate the expected semiclassical orbits with a small or a large radius, respectively.

by an intermediate Andreev reflection [see Fig. 3(b)]. The
collected positively charged carriers will then arrive with a
spin which is reversed relative to the one of the negatively
charged injected carriers. Due to the linear amplification of
the splitting, the peaks begin to overlap at larger magnetic
fields. It is also possible to appreciate that, as the magnetic
field grows larger, the contributions that involve a spin-flip fail
to explain the entire line shape of the conductance. Indeed,
there are equal-spin partial contributions (7./,, and Thg’ o)
that become significant and cannot be explained within our
adiabatic picture where the spin is assumed to be aligned or
antialigned with the Rashba spin-orbit field. The additional
structure can be attributed to the effect of the spin precession
around this local field [37], which leads to a less trivial dy-
namics allowing the carriers to Andreev reflect changing their
orbital radius.

To better illustrate our findings, we remove the collector
contact C and calculate the conductance to an arbitrary point
r in the sample (where an auxiliary grounded, weakly coupled
lead is added). In this way, it is possible to build up a complete
image of the ballistic electron-hole cyclotron orbits. We have
chosen to work with a large spin-orbit-coupling parameter,
a =20 nm eV, for the sake of a better visualization of the
effect. In Fig. 5 we show these conductance maps for two
focusing fields: B’{ =0.179 T [panels I(a)-I(c)] and B§ =
0.268 T [panels II(a)-II(c)]. In panels I(a) and II(a), we show
only the electron-electron transmission (", 7!, ), and in
panels I(b) and II(b), we show the electron-hole transmis-
sion with its corresponding sign (—Y ., 77 ). The total
conductance is presented in panels I(c) and II(c). The region
where the superconducting lead is attached is indicated with

a black line on the x axis while the injector lead I is delim-
ited with a brown one. The two cyclotron radii r+ can be
clearly observed for both magnetic fields. The expected semi-
classical trajectories associated with each orbit are indicated
with dashed (small radius) and solid (large radius) lines. The
identification of the magnetic fields B and B as focusing
fields is now straightforward to understand: for both of them
the Andreev edge state trajectory focuses (as a hole or as an
electron) around L = 249 ay, which was the position of the
collector lead C in the simulations of Fig. 2. We note that
the spatial splitting between both orbits is field dependent:
the initial path difference between both trajectories projected
along the x direction may be obtained in a semiclassical

picture as Ax(B) =2(ry —r_) = 4‘;;21;”. This formula leads

to Ax(Bﬁ‘) >~ 24ay and Ax(B5) >~ 16ap, in good agreement
with the splitting observed in the numerical simulations. The
linear scaling of the spatial splitting between the focal points
at the edge of the sample is also evident from the figure.
Due to the good transparency between the sample and the
superconductor, the scattering along this interface is domi-
nated by the Andreev reflection channel: incident electrons
are entirely scattered as holes and vice versa. This can be seen
in the almost perfect cancellation of the electron-electron and
electron-hole transmission coefficients near the boundary of
the anomalous terminal in panels I(c) and II(c) of Fig. 5. This
being the case, the two types of semiclassical Andreev edge
states keep their orbital radius until a normal scattering event
takes place outside the superconducting region.

A less idealistic scenario can be simulated by lowering
the transparency between the superconductor and the 2DEG.
This effectively increases the normal scattering probability
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FIG. 6. (a) Color map of the conductance G between the injector
and the collector lead as a function of the magnetic field B and
the hopping amplitude between the 2DEG and the superconducting

. L 2 .
terminal y measured in units of t = 27’— (b) Horizontal cut of panel

m*a?
(a) for y /i = 0.8. !

and thus provides the possibility to assess the interplay be-
tween ordinary and Andreev scattering events. In Fig 6(a)
we show the conductance between the injector and the col-
lector leads for different values of the hopping amplitude y
between the sample and the superconducting contact. We have
kept the parameters of Fig. 2(c), so that for y/t = 1 we re-
cover this focusing spectrum. For y = 0 the superconductor is

100

completely detached from the 2DEG, making the edge be-
have as an infinite hard wall potential. Dashed black lines
indicate the position of the first six focusing peaks observed
in the good transparency limit: BS, BS, B", B, BS, and B.
The normal scattering channel produces the appearance of
additional peaks, B,, Bg, and B,, which are marked with
solid yellow lines. In Fig. 6(b) we show the conductance for a
hopping amplitude, y = 0.8¢, where the effects arising from
the coexistence of both scattering channels can be clearly
observed. The peak located at B, = (B! + B4)/2 =0.196 T
corresponds to the situation where the injected electrons have
one intermediate bounce at the edge of the sample. In Fig. 7,
we show for this particular field the electron-electron [panel
I(a)] and electron-hole [panel I(b)] transmission coefficients
to arbitrary points in the sample. As clearly seen in panel
I(a), the electron-electron scattering leads to semiclassical
trajectories with alternating radius, so that the B, conductance
peak is generated by the focusing condition 2(ry +r_) = L.
As observed in panel I(b), Andreev scattering is also present
for this particular transparency. This leads to a total con-
ductance [panel I(c)] with an electronic focal point which is
accompanied by two holelike side peaks. As the magnetic
field increases, the combination of normal and Andreev scat-
tering events leads to a more involved spectrum. The peaks
Bg and B, are the products of trajectories with two bounces
at the superconducting terminal. For low transparencies these
are purely electronic-like and can be simply understood as
the outcome of two normal scattering events. On the other
hand, for better transparencies, the Andreev reflection channel
gains weight and the conductance for these fields changes sign
(y 2 0.6t in Fig. 6). To understand this behavior, multiple
scattering possibilities should be analyzed. In panels II(a)—
II(c) of Fig. 7 we map the possible electron-hole orbits in real
space for the magnetic field Bg = 0.258 T and y = 0.8¢. The
focusing condition that gives rise to this conductance peak is
given by 4r_ 4 2r, = L. The electron-hole transmission co-
efficient shown in panel II(b) makes clear that the holelike dip
for this particular field has contributions from two different

I(a)

FIG. 7. Same as Fig. 5 but with a hopping amplitude between the sample and the superconductor of y = 0.8¢. In panels I(a)-I(c) the
magnetic field is chosen to be B, = 0.196 T and in panels Il(a)-Il(c) By = 0.285 T.
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trajectories. In one of them, an electron traveling through the
O_ path has a first scattering event dominated by the anoma-
lous channel, so that the Andreev-scattered hole preserves the
r_ radius until it reaches the edge of the sample. If a second
ordinary scattering event takes place, the normal-reflected
hole will then follow the O; path. The other contributing
trajectory starts from an electronic state traveling through the
O orbit that has a normal scattering event at first and thus
changes its motion to the O_ orbit. In the second scattering
event, the electronic state is Andreev reflected to a hole that
keeps the incoming r_ radius until it focuses in the collector
lead. The holelike dip in the conductance is then the product
of trajectories with two scattering events of different natures:
one through the normal channel and one through the Andreev
channel. A similar combination explains the B,, dip. Fory =t
these peaks essentially disappear due to the vanishing of the
normal scattering probability.

IV. SUMMARY

We have numerically studied the transport properties of a
transverse magnetic focusing device like the one illustrated
in Fig. 1, where two lateral normal contacts are attached to a
2DEG with a third superconducting terminal in between. In
the weak or moderate field regimes, with large filling frac-
tions, injected carriers travel along bouncing cyclotron orbits,
alternating their electron and hole natures due to Andreev
scattering at the superconducting lead. We have analyzed
how the presence of Rashba spin-orbit-coupling affects the
cyclotron motion of these semiclassical chiral Andreev edge
states by studying spin and charge transport in the device.
The spin-orbit interaction leads to the unfolding of the Fermi
surface into two pieces with different spin textures which
are characterized by the wave vectors k.. The semiclassical
skipping trajectories along the boundary of the sample are
accordingly spin-split into two nonidentical paths, differenti-
ated by their orbital radius r.. Our work, including numerical
simulations and analytical estimations, emulates this situation.

Spin separation in cyclotron motion is a well-known phe-
nomenon which has been thoroughly studied in the absence
of a superconducting edge. In such cases, the normal spin-
conserving scattering at the sample edge imposes a transition
of the scattering states from one Fermi surface piece to the
other and consequently mixes the two orbital paths. The pe-
culiarity of the hybrid Hall-superconductor interface is the
opening of the Andreev reflection channel. This type of scat-
tering goes in hand with the transport of singlet Cooper
pairs between the sample and the anomalous terminal: an
incoming electron (hole) with a given spin is reflected as a
hole (electron) with the opposite spin. In this way, Andreev
scattering connects antipodal points in the same piece of the
Fermi surface, preserving the band index. As the two bands
(&£) give rise to semiclassical orbits with a different but well-
defined radius (ry), the two spin-dependent trajectories in
real space separate more the greater the number of bounces
at the hybrid interface. This effect can be measured in the
conductance spectra as a splitting of the focusing peaks that
increases with the peak index up to a point where different
peaks overlap and mix. The amplification of the spin-split
focal points could be a handy tool to improve the ability to

selectively separate spin-polarized currents in these devices.
At the same time, the alternating electron-hole nature of the
chiral states allows for the possibility to control the carrier’s
charge. We supported our results by calculating normal and
anomalous transmissions to arbitrary points in the sample.
These transport measurements provide a means of building
a complete map of the electron-hole cyclotron orbits, which
nicely compares with our semiclassical picture.

To describe situations more in line with experimental con-
ditions, we have analyzed the case of nonideal couplings
between the sample and the superconducting terminal. This
was done by lowering the transparency of the junction. For
large transparencies (y /t &~ 0.8), the first focusing peaks ob-
served in the ideal case are recovered together with additional
peaks that stem from the normal scattering channel. For low
transparencies (y/t < 0.4), the anomalous Andreev scatter-
ing is significantly reduced and the bouncing chiral carrier
recovers its pure electronlike nature: all the conductance peaks
become positive. The focusing fields and the intensity of the
focusing peaks can then provide direct information on both the
magnitude of the SO coupling and the quality of the junction
between the sample and the superconductor.

Throughout our work we have neglected the effect of
the Zeeman splitting, which remains a good approximation
as long as gugB < akp. This is a reasonable assumption
since, within our range of parameters, aky ~ 3.6 meV and
upB >~ 6 peV. If it were possible to engineer a 2DEG with
a large gyromagnetic ratio, so that gugB ~ akp, some inter-
esting effects would indeed be observable in the magnetic
focusing spectra. As a matter of fact, the eigenstates at the
Fermi level would no longer have their spin lying in the x-y
plane: a canting angle along the z direction would begin to
be significant. In that case, when carriers Andreev reflect at
the superconductor, they would have a finite probability of
changing their orbital radius and new focusing peaks would
emerge.

We have also disregarded the presence of disorder or impu-
rities at the bulk of the sample, which could certainly damage
the focalization peaks: their width will enlarge with disorder
up to a point where the spin splitting could not be resolved.
Nonetheless, current technology allows for the construction of
2DEGs with large mean free paths so that narrow focalization
peaks can be experimentally observed together with their SO-
induced spin splitting [30,34].

The recent development of high-quality hybrid devices
based on two-dimensional electron gases in contact with su-
perconductors will pave the road for new experiments to
come, where a considerable interplay between strong SO cou-
pling and superconducting correlations should be taken into
account (as in the case of In- or Sb-based semiconducting
heterostructures [7,9]). Our results, although simple in nature,
show how the coherent ballistic paths of chiral Andreev edge
states can be used to engineer and control charge and spin
transport in these novel platforms.
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