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Extrinsic thermoelectric response of coherent conductors
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We investigate the thermoelectric response of a coherent conductor in contact with a scanning probe. Coupling
to the probe has the dual effect of allowing for the controlled local injection of heat currents into the system
and of inducing interference patterns in the transport coefficients. This is sufficient to generate a multiterminal
thermoelectric effect even if the conductor does not effectively break electron-hole symmetry and the tip injects
no charge. Considering a simple model for noninteracting electrons, we find a nonlocal thermoelectric response
which is modulated by the position of the hot probe tip, and a nonreciprocal longitudinal response which leads to
a thermoelectric diode effect. A separate investigation of the effects of dephasing and of quasielastic scattering
gives further insights into the different mechanisms involved.
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I. INTRODUCTION

The prominent electronic response to temperature differ-
ences in low-dimensional conductors has been discussed for
decades, mainly because of their peculiar spectral properties
[1–3]. Along the same period of time, the field of quantum
transport was developed [4–6], soon leading to the measure-
ment of the thermoelectric effect in diverse arrangements
of zero- and one-dimensional systems [7–17], and recently
achieving high heat to power efficiencies [18]. Quantum co-
herence in these systems has been suggested to enhance the
thermoelectric properties [19–24]. All these cases are limited
by two main characteristics. On one hand, being two terminal
measurements, heat is injected longitudinally in the device
by the same particles that carry the charge current. It also
limits the way heat is injected by increasing the electronic
temperature without introducing undesired heat leakage (via
the substrate, for instance). On the other hand, the response
relies on the energy dependent properties of the nanostructure,
in particular the necessity to break the electron-hole symmetry
[25].

Three-terminal configurations alleviate these limitations by
assuming a “system and gate” geometry: two terminals serve
as the conductor where current flows; the third terminal injects
on average no charge into the system, and only exchanges
heat with it. The response can then be nonlocal when the
thermoelectric current is generated in a system at a uniform
temperature that includes a region where it interacts with the
hot gate [26,27]. A number of configurations have been pro-
posed with a rich variety of properties depending on the nature
of the gate, either based on electronic [27–29] or bosonic
[26,30–34] interactions, or on complex system-gate couplings
[35–40], and experimental realizations have been achieved in
systems of quantum dots [41–44]. Applications for thermally

driven rectifiers [45–55] were also reported. Other kinds of
nonlocal thermoelectric effects can be found in hybrid devices
[40,56–62]. However, in all these cases, the thermoelectric
response is conditioned by the system intrinsic particle-hole
asymmetry—i.e., the system works as a thermoelectric con-
verter even in the absence of the gate.

Here we investigate how a thermoelectric response may
be induced into a perfectly symmetric conductor (hereafter
called simply conductor) by a mechanism based on quantum
interference only. Transport in the conductor is defined by
an energy-independent scattering region (hereafter called the
scatterer) which does not yield any thermoelectric response
on its own. In this sense we say the response is extrinsic to
the conductor. As sketched in Fig. 1, we assume the third
terminal to be a scanning tunneling probe [63] that injects
heat but on average no charge into the conductor. Such a heat

FIG. 1. One-dimensional conductor with a scattering region
(represented by a dark area) coupled to two terminals, 1 and 2, and to
a third one via a scanning tip at x. Each terminal, i, is characterized by
an electrochemical potential μi and a temperature Ti. Electron trajec-
tories with multiple internal reflections (one of them is represented
by the green arrow) interfere, breaking the conductor electron-hole
symmetry. The inset represents the scattering problem schematically.
The tip (�) and the scatterer (�) are connected by a single channel.
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source can furthermore be actively connected/disconnected.
The overall response will hence depend on the tip position
x with respect to the scatterer. In particular, the tip presence
induces interference patterns [64–66] which are measured by
the probe electrochemical potential. They are understood in
terms of multiple scattering trajectories between the tip and
the scatterer [67]. An example of such a trajectory with multi-
ple internal reflections is shown as a green arrow in Fig. 1. The
kinetic phase accumulated in these trajectories is sufficient
to generate a thermoelectric current, an effect discussed in
quantum Hall junctions [68] and which-path interferometers
[69–72].

Currents in response to local heating have been recently
measured in low dimensional systems via electronic in-
jection [73–76], laser illumination [77–79], or nanoheaters
[80]. Transport is there dominated by the diffusion of the
electron-hole excitations across a potential barrier, what can
be interpreted as a nanoscale version of current induced by
Landauer blowtorches [81–83]. We assume a simple phe-
nomenological description that intentionally neglects this
effect (relying on the intrinsic response of the conductor) in
order to isolate the contribution of quantum interference. We
do this by considering a pointlike scatterer with no internal
structure. More realistic descriptions of experimental situa-
tions would require the extension of our model to include
configurations with more complex scattering properties [84].
Different types of probes can also be considered [85–88].

Experimentally, signatures of oscillations appear over-
imposed to the intrinsic nonlocal Peltier coefficient of
graphene constrictions in Ref. [74]. Scanning gate mi-
croscopes [87,89,90] were also recently shown to induce
interference fringes in the local thermopower of a quantum
point contact [91]. Phase-dependent thermopower oscillations
were as well reported in hybrid normal-superconducting inter-
ferometers [92,93], albeit of a very different nature [94,95].

In nonideal configurations, electrons may be affected by
events where their phase coherence is lost. A description
of the effect of incoherent processes in scattering theory is
traditionally done by incorporating additional probe termi-
nals. This approach dates back to the work of Engquist and
Anderson [96] and was later refined by Büttiker for quan-
tum coherent conductors [97,98]. Such probes are standardly
used to model voltage or temperature measurements, or the
effect of inelastic scattering when electrons relax energy in
the probe before being reinjected into the conductor. Anal-
ogously, quasielastic probes have been proposed to describe
decoherence [99] when particle currents are conserved at
any energy in the probe. However, these probes are invasive
in the sense that they introduce additional backscattering in
the system: together with phase randomization, they involve
momentum relaxation [100]. This problem is irrelevant in
disordered [99] or chiral [101,102] systems, but makes such
backscattering-inducing probes unsuitable to describe pure
dephasing in ballistic conductors. A few works address this
issue [4,100,103–105]. We consider the two types of probes
(conserving and nonconserving momentum) separately. This
way, we are first of all able to isolate the effect of pure
dephasing on the interference fringes. The comparison of
pure dephasing and quasielastic probe models gives useful
insights into the relevant transport mechanisms. Furthermore,

thermometer probes are used to describe (electron-electron)
inelastic scattering processes and additionally to measure the
effective temperature in the conductor, which is tip position
dependent.

The paper is organized as follows. In Sec. II we use scat-
tering theory to describe the transport coefficients, which are
analyzed in the linear response in Sec. III. Numerical results
are shown in Sec. IV. Additional probes are included in Sec. V
to describe (momentum conserving and nonconserving) de-
phasing and temperature probes. Conclusions are discussed in
Sec. VI.

II. SCATTERING THEORY

A simple and transparent description of the transport
problem is given in terms of the scattering formalism
for noninteracting electrons [106–109]. We adopt here a
phenomenological approach where each component of the
conductor is described by a minimal scattering matrix im-
posed by symmetry arguments. This allows us to identify the
relevant interference processes involved in the three-terminal
thermoelectric response.

A. Scattering matrices

We consider a single-channel one-dimensional conductor
connected to two electronic leads, 1 and 2. Transport is as-
sumed to be ballistic except for the presence of a scattering
region (represented by a dark stripe in Fig. 1) at x = 0 where
electrons can be reflected. For concreteness, we will call this
region the barrier in the following. We want a bare-bone
conductor lacking any intrinsic thermoelectric response. This
is the case if the barrier has no structure, with an energy-
independent reflection probability R; see, e.g., Ref. [25]. Its
scattering matrix can then simply be written as

S� =
( √

R eiφ
√

1−R ei(π+φ)/2√
1−R ei(π+φ)/2

√
R

)
, (1)

including the phase φ.
Electrons are injected into the conductor by a scanning tun-

neling microscope, see Fig. 1, which we model as a pointlike
beam splitter [67] at x coupled to terminal 3. Assuming for
simplicity that electrons from the tip are injected symmetri-
cally into the other two branches of the beam splitter, we get a
scattering matrix S�

i j = σ�
i j ei(δi+δ j ), with the orthogonal matrix

[110]:

σ� =
⎛
⎝−η−/2 η+/2

√
ε

η+/2 −η−/2
√

ε√
ε

√
ε η−−1

⎞
⎠, (2)

where η± = 1 ± √
1 − 2ε. The phases δi preserve the uni-

tarity of S�. The real parameter ε ∈ [0, 1/2] represents the
tip-conductor coupling. In the limit ε = 0, the tip and the
conductor are separate systems. The opposite limit, ε = 1/2,
describes the case in which the tip has no internal reflection,
such that all electrons from the tip terminal are (equally)
transmitted into the conductor channels.

The scattering matrix of the whole system is obtained
by composing the two matrices S� and S� as explained in
Appendix A. The local partial densities of states are different
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depending on whether the tip is on the left or on the right
hand side of the barrier [111,112], hence leading to different
scattering matrices, S− and S+, respectively.

Let us first consider the tip on the left side (x < 0), as
shown in Fig. 1. The second element of the outgoing waves of
the tip is connected to the first element of the incoming waves
of the conductor scattering region. Along the way between the
tip and the scatter, they accumulate a phase k|x| for wave num-
ber k. In this case, the transmission probabilities T ±

i j = |S±
i j |2

read

T −
12 = (1−R)(η+−ε)

2A , T −
13 =ε(A+ζ )

A , T −
23 = (1−R)ε

A .

(3)
They acquire an oscillatory behavior due to the interference of
trajectories with multiple internal reflections between the tip
and the barrier, contained in

A = 1 + R(η−−ε)/2 ±
√

Rη− cos χ, (4)

ζ = R(η++ε)/2 ±
√

Rη+ cos χ, (5)

with χ = χ−
0 + 2k|x| and the phase χ−

0 = 2δ2 + φ introduced
by the two scatterers. Note that choosing the sign of the last
term in the coefficients A and ζ simply adds a phase π to
χ . In the following, we choose +. Such coefficients depend
on energy via the momentum of the propagating electron,
k = √

2m(E − U0)/h̄, where U0 is the local potential energy,
which we assume constant: U0 = 0, for simplicity.

In the case that x > 0 (when the tip is on the right side
of the barrier), we obtain S+ by exchanging 1 ↔ 2 in the
indices of S−, cf. Eq. (3), and replacing χ−

0 by χ+
0 = 2δ1.

For convenience, we consider the symmetric case δ1 = δ2 and
φ = 0, where χ0 ≡ χ+

0 = χ−
0 (except when explicitly stated).

The general expression of the transmission probabilities Ti j

for electrons injected from terminal j to reach terminal i is
then obtained by combining

Ti j = T −
i j 
(−x) + T +

i j 
(x) (6)

with the Heaviside function 
(x). They are plotted in Fig. 2
as functions of the tip position (determining the accumulated
phase) and χ0. Note that the discontinuity of the probabilities
T13 and T23 at x = 0 is due to having a pointlike scattering
region.

B. Currents

With all these, we write the particle and heat currents
injected from the different terminals:

Ii =
∫

dE Ii(E ), (7)

Ji =
∫

dE (E − μi )Ii(E ), (8)

with the current densities given by

Ii(E ) = 2

h

∑
j

T ji[ fi(E )− f j (E )], (9)

where fi = 1/{1 + exp [(E − μi )/kBTi]} is the Fermi function
of terminal i, h and kB are the Planck and Boltzmann con-
stants, and the factor 2 takes into account spin degeneracy. The

FIG. 2. Transmission probabilities Ti j = T ji between terminals i
and j as functions of the tip position and the phase χ0, for ε = R =
1/2. They are periodic in 2kx for x not changing sign. When the
tip crosses x = 0, the roles of terminals 1 and 2 are exchanged. The
lower panel shows cuts at χ0 = 0.

sum is over every terminal in the system. For our particular
case they read, for x < 0,

I2 = 2(1−R)

h

1

A
[
ε( f2− f3) + η+−ε

2
( f2− f1)

]
, (10)

I3 = 2ε

h

1

A [(A+ζ )( f3− f1)+(1−R)( f3− f2)]. (11)

The expression for terminal 1 is obtained by particle conserva-
tion, I1 = −I2 − I3. The currents hence adopt the oscillatory
behavior of the coefficients A and ζ [64–66].

The transport problem is solved by assuming probe bound-
ary conditions for the tip. Throughout this work, we will
assume that the tip is a voltage probe, i.e., its electrochemical
potential μ3 adapts to the condition I3 = 0, so it does not
inject charge in the system on average. The probe is sensitive
to the phase accumulated in the conductor and the measured
electrochemical potential oscillates with the distance to the
barrier [67].

C. Conservation laws and thermodynamics

Under these conditions, charge conservation is expressed
only by the conductor terminals

I1 + I2 = 0, (12)

so the generated particle current is unambiguously defined
by one of them. Differently, energy conservation involves all
three terminals. In terms of the heat currents, it is written as

J1 + J2 + J3 = P (13)

and involves the electric power:

P = −(μ2 − μ1)I2. (14)

We use the convention that P is positive when electrons flow
against the chemical potential difference. When this occurs
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due to heating of terminal i, Ti = T + δTi, the system works
as a converter of heat into useful power, with an efficiency
ηi = P/Ji. Scattering theory respects the second law [25], so
it can be shown that ηi � ηC , with the Carnot efficiency ηC =
1 − T/Ti.

We anticipate that, when coupling the system to ficti-
tious probes in Sec. V, the imposed boundary conditions will
involve that neither particle nor heat currents are injected.
Therefore, the above conservation laws for average currents,
Eqs. (12) and (13), will not be affected.

III. THREE-TERMINAL THERMOELECTRIC RESPONSE

An important observation from Eq. (10) is that the ther-
moelectric response of the conductor vanishes when the tip
is not coupled to it. We can easily verify that, for ε = 0, we
have A = 1, and the current reduces to that of an energy-
independent two-terminal resistor: I2 = 2(1−R)(μ2 − μ1)/h.
Namely, it is independent of the temperatures T1 and T2 of
terminals 1 and 2, up to charge accumulation effects in the
nonlinear regime [113–115] that we neglect here. This ensures
that the thermoelectric response discussed below is induced
by the presence of the tip only.

To have a finite thermoelectric response, the transmission
probabilities T ji need to depend on energy. This dependence
is introduced by the oscillatory term in A and ζ as soon as
R �= 0: if R = 0 (a perfect conductor), we have A = 1 and
ζ = 0, and hence I2 and I3 are insensitive to the temperatures
T1, T2, and T3. The general problem of solving the integrals
in Eqs. (7) and (8) with the corresponding boundary condi-
tions is complex and will be solved numerically in Sec. IV.
However, we gain some useful insight by performing a linear
response analysis, together with a Sommerfeld expansion at
low temperature.

A. Linear response analysis

Let us assume small electrochemical potential and tem-
perature differences between the different terminals, δμi =
μi − μ � kBT and δTi = Ti − T � T , with respect to the
reference electrochemical potential μ and temperature T . The
currents are then expanded as

Ii =
∑

j

[Gi j (μi − μ j ) + Li j (Ti − Tj )], (15)

Ji =
∑

j

[Mi j (μi − μ j ) + Ki j (Ti − Tj )], (16)

where Gi j = 2g(0)
i j and Ki j = 2g(2)

i j /T are the multitermi-

nal particle and heat conductances, while Li j = 2g(1)
i j /T and

Mi j = 2g(1)
i j are the multiterminal thermoelectric coefficients

related to the Seebeck and Peltier effects [108], respectively.
We write them in terms of the integrals

g(n)
i j = 1

h

∫
dE

(E − μ)n

4kBT
T ji(E ) cosh−2

(E − μ

2kBT

)
, (17)

which make the Onsager reciprocity relations [116] explicit
via T ji = Ti j .

FIG. 3. Linear response coefficients L2 j of the current at terminal
2 when increasing the temperature of terminal j by δTj = δT as
described by a Sommerfeld expansion, for the same parameters as
in Fig. 2, with the Fermi wave number kF. The lower panel shows
cuts at χ0 = 0 for a doubled range of tip positions.

With these response coefficients, we first obtain the probe
electrochemical potential by imposing I3 = 0:

μ3 = 1

G13 + G32

∑
l

[G3lμl + L3l (δTl − δT3)], (18)

with the sum limited to the conductor terminals l = 1, 2. Re-
placing it in the expression for the current in the conductor and
using

∑
j Li j = 0 (a consequence of charge conservation), we

get

I2 =
(

G21 + G13G23

G13 + G23

)
(μ2 − μ1) −

∑
j

L2 jδTj, (19)

with the thermoelectric responses

L2 j = L2 j + G23L3 j

G13 + G23
. (20)

The current I1 is obtained by replacing 1 ↔ 2 and one checks
that I1 = −I2. One can readily see that, while the response
matrices G, L, M, and K are symmetric, this is not the case,
in general, for the thermoelectric responses when not all ter-
minals are equivalent (e.g., one of them is a probe) [45]: then
Li j �= L ji. Note that this implies the possibility of thermoelec-
tric current rectification in the linear regime, in the presence of
heat leakage induced by inelastic scattering at the tip terminal
[45]. In our case, L31 and L32 will be finite due to interference,
as discussed above. The coefficients for heat currents are given
in Appendix B.

We can also verify that L2 j = 0 if ε = 0 or R = 0, 1, be-
cause g(1)

i j = 0 if T ji does not depend on energy.

B. Sommerfeld expansion

A convenient way to picture the relevant processes is to
perform a Sommerfeld expansion (see, e.g., Ref. [25]) on
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FIG. 4. Dependence of the nonlocal linear response coefficient
LS

23 on (a) the tip coupling ε (for R = 0.75) and on (b) the conductor
reflection coefficient R (for ε = 0.5). In both cases, χ0 = 0.

the linear regime coefficients. For small kBT/μ, the inte-
grals are evaluated as g(0)

i j = T ji(μ)/h, g(1)
i j = qHT ′

ji(μ), and

g(2)
i j = qHT ji(μ), where qH = π2k2

BT/3h is the quantum of
thermal conductance [117]. This is a good approximation
when the energy dependence of the transmission coefficient
is smooth around μ. In our system, the oscillatory behavior of
T ji introduces additional limitations to the applicability of the
approximation. For a fixed tip position, they oscillate with a
period that depends on μ. Hence the Sommerfeld expansion
stays valid when νF|x| � 1/kBT and thermal fluctuations re-
main negligible (see Appendix C). Here, νF = √

2m/μ/h is
the 1D density of states at the Fermi energy. For this reason,
we will restrict our analysis in this section to tip distances
close to x = 0.

The resulting thermoelectric coefficients, LS
2 j , are plotted

in Fig. 3, showing their dependence on the tip position and
on the scattering phase χ0. Clearly, the discontinuity of the
transmission probabilities at x = 0 (see Fig. 2) has an effect
in the transport coefficients, which depend on the sign of
x. However, we note that transport coefficients are recipro-
cal: LS

ll ′ (x, χ
±
0 ) = LS

l ′l (−x, χ∓
0 ) in the longitudinal terms and

LS
l3(x, χ±

0 ) = LS
l ′3(−x, χ∓

0 ) in the crossed ones, for l, l ′ =
1, 2 and l �= l ′ (remember that LS

1i = −LS
2i).

We observe a series of irregular sawtoothlike oscillations
as the tip scans the conductor. These are a hallmark of
resonances arising from interference. The oscillations shape
and sign change depending on which terminal is heated, but
they always vanish at χF ≡ 2kFx + χ0 = nπ . Remarkably,
the longitudinal responses have an additional series of nodes
when the tip is in between the barrier and the hot terminal
(see L21, for x < 0, and L22, for x > 0). This is possible
because the thermoelectric response of the probe (given by
its electrochemical potential) has an opposite (and larger)
contribution when it is close to the hot terminal, and adds up
when it is separated from it by the barrier. We can check this
by noticing that μ3 ∝ L3lδTl ∝ T ′

3l (μ)δTl and that T ′
13 and T ′

23
have opposite signs; cf. Fig. 2. Then, at a fixed tip position the
two terms in Eq. (20) have the same or opposite contributions
for j = 1 and j = 2, in which case they eventually cancel
out. Note also that the highest oscillations (in absolute value)
correspond to the nonlocal case with a hot tip, while the lowest
are those where the hot terminal is on the same side as the tip.

The Sommerfeld expansion also predicts that the gener-
ated current increases with the tip-barrier distance, as can

FIG. 5. (a) Electrochemical potential measured by the tip, μ3, j ,
and (b) thermoelectric current, I2, j , when the temperature of terminal
j is increased by δT = T/2. The inset in panel (b) shows a zoom
on the currents at short distances. Parameters: ε = R = 0.5, χ0 = 0,
U0 = 0, and μ = 20kBT .

be appreciated in Fig. 3. This is understood by noticing
that all thermoelectric coefficients scale as LS

i j ∝ T ′
ji(μ) ∝

∂E (k|x|)|μ ∝ |x|. In particular, for x < 0,

LS
2 j = qH

4π (1 − R)
√

R

AF(AF + ζF + 1 − R)
CjxνF sin χF, (21)

where all quantities with a subindex F are evaluated at the
Fermi energy, and

C1 = 2ε(η+ − εR) + (ε − η+)η−(AF + ζF + 1 − R),

C2 = (η+ + ε)(AF + ζF + 1 − R) − 2ε, (22)

C3 = 2εAF.

Figure 4 shows the dependence of the nonlocal term, LS
23,

on the coupling parameters ε and R. It increases with the cou-
pling to the tip, ε, and is maximal for ε = 1/2; see Fig. 4(a).
As expected, the response vanishes both for R = 0 and R = 1,
when there is no interference, and is maximal around R ≈
3/4; see Fig. 4(b).

IV. NUMERICS

Numerically evaluating the integrals in Eqs. (7) and (8),
under the condition that μ3 is such that I3 = 0, affords a
more complete understanding. We restrict in the following to
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FIG. 6. Dependence of the nonlocal thermoelectric current (T3 =
T + δT ) on the electrochemical potential μ, for otherwise the same
parameters of Fig. 5.

x < 0, so charge currents are given by Eqs. (10) and (11).
We do this for different configurations, depending on which
terminal j holds a temperature increase δT (and assuming
μ1 = μ2 = μ). This results in different probe electrochemical
potentials μ3, j and currents I2, j . The result is plotted in Fig. 5
as a function of the tip position, with l0 = h̄/

√
8mkBT . The

electrochemical potential of the probe oscillates around μ; cf.
Fig. 5(a). Note that, when terminal 1 is hot, the electrochem-
ical potential has the opposite sign with respect to the other
cases. It also gives the oscillations with the largest amplitude.
This is in contrast with the generated current in Fig. 5(b): the
smaller the probe response, the largest the current is.

The currents in Fig. 5(b) reproduce the behavior expected
from the Sommerfeld expansion (I2, j ≈ −LS

2, jδT ) at short
distances; compare Fig. 3 with the zoom in the inset of
Fig. 5(b). The same pattern repeats over x, with the oscillation
amplitudes modulated by the distance. For short distances,
the amplitude increases linearly, in agreement with the Som-
merfeld expansion. However, there is a crossover to longer
distances where the currents decrease. In this regime, the
energy dependence of the transmission probabilities around
the Fermi energy becomes sensitive to the electrochemical
potential μ through the argument 2k|x| of the oscillating term;
see Eqs. (3) to (5). The energy separation of the oscillations
decreases with increasing |x| to a point where they are av-
eraged out in the integration. See Appendix C for a more
detailed discussion of this point. This is confirmed by the re-
sults shown in Fig. 6: for larger ratios μ/kBT , the interference
pattern survives at longer distances, and the linear increase for
low x can also be more clearly appreciated. For lower μ/kBT ,
thermal fluctuations dominate at shorter distances. However,
the maximal generated currents are of the same order in both
cases.

A. Active tip: Nonlocal thermoelectric current

Let us focus on the case where the tip is hotter, T3 = T +
δT , while T1 = T2 = T and μ1 = μ2 = μ. It is interesting to
compare this configuration with typical thermocouples where
two junctions separate a central hot region (in contact with

FIG. 7. Heat currents into the different terminals, Ji, when the
tip temperature is hot, T3 = T + δT , for the same parameters as in
Fig. 5.

the heat source) from the rest of the conductor. Those two
junctions are furthermore responsible for the separation of
electron-hole excitations. Mesoscopic analogs maintain this
structure [43]. Our case is different, since the conductor has a
single barrier. The conductor-tip coupling provides the mech-
anism of heat injection from the source (terminal 3), as well
as that for thermoelectric current generation. Local thermal-
ization of electrons is not required, i.e., there is no need to
define an internal temperature distribution in the conductor
(we will however come back to this point in Sec. V). Trans-
port is hence affected by the nonequilibrium properties of the
injected electrons.

In this sense, the thermoelectric properties and the heat
source are external to the circuit where current is generated.
The tip in a voltage probe configuration injects electron-hole
excitations into the system, hence no charge (on average) but
heat. In their propagation between the tip and the barrier, elec-
tron and hole quasiparticles acquire different phases, which
gives an effect due to the interference of the possible internal
reflections. The tip position x hence marks the point where
both nonequilibrium excitations and electron-hole asymmetry
are induced. The relevance of the phase coherence will be
further explored in Sec. V by introducing dephasing probes
phenomenologically.

The heat currents due to the coupling to the hot tip are
also affected by the interference pattern, as shown in Fig. 7.
Note that, as for I2,1, a double oscillation is apparent for low x
that we similarly attribute to the tip probe conditions; see the
competition of terms in the linear coefficients in Appendix B.
However, they are always finite. As expected, for the tip being
far from the barrier, the heat current is larger in the terminal
that is the closest to the tip, i.e., J1 > J2 for x < 0. As the tip
approaches the barrier, oscillations appear with opposite phase
in terminals 1 and 2 and increase their amplitude to a point that
eventually makes the heat current through the barrier larger
than that flowing directly to the nearest terminal (J2 > J1, in
this case).

As there is always one terminal into which electrons
flow without being scattered, a large amount of heat will be
absorbed by the conductor without contributing to generating
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FIG. 8. Performance of the nonlocal thermoelectric effect.
(a) Generated power, (b) injected heat current from the hot tip (with
T3 = T + δT ), and (c) efficiency of the heat to power conversion,
for ε = 0.5 and R = 0.75. Other parameters are as in Fig. 5. The
light-gray background in (a) and (c) marks regions where power is
dissipated, P < 0.

a charge current. For this reason, the injected heat current, J3,
is expected to be much larger than the power generated in the
nonlocal thermoelectric conversion, P = −(μ2 − μ1)I2. We
show this in Figs. 8(a) and 8(b) for the parameters where the
linear response coefficient LS

23 is maximal within Sommer-
feld, i.e., with ε = 0.5 and R = 0.75; see Fig. 4(b). Indeed, we
find that the efficiency η3 = P/J3 is smaller than 2.6% of the
Carnot efficiency, ηC = 1 − T/T3, for the chosen parameters;
see Fig. 8(c). Interestingly, due to the coherent oscillations,
the system behaves as a bipolar converter able to produce
power for opposite bias voltages but the same temperature
configuration, only by shifting the position of the tip.

We speculate that the performance will be improved if the
tip is placed between two barriers. Such configuration further-
more introduces an additional interference mode. However, a
detailed investigation of this particular issue is out of the scope
of this paper.

B. Passive tip: Thermoelectric diode

A longitudinal thermoelectric effect appears in the case that
the hot terminal is in the conductor (either terminal 1 or 2)
provided the coupling to the tip is finite. It was discussed
above that the response is asymmetric and depends on the
position of the tip with respect to the barrier and the heat
source [I1,2(x) = I2,1(−x) �= I2,1(x)]; cf. Figs. 3 and 5. This
is possible because energy is relaxed in the voltage probe by

FIG. 9. Thermoelectric rectification coefficient R for the cur-
rents plotted in Fig. 5(b). A zoom at small x (coinciding with the
inset of Fig. 5) is shown in the inset for clarity. For short distances,
R oscillates between 1 and Rmin

S , as described by the Sommerfeld
expansion in Eq. (24).

means of inelastic scattering [97]. The probe then induces a
thermoelectric rectification effect even in the linear regime
[51].

The asymmetry does not only affect the magnitude of the
currents: to be more precise, we recall that the number of
current sign changes with the tip position is doubled when
the hot terminal and the tip are on the same side of the barrier;
see, e.g., Fig. 5(b). Let us restrict for clarity to the case x < 0
(the case of positive tip positions is obtained by changing
terminals 1 and 2 everywhere in the discussion). In that case,
there exist some positions x of the tip where I2,1(x) = 0 while
I2,2(x) �= 0, i.e., charge flows or not through the conductor,
depending on which of its terminals is coupled to the heat
source, which is very much what one expects of an ideal diode
when reversing the sign of the applied voltage. The system
then works as an ideal thermoelectric diode.

To quantify the behavior of a diode, one compares the
forward current I→ = I2,1 measured in terminal 2 when 1 is
hot, and the backward one I← = I1,2 in the opposite case. Re-
member we have I1,l = −I2,l . We parametrize its performance
by means of the rectification coefficient:

R = |I→ − I←|
|I→| + |I←| , (23)

which gives R = 1 in the mentioned ideal case and R = 0 if
there is no rectification. As shown in Fig. 9 and its inset, the
zeros of I2,1 define regions where the thermoelectric current
flows in the same direction irrespective of the sign of the
temperature gradient along the conductor, resulting in the
plateaus with R = 1. Similar features may appear for the heat
currents in interacting quantum dot systems because the third
terminal acts as a heat sink [52]. However, we emphasize that,
in our case, the rectified (particle) current is conserved in the
conductor.

We note that, for tip positions close to the barrier, the
rectification coefficient is well described by the results of the
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Sommerfeld expansion

RS = |C1 + C2|
|C1| + |C2| , (24)

with the coefficients Ci given in Eq. (22). In this regime, the
linear dependence of the currents with x shown in Eq. (21)
makes RS vary between 1 and a constant value (i.e., inde-
pendent of x), marked by Rmin

S in Fig. 9. As the current
oscillations decrease with the distance (in a regime where
the Sommerfeld expansion breaks down), the minima of R
increase toward 1. In this regime there is a useless strong
rectification of tiny currents.

V. ADDITIONAL PROBES

The phenomena discussed above arise from quantum inter-
ference. In real systems, electrons might however lose phase
coherence while propagating along the conductor. It is hence
important to explore the robustness of the phenomena to the
presence of decoherence.

This is typically done by adding probe terminals to the
region between the tip and the barrier. Electrons propagating
along the conductor can be absorbed and reinjected by these
probes, resulting in phase randomization. The desired prop-
erties are phenomenologically described depending on the
characteristics of the coupling (given by a scattering matrix)
and the boundary conditions imposed to the probe(s). We
will consider two kinds of couplings, represented in Fig. 10.
They differ in whether they introduce phase randomization
without backscattering [S©; cf. Fig. 10(a)], and are hence
appropriate for describing pure dephasing, or whether they
randomize momentum as well [S♦; cf. Fig. 10(b)]. The latter
(which we refer to as invasive in the following) are good
for describing decoherence induced by inelastic [97,98] and
quasielastic scattering [99]. Furthermore, they serve as mod-
els of thermometers [96,118–121]. Experimentally, spatially
resolved nonequilibrium distribution [122] and temperature
[88,123,124] measurements have been achieved with more

FIG. 10. Representation of the scattering matrices for decoher-
ence processes. (a) S© describes pure dephasing. Two fictitious
probes, a and b, are coupled via the dotted channels to the conductor
in a chiral way: each of them absorbs and reinjects only left- or
right-moving electrons with amplitude i

√
τ . They have an internal

reflection amplitude
√

1−τ . (b) S♦ describes the coupling, with
amplitude

√
λ, of an invasive probe terminal p inducing backscat-

tering. Depending on the boundary conditions, it is used to model
quasielastic or inelastic scattering processes.

FIG. 11. Effect of pure dephasing on the nonlocal thermoelectric
current (T3 = T + δT ), parametrized by the phase coherence length,
lϕ , defined in Eq. (25). Parameters are as in Fig. 5, whose curve I2,3

is the limit lϕ → ∞ of this case. As there, δT = T/2. The cases
with decoherence due to a (nonmomentum conserving) quasielastic
scattering for the same values of the length defined in Eq. (26) are
shown in orange, for comparison.

involved probes. A simple analytical treatment is however
sufficient for our purposes here.

Hereafter, we use the two kinds of probes with different
boundary conditions to model separately the effect of pure
dephasing, of quasielastic scattering, and of a temperature
probe inducing (electron-electron) inelastic scattering.

A. Pure dephasing

In order to take processes that only affect the phase into
account (avoiding additional backscattering), we need a four-
channel scattering matrix: two channels [represented by full
lines in Fig. 10(a)] correspond to the partitioned channel of
the conductor. The other two [dotted lines in Fig. 10(a)] are
connected to two fictitious probes, a and b, with probability
τ . The coupling of the probes to the conductor is chiral [100]:
each of them absorbs electrons from a different ingoing con-
ductor mode and reinjects them in the opposite outgoing mode
with the same energy. To mimic pure dephasing, we impose
the boundary conditions Ia(E ) = Ib(E ) = 0, i.e., charge is
conserved at every energy in each probe terminal. This way,
after visiting the corresponding probe, where they lose their
phase information, electrons continue propagating in the same
direction with no energy being exchanged between system and
probe.

We will only consider cases where the dephasing probes
are placed between the tip and the barrier. Details on the scat-
tering matrix S©, as well as how the transmission probabilities
are modified and the expressions for the resulting currents, are
given in Appendix D.

The probe conditions Ia(E ) = Ib(E ) = 0 are satisfied only
if the probes acquire a nonequilibrium distribution, as dis-
cussed in Appendix D; see Eq. (D5). The resulting nonlocal
current is plotted in Fig. 11. We get a more physical insight
of the effect of dephasing by introducing a phenomenological
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FIG. 12. Dependence of (a)–(d) the longitudinal currents I2,1 and
I2,2 and (e) the thermoelectric rectification coefficient R(x) on the
phase coherence length due to pure dephasing, lϕ . All other parame-
ters are as in Figs. 5 and 9, which correspond to taking lϕ → ∞.

dephasing length defined as

τ (x) = 1 − e−|x|/lϕ . (25)

That is, the phase coherence of the injected electrons is fully
lost before any internal reflection occurs if the tip and the bar-
rier are far enough (|x| � lϕ), as they will likely be absorbed
by terminals a or b. When the tip distance is of the order of
the dephasing length, the loss of phase coherence between tip
and barrier will only be partial. This is shown for various lϕ
in Fig. 11. The current vanishes for tip positions larger than
lϕ , confirming the importance of the interference effect for
having a nonlocal thermoelectric response. Conductors with
a short coherence length will generate current only for tips in
the close vicinity of the barrier.

The longitudinal currents are affected by dephasing in a
similar way, as shown in Fig. 12. As the coupling to the
probes increases, the amplitude of the oscillations decreases.
As the probes respect the electronic propagation, the differ-
ent features of the currents I→ and I← that resulted in the
rectification properties discussed in Sec. IV B are maintained;
see Figs. 12(a)–12(d). As a consequence, we still find regions
where the two currents have the same sign (and give R = 1).
Furthermore, the rectification coefficient increases when the
dephasing length decreases, see Fig. 12(e), with the drawback
that the rectified currents become small.

B. Quasielastic scattering

Dephasing and/or decoherence can also be caused by
processes that randomize both phase and momentum of the
carriers. A minimal description of these processes is given by
connecting the conductor to a single probe terminal, which
we will label p, where electrons relax before being reinjected
into the conductor [97]; see Fig. 10(b). The coupling prob-
ability is in this case λ. Processes of different microscopic
origins can be mimicked by imposing appropriate boundary
conditions at the probe. We now consider elastic scattering
and discuss inelastic processes in Sec. V C. We give details of
the probe scattering matrix S♦ and the corresponding trans-
mission probabilities T λ

αβ , as well as the expression for the
resulting currents in Appendix E.

The fictitious probe terminal p describes quasielastic
dephasing by again imposing energy-resolved boundary con-
ditions, Ip(E ) = 0: the probe absorbs and reinjects electrons
without changing their energy, but randomizing their phase
and momentum [99]. As a result the probe acquires a nonequi-
librium distribution; cf. Eq. (E3).

A phenomenological phase coherence length lϕ can also be
defined in this case as

λ(x) = 1 − e−|x|/lϕ . (26)

Its effect on the nonlocal response is shown in Fig. 11, being
almost indistinguishable from the case of pure dephasing,
especially for short coherence lengths. However, we observe
that the amplitude of the oscillations is most effectively re-
duced by the quasielastic scattering processes, due to the
additional relaxation of momentum.

Differently from the pure dephasing case of Sec. V A, the
probe introduces backscattering, which erases the informa-
tion related to the terminal where electrons are injected. This
clearly affects the diode effect. In particular, the double os-
cillation of the current generated by the increased temperature
on the other side of the barrier is very sensitive to the presence
of the probe; cf. Fig. 13(a) (most clearly in its inset): the
electrochemical potential of the probe tends to have the same
sign independently of which conductor terminal is hot (not
shown). The asymmetry between I→ and I← is also reduced
but robust so as to still give a high rectification coefficient for
strongly decoherent conductors; see Fig. 13(b). However, this
again occurs for vanishingly small currents.

C. Thermometer

Alternatively we can use the invasive probe described by
the scattering matrix S♦ as a thermometer [96]. For this, we
assume that electrons entering the probe relax energy and ther-
malize due to inelastic scattering. The probe compensates this
by increasing its temperature, so it does not inject any heat in
the conductor. Mathematically, the electrochemical potential
and temperature of the probe are adapted to the boundary con-
ditions Ip = Jp = 0, this time imposed to the average currents.
Note the difference with the dephasing probe in Sec. V B,
which imposes Ip(E ) = 0 to the energy-resolved particle cur-
rent. The distribution of the probe, rather than being out of
equilibrium locally as in Eq. (E3), will be given by a Fermi
distribution defined by the resulting μp and Tp. Other defini-
tions of a local thermal probe can however be used [125].
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FIG. 13. Effect of quasielastic scattering on the longitudinal re-
sponse. (a) Longitudinal currents I2,1 (full red line) and I2,2 (full blue
line), for lϕ = 10/l0. The case where the same lϕ corresponds to pure
dephasing is shown in dotted lines; see Fig. 12(c) for comparison.
The inset shows a zoom of some oscillations. (b) Thermoelectric
rectification coefficient R(x) for different coherence lengths. All
other parameters are as in Figs. 5 and 9, which correspond to the
case lϕ → ∞.

As a thermometer, it is important that the probe does not
have its own thermoelectric response, which is achieved by
considering that the coupling λ is an energy independent
constant. Unlike the tip, this probe does not have spacial res-
olution, so it measures the effective temperature of the region
between the tip and the scattering region [126]. Note that
the electrochemical potential at the probe, μp, is in general
different from the one simultaneously measured by the tip, μ3.
The measured temperature is shown in Fig. 14. The spacial
modulation of the probe outcomes with the position of the
tip shows a beating behavior which reflects that of the heat
currents flowing into the conductor terminals; see J1 and J2

in Fig. 7. The same pattern appears independently of which
terminal is hot; only the amplitude of the oscillations and a
global shift are affected. This makes it difficult to identify
the temperature features with those of the heat current. Note
that, for the chosen parameters, the probe does not distinguish
whether heat is injected from the tip or from terminal 2, while
heat injected from terminal 1 induces a lower increase of Tp.
This is understood in that particular case (with ε = R = 0.5)
because, in the limit λ → 0, we have T −λ

p3 ≈ T −λ
p2 = 2T −λ

p1 ;
see Eqs. (E2).

FIG. 14. Temperature of the probe terminal when the temper-
ature of terminal j = 1 (blue), j = 2 (red), and j = 3 (black) is
Tj = 1.5T , with λ = 0.01. Dashed and dotted lines show the case
of a hot tip for increasing values of the coupling λ, as labeled. Same
parameters as in Fig. 5.

Increasing the coupling to the probe, the generated currents
I2, j are suppressed, as expected because of phase random-
ization in the probe (not shown). The amplitude of the
temperature oscillations also decreases when λ increases.
More electrons relax energy in the probe, so Tp increases, see
Fig. 14, and the probe becomes less sensitive to the conductor
heat currents, emphasizing the need for a weak system-probe
coupling to have a meaningful measurement outcome.

VI. CONCLUSIONS

We have explored the mechanisms of thermoelectric cur-
rent generation in a quantum coherent conductor locally
coupled to a probe reservoir. For this, we invoked a min-
imal model including an ideal conductor hosting a single
pointlike scattering region, in contact with a tip consisting
of a single-channel splitter. The conductor lacks any intrin-
sic thermoelectric response, since its transmission probability
is energy independent. However, when coupling to the tip,
electron-hole symmetry is broken by the quantum interference
of trajectories multiply reflected between the barrier and the
tip, provided the conductor is noisy (i.e., partly open). This
generalizes the mechanisms involved in resonant tunneling
[127–130] to multiterminal configurations.

The generated current shows distinct properties depending
on which terminal acts as the heat source. When the tip is
hot, a nonlocal current is generated in the conductor. The
necessary broken mirror symmetry [25] is introduced by the
position of the tip relative to the scatterer. Spacial oscillations
appear as the tip scans the conductor, and are antisymmetric
when exchanging its position with respect to the scatterer.
When one of the conductor terminals is heated, a longitudinal
response appears. The number of oscillation nodes is doubled
when the tip is between the hot terminal and the scatterer,
resulting in rectifying configurations: the current flows in the
same direction for opposite temperature gradients. This effect
can be used to define an ideal thermoelectric diode.

The effects of phase and momentum randomization are
disentangled by introducing fictitious probes. Pure dephasing
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is shown to suppress the amplitude of the current oscil-
lations for tip distances longer than the dephasing length,
emphasizing their interference origin. Momentum randomiza-
tion by quasielastic scattering furthermore affects the mirror
asymmetric properties of the current, therefore reducing the
rectification coefficient. However, high rectification coeffi-
cients persist in the presence of strong dephasing. A probe
inducing inelastic scattering is used to track the energy dissi-
pation in the conductor.

We considered a simple noninteracting model which can be
solved analytically. Extensions of our work to more realistic
scatterers (including an intrinsic thermoelectric response, for
instance) or other kinds of tips (like scanning gates that do not
exchange charge with the system at all [87,90]), as well as the
inclusion of electron-electron interactions [131–135], remain
as topics to be addressed in the future.

Note added in proof. We stress that we discuss effects in-
dependent of mechanisms appearing beyond linear response,
such as charge accumulation [113–115] and spontaneous sym-
metry breaking [136].
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APPENDIX A: SCATTERING MATRICES IN SERIES

Consider two scattering regions i = 1, 2 which are con-
nected in series by one or more internal channels labeled by
�β, as sketched in Fig. 15. Their respective scattering matrices
can be written as

(�α′
�β ′

)
= S1

(�α
�β
)

,

( �β
�γ ′

)
= S2

(�β ′

�γ
)

,

FIG. 15. Scheme of two scattering matrices, S1 and S2, coupled
in series, which combine to give S12.

where the outgoing waves in channels �β ′ of region 1 are ingo-
ing waves of region 2 (and vice versa with �β). The scattering
matrices are

Si =
(

ri t ′
i

ti r′
i

)
. (A1)

The scattering matrix of the whole system(
�α′

�γ ′

)
= S12

(
�α
�γ
)

, with S12 =
(

r t ′
t r′

)
,

is obtained by simple linear algebra, leading to

r = r1 + t ′
1r2(1 − r′

1r2)−1t1, (A2)

t = t2(1 − r′
1r2)−1t1, (A3)

r′ = r′
2 + t2(1 − r′

1r2)−1r′
1t ′

2, (A4)

t ′ = t ′
1

[
1 + r2(1 − r′

1r2)−1r′
1

]
t ′
2. (A5)

In the previous, we have ignored the phases accumulated
along the connecting channels. Usually these are the only
phases with a physical meaning. A convenient way to take
them into account is by taking all arbitrary phases in S1 and
S2 to zero and treating the propagation along the connecting
channels as an additional scattering region for which waves
are perfectly transmitted along every channel i gaining a phase
φi. For a single channel connection, and in the absence of a
magnetic field, this can be written as

Sph(ϕ) =
(

0 eiϕ

eiϕ 0

)
. (A6)

In the case of having N channels, we have

Sph(�ϕ) =
N∑

i=1

Sph(ϕi ) ⊗ diagN (δii ), (A7)

where diagN (δii ) is a N × N matrix whose only nonvanishing
element is the ith element of the diagonal, which is 1. The
total scattering matrix is hence the result of combining the
three matrices S1, Sph(�ϕ), and S2.

APPENDIX B: LINEAR COEFFICIENTS
FOR HEAT CURRENTS

In the linear regime, assuming the probe condition for the
tip, I3 = 0, we get for the heat currents

Ji = Mi(μ2 − μ1) +
∑

j

Ki jδTj, (B1)

with M1 = −M2 − M3,

M2 = M21 + G13M23

G13 + G23
, (B2)

M3 = G32M31 − G13M23

G13 + G23
, (B3)

and the thermal conductances

Ki j = qHδi j − Ki j − Mi3L3 j

G31 + G32
. (B4)
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FIG. 16. Energy dependence of the transmission probability T23

as a function of the tip position. The relevant temperature scale
4kBT around the chemical potentials μ = 20kBT (considered in most
figures) and μ = 100kBT (considered in one of the cases in Fig. 6) is
delimited by dashed lines as a guide to the eye.

APPENDIX C: LIMITATIONS OF THE
SOMMERFELD EXPANSION

The Sommerfeld expansion is known to behave well for
low temperatures kBT � μ, provided the transmission prob-
abilities are smooth. In our system, the oscillatory energy
dependence of the transmission probabilities sets an addi-
tional limitation depending on the position of the tip at finite
temperatures. The Sommerfeld approximation breaks down
when the energy associated to the distance of two peaks,

�E = 2π2h̄2

mx2

(
1 − 1

π
k|x|

)
, (C1)

becomes comparable to the thermal energy. This depends
on the chemical potential around which the current integrals
are performed. At short distances, �E diverges, as shown
in Fig. 16 for the case of T23, which stays constant over all
energies as x → 0 (similar behavior is obtained for T12 and
T13). �E decreases when the tip separates from the scatterer,
most dramatically for low energies.

APPENDIX D: COUPLING TO A DEPHASING PROBE

We obtain the scattering matrix for pure dephasing pro-
cesses by assuming that the coupling to each of the fictitious
probes, a and b, is defined by a tunnel barrier with transmis-
sion probability τ ; cf. Fig. 10(a). The coupling is the same
for both probes, so no propagation direction is privileged. We
can simply combine the elements of two scattering matrices
of the form of Eq. (1), choosing φ = 0 in order to avoid the
dephasing probe to introduce unnecessary phases. With this,
we arrive at

S© =

⎛
⎜⎜⎝

0
√

1−τ 0 i
√

τ√
1−τ 0 i

√
τ 0

i
√

τ 0
√

1−τ 0
0 i

√
τ 0

√
1−τ

⎞
⎟⎟⎠. (D1)

Note that different conventions are also possible [4].

We now calculate the transmission probabilities, modified
by the presence of the probes, T ±τ

αβ . The indices α, β ac-
counting for all conductor terminals (indices i and j will
still be used when the probes are explicitly excluded). The
transmission probabilities, irrespective of the relative position
of the tip, T τ

αβ , are obtained from T ±τ
αβ as it was done in Eq. (6).

Note that they do not depend on the position of the probes, but
only on how strongly they are coupled to the conductor. In the
strongly coupled limit with τ = 1, we get Aτ = 1 and ζτ = 0,
i.e., every phase dependence is lost.

Considering that the tip position is x < 0, the transmission
probabilities between the conductor terminals and the tip are
modified by the coupling to the pure dephasing probes (S©)
with respect to what we got in Eq. (3):

T −τ
12 = (1 − R)(1 − τ )(η+ − ε)

2Aτ

,

T −τ
13 = ε(Aτ + ζτ )

Aτ

, (D2)

T −τ
23 = (1 − R)(1 − τ )ε

Aτ

,

where Aτ and ζτ are respectively obtained from A and ζ

[Eqs. (4) and (5)] by replacing R → Rτ = R(1 − τ )2. They
are now conditioned on the electrons being reflected at the
coupling to the probes.

The probabilities for an electron injected from a conductor
terminal to be absorbed by one of the probes are

T −τ
a1 = τη2

+
4Aτ

, T −τ
b1 = (1−τ )RT −τ

a1 ,

T −τ
b2 = τ (1 − R)

Aτ

, T −τ
a2 = (1−τ )η2

−T −τ
b2 /4, (D3)

T −τ
a3 = ετ

Aτ

, T −τ
b3 = (1−τ )RT −τ

a3 .

For electrons to be transmitted from one probe to the other we
find

T −τ
ab = τ 2η2

−
4Aτ

, T −τ
ba = τ 2R

Aτ

. (D4)

By symmetry we obtain the remaining ones: T −τ
ai = T −τ

ib and
T −τ

bi = T −τ
ia , and, for the internal reflection at the probes,

T −τ
aa = 1 − ∑

α �=a T −τ
aα and T −τ

bb = 1 − ∑
α �=b T −τ

bα .
The probabilities T +τ

αβ are obtained from the previous ex-
pressions for T −τ

αβ , by replacing 1 ↔ 2 and a ↔ b. The probe
conditions Ia(E ) = Ib(E ) = 0 are satisfied only if the probes
acquire a nonequilibrium distribution, in particular

fα =
∑

i

Yαi fi, (D5)

for terminals α = a, b, with Yαi = yαi/
∑

i yαi and

yai = (1 − T τ
aa)T τ

ai + T τ
abT τ

bi , (D6)

and likely for ybi by replacing a ↔ b. Note that equilibrium
properties are recovered as

∑
i Yai = ∑

i Ybi = 1.
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The currents in the conductor terminals can then be calcu-
lated from

Ii = 2e

h

3∑
i=1

(
δi j − T̃i j

)
fi(E ), (D7)

with the generalized transmissions:

T̃i j = T τ
i j + T τ

iaYa j + T τ
ibYb j . (D8)

APPENDIX E: COUPLING TO AN INVASIVE PROBE

Consider that the conductor is coupled to a fictitious probe
p via two additional channels, as shown in Fig. 10(b). Impos-
ing that the different channels are not reflected at the probe
(i.e., the diagonal elements of the scattering matrix are zero)
and that the probe couples symmetrically to the conductor, one
finds that the scattering matrix is given by S♦

i j = σ♦
i j ei(θi+θ j ),

with [97]

σ♦ =

⎛
⎜⎜⎝

0
√

1−λ
√

λ 0√
1−λ 0 0

√
λ√

λ 0 0 −√
1−λ

0
√

λ −√
1−λ 0

⎞
⎟⎟⎠, (E1)

where λ parametrizes the conductor-probe coupling. Note
however that each probe channel is coupled to only one con-
ductor channel, so nothing avoids an electron absorbed by the
probe to be reemitted into the same channel, resulting in the
reversal of its momentum. For λ = 0, the probe is not coupled.
For λ = 1, every electron incoming from the conductor chan-
nels are absorbed by the probe. Note that, also in this case, the
result does not depend on the position of the probe.

As for the pure dephasing case in Appendix D, we need a
four channel scattering matrix (two channels in the conductor
and two connected to the probe): a single channel connection
(as for the model of the tip) does not include the desired
properties that all electrons are absorbed by a strongly coupled
probe [97] and that it does not add additional phases to the
dynamics.

In this case, the transmission probabilities between con-
ductor terminals T −λ

i j can be obtained from Eqs. (D2) by
simply replacing τ → λ. For the new coefficient Aλ one
additionally needs to replace χ → χλ = χ + 2(θ1 + θ2). The
transmission probabilities from the probe (considering the
contribution of the two channels) are

T −λ
1p = λ(η+ − ε)(1 + R)

2Aλ

,

T −λ
2p = λ(1 − R)[1 + (1 − λ)(η− − ε)]

Aλ

, (E2)

T −λ
3p = λε(1 + R)

Aλ

.

For the probabilities T +λ
αβ , one needs to exchange 1 ↔ 2 in

the corresponding expressions for T −λ
αβ . Again, all phases are

lost for λ = 1. In this case, the probe maintains the symmetry
T λ

αβ = T λ
βα .

In the case of imposing a quasielastic boundary condition
Ip(E ) = 0, as is done in Sec. V B, we solve for the distribution
of the probe, which becomes

fp(E ) = T λ
p1 f1(E ) + T λ

p2 f2(E ) + T λ
p3 f3(E )

2 − T λ
pp

, (E3)

where the factor 2 in the denominator accounts for the two
channels of terminal p. The currents at the other conductor
terminals i = 1, 2, 3 can then be written from

Ii = 2

h

3∑
j=1

(
T λ

i j + T λ
ipT λ

p j

2 − T λ
pp

)
( fi − f j ), (E4)

where the second term in the first brackets (proportional to λ)
introduces the transition from the coherent to the incoherent
transport regimes [98].
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[22] P. Trocha and J. Barnaś, Large enhancement of thermoelectric
effects in a double quantum dot system due to interference
and Coulomb correlation phenomena, Phys. Rev. B 85, 085408
(2012).

[23] G. Gómez-Silva, O. Ávalos Ovando, M. L. Ladrón de Guevara,
and P. A. Orellana, Enhancement of thermoelectric efficiency
and violation of the Wiedemann-Franz law due to Fano effect,
J. Appl. Phys. 111, 053704 (2012).

[24] S. Hershfield, K. A. Muttalib, and B. J. Nartowt, Nonlinear
thermoelectric transport: A class of nanodevices for high ef-
ficiency and large power output, Phys. Rev. B 88, 085426
(2013).

[25] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Funda-
mental aspects of steady-state conversion of heat to work at
the nanoscale, Phys. Rep. 694, 1 (2017).

[26] O. Entin-Wohlman, Y. Imry, and A. Aharony, Three-terminal
thermoelectric transport through a molecular junction, Phys.
Rev. B 82, 115314 (2010).

[27] R. Sánchez and M. Büttiker, Optimal energy quanta to current
conversion, Phys. Rev. B 83, 085428 (2011).

[28] B. Sothmann, R. Sánchez, A. N. Jordan, and M. Büttiker,
Rectification of thermal fluctuations in a chaotic cavity heat
engine, Phys. Rev. B 85, 205301 (2012).

[29] F. Mazza, R. Bosisio, G. Benenti, V. Giovannetti, R.
Fazio, and F. Taddei, Thermoelectric efficiency of three-
terminal quantum thermal machines, New J. Phys. 16, 085001
(2014).

[30] O. Entin-Wohlman and A. Aharony, Three-terminal thermo-
electric transport under broken time-reversal symmetry, Phys.
Rev. B 85, 085401 (2012).

[31] B. Sothmann and M. Büttiker, Magnon-driven quantum-dot
heat engine, Europhys. Lett. 99, 27001 (2012).

[32] T. Ruokola and T. Ojanen, Theory of single-electron heat
engines coupled to electromagnetic environments, Phys. Rev.
B 86, 035454 (2012).

[33] J.-H. Jiang, O. Entin-Wohlman, and Y. Imry, Thermoelec-
tric three-terminal hopping transport through one-dimensional
nanosystems, Phys. Rev. B 85, 075412 (2012).

[34] P. P. Hofer, J.-R. Souquet, and A. A. Clerk, Quantum heat
engine based on photon-assisted Cooper pair tunneling, Phys.
Rev. B 93, 041418(R) (2016).

[35] A. N. Jordan, B. Sothmann, R. Sánchez, and M. Büttiker, Pow-
erful and efficient energy harvester with resonant-tunneling
quantum dots, Phys. Rev. B 87, 075312 (2013).

[36] C. Bergenfeldt, P. Samuelsson, B. Sothmann, C. Flindt, and M.
Büttiker, Hybrid Microwave-Cavity Heat Engine, Phys. Rev.
Lett. 112, 076803 (2014).

[37] R. Sánchez, B. Sothmann, and A. N. Jordan, Chiral Thermo-
electrics with Quantum Hall Edge States, Phys. Rev. Lett. 114,
146801 (2015).

[38] F. Mazza, S. Valentini, R. Bosisio, G. Benenti, V. Giovannetti,
R. Fazio, and F. Taddei, Separation of heat and charge cur-
rents for boosted thermoelectric conversion, Phys. Rev. B 91,
245435 (2015).

[39] R. Bosisio, G. Fleury, J.-L. Pichard, and C. Gorini, Nanowire-
based thermoelectric ratchet in the hopping regime, Phys. Rev.
B 93, 165404 (2016).

[40] R. Sánchez, P. Burset, and A. L. Yeyati, Cooling by Cooper
pair splitting, Phys. Rev. B 98, 241414(R) (2018).

[41] H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C.
Heyn, W. Hansen, H. Buhmann, and L. W. Molenkamp, Three-
terminal energy harvester with coupled quantum dots, Nat.
Nanotechnol. 10, 854 (2015).

[42] B. Roche, P. Roulleau, T. Jullien, Y. Jompol, I. Farrer,
D. A. Ritchie, and D. C. Glattli, Harvesting dissipated en-
ergy with a mesoscopic ratchet, Nat. Commun. 6, 6738
(2015).

[43] G. Jaliel, R. K. Puddy, R. Sánchez, A. N. Jordan, B. Sothmann,
I. Farrer, J. P. Griffiths, D. A. Ritchie, and C. G. Smith, Experi-
mental Realization of a Quantum Dot Energy Harvester, Phys.
Rev. Lett. 123, 117701 (2019).

[44] S. Dorsch, A. Svilans, M. Josefsson, B. Goldozian, M. Kumar,
C. Thelander, A. Wacker, and A. Burke, Heat driven transport
in serial double quantum dot devices, Nano Lett. 21, 988
(2021).

[45] D. Sánchez and L. Serra, Thermoelectric transport of meso-
scopic conductors coupled to voltage and thermal probes,
Phys. Rev. B 84, 201307(R) (2011).

[46] J. Matthews, D. Sánchez, M. Larsson, and H. Linke, Ther-
mally driven ballistic rectifier, Phys. Rev. B 85, 205309
(2012).

[47] J. Matthews, F. Battista, D. Sánchez, P. Samuelsson, and H.
Linke, Experimental verification of reciprocity relations in

115430-14

https://doi.org/10.1021/nl0348488
https://doi.org/10.1103/PhysRevB.75.041301
https://doi.org/10.1088/1367-2630/14/3/033041
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1088/1367-2630/15/12/123010
https://doi.org/10.1103/PhysRevResearch.2.013140
https://doi.org/10.1038/s41565-018-0200-5
https://doi.org/10.1103/PhysRevB.79.033405
https://doi.org/10.1021/nl901554s
https://doi.org/10.1103/PhysRevB.84.113415
https://doi.org/10.1103/PhysRevB.85.085408
https://doi.org/10.1063/1.3689817
https://doi.org/10.1103/PhysRevB.88.085426
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1103/PhysRevB.82.115314
https://doi.org/10.1103/PhysRevB.83.085428
https://doi.org/10.1103/PhysRevB.85.205301
https://doi.org/10.1088/1367-2630/16/8/085001
https://doi.org/10.1103/PhysRevB.85.085401
https://doi.org/10.1209/0295-5075/99/27001
https://doi.org/10.1103/PhysRevB.86.035454
https://doi.org/10.1103/PhysRevB.85.075412
https://doi.org/10.1103/PhysRevB.93.041418
https://doi.org/10.1103/PhysRevB.87.075312
https://doi.org/10.1103/PhysRevLett.112.076803
https://doi.org/10.1103/PhysRevLett.114.146801
https://doi.org/10.1103/PhysRevB.91.245435
https://doi.org/10.1103/PhysRevB.93.165404
https://doi.org/10.1103/PhysRevB.98.241414
https://doi.org/10.1038/nnano.2015.176
https://doi.org/10.1038/ncomms7738
https://doi.org/10.1103/PhysRevLett.123.117701
https://doi.org/10.1021/acs.nanolett.0c04017
https://doi.org/10.1103/PhysRevB.84.201307
https://doi.org/10.1103/PhysRevB.85.205309


EXTRINSIC THERMOELECTRIC RESPONSE OF … PHYSICAL REVIEW B 104, 115430 (2021)

quantum thermoelectric transport, Phys. Rev. B 90, 165428
(2014).

[48] H. Thierschmann, F. Arnold, M. Mittermüller, L. Maier, C.
Heyn, W. Hansen, H. Buhmann, and L. W. Molenkamp, Ther-
mal gating of charge currents with Coulomb coupled quantum
dots, New J. Phys. 17, 113003 (2015).

[49] R. Sánchez, B. Sothmann, and A. N. Jordan, Heat diode and
engine based on quantum Hall edge states, New J. Phys. 17,
075006 (2015).

[50] J.-H. Jiang, M. Kulkarni, D. Segal, and Y. Imry, Phonon ther-
moelectric transistors and rectifiers, Phys. Rev. B 92, 045309
(2015).

[51] G. Rosselló, R. López, and R. Sánchez, Dynamical Coulomb
blockade of thermal transport, Phys. Rev. B 95, 235404
(2017).

[52] R. Sánchez, H. Thierschmann, and L. W. Molenkamp, Single-
electron thermal devices coupled to a mesoscopic gate, New J.
Phys. 19, 113040 (2017).

[53] S.-Y. Hwang, F. Giazotto, and B. Sothmann, Phase-Coherent
Heat Circulator Based on Multiterminal Josephson Junctions,
Phys. Rev. Applied 10, 044062 (2018).

[54] D. Goury and R. Sánchez, Reversible thermal diode and
energy harvester with a superconducting quantum interfer-
ence single-electron transistor, Appl. Phys. Lett. 115, 092601
(2019).

[55] M. Acciai, F. Hajiloo, F. Hassler, and J. Splettstoesser, Phase-
coherent heat circulators with normal or superconducting
contacts, Phys. Rev. B 103, 085409 (2021).

[56] Z. Cao, T.-F. Fang, L. Li, and H.-G. Luo, Thermoelectric-
induced unitary Cooper pair splitting efficiency, Appl. Phys.
Lett. 107, 212601 (2015).

[57] P. Machon, M. Eschrig, and W. Belzig, Nonlocal Thermo-
electric Effects and Nonlocal Onsager Relations in a Three-
Terminal Proximity-Coupled Superconductor-Ferromagnet
Device, Phys. Rev. Lett. 110, 047002 (2013).

[58] R. Hussein, M. Governale, S. Kohler, W. Belzig, F. Giazotto,
and A. Braggio, Nonlocal thermoelectricity in a Cooper-pair
splitter, Phys. Rev. B 99, 075429 (2019).

[59] N. S. Kirsanov, Z. B. Tan, D. S. Golubev, P. J. Hakonen, and
G. B. Lesovik, Heat switch and thermoelectric effects based
on Cooper-pair splitting and elastic cotunneling, Phys. Rev. B
99, 115127 (2019).

[60] G. Blasi, F. Taddei, L. Arrachea, M. Carrega, and A. Braggio,
Nonlocal Thermoelectricity in a Superconductor–Topological-
Insulator–Superconductor Junction in Contact with a Normal-
Metal Probe: Evidence for Helical Edge States, Phys. Rev.
Lett. 124, 227701 (2020).

[61] G. Blasi, F. Taddei, L. Arrachea, M. Carrega, and A. Braggio,
Nonlocal thermoelectricity in a topological Andreev interfer-
ometer, Phys. Rev. B 102, 241302(R) (2020).

[62] Z. B. Tan, A. Laitinen, N. S. Kirsanov, A. Galda, V. M.
Vinokur, M. Haque, A. Savin, D. S. Golubev, G. B. Lesovik,
and P. J. Hakonen, Thermoelectric current in a graphene
Cooper pair splitter, Nat. Commun. 12, 1 (2021).

[63] G. Binnig and H. Rohrer, Scanning tunneling microscopy
- from birth to adolescence, Rev. Mod. Phys. 59, 615
(1987).

[64] Y. Hasegawa and Ph. Avouris, Direct Observation of Standing
Wave Formation at Surface Steps Using Scanning Tunneling
Spectroscopy, Phys. Rev. Lett. 71, 1071 (1993).

[65] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Imaging standing
waves in a two-dimensional electron gas, Nature (London)
363, 524 (1993).

[66] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Confinement
of Electrons to Quantum Corrals on a Metal Surface, Science
262, 218 (1993).

[67] M. Büttiker, Chemical potential oscillations near a barrier in
the presence of transport, Phys. Rev. B 40, 3409(R) (1989).

[68] L. Vannucci, F. Ronetti, G. Dolcetto, M. Carrega, and M.
Sassetti, Interference-induced thermoelectric switching and
heat rectification in quantum Hall junctions, Phys. Rev. B 92,
075446 (2015).

[69] P. P. Hofer and B. Sothmann, Quantum heat engines based
on electronic Mach-Zehnder interferometers, Phys. Rev. B 91,
195406 (2015).

[70] P. Samuelsson, S. Kheradsoud, and B. Sothmann, Optimal
Quantum Interference Thermoelectric Heat Engine with Edge
States, Phys. Rev. Lett. 118, 256801 (2017).

[71] G. Haack and F. Giazotto, Efficient and tunable Aharonov-
Bohm quantum heat engine, Phys. Rev. B 100, 235442 (2019).

[72] G. Marchegiani, A. Braggio, and F. Giazotto, Phase-tunable
thermoelectricity in a Josephson junction, Phys. Rev. Research
2, 043091 (2020).

[73] C. Y. Chen, A. Shik, A. Pitanti, A. Tredicucci, D. Ercolani,
L. Sorba, F. Beltram, and H. E. Ruda, Electron beam induced
current in InSb-InAs nanowire type-III heterostructures, Appl.
Phys. Lett. 101, 063116 (2012).

[74] A. Harzheim, J. Spiece, C. Evangeli, E. McCann, V. Falko, Y.
Sheng, J. H. Warner, G. A. D. Briggs, J. A. Mol, P. Gehring,
and O. V. Kolosov, Geometrically enhanced thermoelectric
effects in graphene nanoconstrictions, Nano Lett. 18, 7719
(2018).

[75] J. Fast, E. Barrigon, M. Kumar, Y. Chen, L. Samuelson,
M. Borgström, A. Gustafsson, S. Limpert, A. Burke, and H.
Linke, Hot-carrier separation in heterostructure nanowires ob-
served by electron-beam induced current, Nanotechnology 31,
394004 (2020).

[76] N. Gächter, F. Könemann, M. Sistani, M. G. Bartmann, M.
Sousa, P. Staudinger, A. Lugstein, and B. Gotsmann, Spatially
resolved thermoelectric effects in operando semiconductor–
metal nanowire heterostructures, Nanoscale 12, 20590
(2020).

[77] X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande,
and P. L. McEuen, Photo-thermoelectric effect at a graphene
interface junction, Nano Lett. 10, 562 (2010).

[78] M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner,
H. Park, L. S. Levitov, and C. M. Marcus, Gate-activated
photoresponse in a graphene p–n junction, Nano Lett. 11, 4134
(2011).

[79] P. Zolotavin, C. I. Evans, and D. Natelson, Substantial lo-
cal variation of the Seebeck coefficient in gold nanowires,
Nanoscale 9, 9160 (2017).

[80] R. Mitra, M. R. Sahu, A. Sood, T. Taniguchi, K. Watanabe,
H. Shtrikman, S. Mukerjee, A. K. Sood, and A. Das, Anoma-
lous thermopower oscillations in graphene-nanowire vertical
heterostructures, Nanotechnology 32, 345201 (2021).

[81] R. Landauer, Motion out of noisy states, J. Stat. Phys. 53, 233
(1988).

[82] M. Büttiker, Transport as a consequence of state-dependent
diffusion, Z. Phys. B 68, 161 (1987).

115430-15

https://doi.org/10.1103/PhysRevB.90.165428
https://doi.org/10.1088/1367-2630/17/11/113003
https://doi.org/10.1088/1367-2630/17/7/075006
https://doi.org/10.1103/PhysRevB.92.045309
https://doi.org/10.1103/PhysRevB.95.235404
https://doi.org/10.1088/1367-2630/aa8b94
https://doi.org/10.1103/PhysRevApplied.10.044062
https://doi.org/10.1063/1.5109100
https://doi.org/10.1103/PhysRevB.103.085409
https://doi.org/10.1063/1.4936380
https://doi.org/10.1103/PhysRevLett.110.047002
https://doi.org/10.1103/PhysRevB.99.075429
https://doi.org/10.1103/PhysRevB.99.115127
https://doi.org/10.1103/PhysRevLett.124.227701
https://doi.org/10.1103/PhysRevB.102.241302
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1103/RevModPhys.59.615
https://doi.org/10.1103/PhysRevLett.71.1071
https://doi.org/10.1038/363524a0
https://doi.org/10.1126/science.262.5131.218
https://doi.org/10.1103/PhysRevB.40.3409
https://doi.org/10.1103/PhysRevB.92.075446
https://doi.org/10.1103/PhysRevB.91.195406
https://doi.org/10.1103/PhysRevLett.118.256801
https://doi.org/10.1103/PhysRevB.100.235442
https://doi.org/10.1103/PhysRevResearch.2.043091
https://doi.org/10.1063/1.4745603
https://doi.org/10.1021/acs.nanolett.8b03406
https://doi.org/10.1088/1361-6528/ab9bd7
https://doi.org/10.1039/D0NR05504B
https://doi.org/10.1021/nl903451y
https://doi.org/10.1021/nl2019068
https://doi.org/10.1039/C7NR02678A
https://doi.org/10.1088/1361-6528/ac0191
https://doi.org/10.1007/BF01011555
https://doi.org/10.1007/BF01304221


SÁNCHEZ, GORINI, AND FLEURY PHYSICAL REVIEW B 104, 115430 (2021)

[83] N. G. van Kampen, Relative stability in nonuniform tempera-
ture, IBM J. Res. Dev. 32, 107 (1988).

[84] G. Fleury, C. Gorini, and R. Sánchez, Scanning probe-induced
thermoelectrics in a quantum point contact, Appl. Phys. Lett.
119, 043101 (2021).

[85] J. Park, G. He, R. M. Feenstra, and A.-P. Li, Atomic-scale
mapping of thermoelectric power on graphene: Role of defects
and boundaries, Nano Lett. 13, 3269 (2013).

[86] F. Menges, P. Mensch, H. Schmid, H. Riel, A. Stemmer, and
B. Gotsmann, Temperature mapping of operating nanoscale
devices by scanning probe thermometry, Nat. Commun. 7,
10874 (2016).

[87] R. Steinacher, C. Pöltl, T. Krähenmann, A. Hofmann, C.
Reichl, W. Zwerger, W. Wegscheider, R. A. Jalabert, K.
Ensslin, D. Weinmann, and T. Ihn, Scanning gate experiments:
From strongly to weakly invasive probes, Phys. Rev. B 98,
075426 (2018).

[88] A. Marguerite, J. Birkbeck, A. Aharon-Steinberg, D.
Halbertal, K. Bagani, I. Marcus, Y. Myasoedov, A. K. Geim,
D. J. Perello, and E. Zeldov, Imaging work and dissipation in
the quantum Hall state in graphene, Nature (London) 575, 628
(2019).

[89] H. Sellier, B. Hackens, P. M. G, F. Martins, S. Baltazar,
X. Wallart, L. Desplanque, V. Bayot, and S. Huant, On the
imaging of electron transport in semiconductor quantum struc-
tures by scanning-gate microscopy: successes and limitations,
Semicond. Sci. Technol. 26, 064008 (2011).

[90] C. Gorini, R. A. Jalabert, W. Szewc, S. Tomsovic, and D.
Weinmann, Theory of scanning gate microscopy, Phys. Rev.
B 88, 035406 (2013).

[91] B. Brun, F. Martins, S. Faniel, A. Cavanna, C. Ulysse, A.
Ouerghi, U. Gennser, D. Mailly, P. Simon, S. Huant, M.
Sanquer, H. Sellier, V. Bayot, and B. Hackens, Thermoelectric
Scanning-Gate Interferometry on a Quantum Point Contact,
Phys. Rev. Applied 11, 034069 (2019).

[92] J. Eom, C.-J. Chien, and V. Chandrasekhar, Phase Dependent
Thermopower in Andreev Interferometers, Phys. Rev. Lett. 81,
437 (1998).

[93] A. Parsons, I. A. Sosnin, and V. T. Petrashov, Reversal of
thermopower oscillations in the mesoscopic Andreev interfer-
ometer, Phys. Rev. B 67, 140502(R) (2003).

[94] Ph. Jacquod and R. S. Whitney, Coherent thermoelectric ef-
fects in mesoscopic Andreev interferometers, Europhys. Lett.
91, 67009 (2010).

[95] M. S. Kalenkov and A. D. Zaikin, Large thermoelectric effect
in ballistic Andreev interferometers, Phys. Rev. B 95, 024518
(2017).

[96] H.-L. Engquist and P. W. Anderson, Definition and measure-
ment of the electrical and thermal resistances, Phys. Rev. B 24,
1151(R) (1981).

[97] M. Büttiker, Role of quantum coherence in series resistors,
Phys. Rev. B 33, 3020 (1986).

[98] M. Büttiker, Coherent and sequential tunneling in series barri-
ers, IBM J. Res. Dev. 32, 63 (1988).

[99] M. J. M. de Jong and C. W. J. Beenakker, Semiclassical theory
of shot noise in mesoscopic conductors, Physica A 230, 219
(1996).

[100] M. Büttiker, Quantum coherence and phase randomization
in series resistors, in Resonant Tunneling in Semiconductors
(Springer US, Boston, MA, 1991), pp. 213–227.

[101] S. Pilgram, P. Samuelsson, H. Förster, and M. Büttiker, Full-
Counting Statistics for Voltage and Dephasing Probes, Phys.
Rev. Lett. 97, 066801 (2006).

[102] H. Förster, P. Samuelsson, S. Pilgram, and M. Büttiker, Volt-
age and dephasing probes in mesoscopic conductors: A study
of full-counting statistics, Phys. Rev. B 75, 035340 (2007).

[103] I. Knittel, F. Gagel, and M. Schreiber, Quantum transport
and momentum-conserving dephasing, Phys. Rev. B 60, 916
(1999).

[104] X.-Q. Li and Y. Yan, Partially coherent tunneling through a
series of barriers: Inelastic scattering versus pure dephasing,
Phys. Rev. B 65, 155326 (2002).

[105] R. Golizadeh-Mojarad and S. Datta, Nonequilibrium Green’s
function based models for dephasing in quantum transport,
Phys. Rev. B 75, 081301(R) (2007).

[106] U. Sivan and Y. Imry, Multichannel Landauer formula for
thermoelectric transport with application to thermopower near
the mobility edge, Phys. Rev. B 33, 551 (1986).

[107] P. Streda, Quantised thermopower of a channel in the ballistic
regime, J. Phys.: Condens. Matter 1, 1025 (1989).

[108] P. N. Butcher, Thermal and electrical transport formalism
for electronic microstructures with many terminals, J. Phys.:
Condens. Matter 2, 4869 (1990).

[109] H. van Houten, L. W. Molenkamp, C. W. J. Beenakker, and
C. T. Foxon, Thermo-electric properties of quantum point
contacts, Semicond. Sci. Technol. 7, B215 (1992).

[110] M. Büttiker, Y. Imry, and M. Ya. Azbel, Quantum oscillations
in one-dimensional normal-metal rings, Phys. Rev. A 30, 1982
(1984).

[111] T. Gramespacher and M. Büttiker, Nanoscopic tunneling con-
tacts on mesoscopic multiprobe conductors, Phys. Rev. B 56,
13026 (1997).

[112] T. Gramespacher and M. Büttiker, Local non-equilibrium dis-
tribution of charge carriers in a phase-coherent conductor, C.
R. Acad. Sci., Ser. IIB, Mech. Phys. Astron. 327, 877 (1999).

[113] R. S. Whitney, Nonlinear thermoelectricity in point contacts at
pinch off: A catastrophe aids cooling, Phys. Rev. B 88, 064302
(2013).

[114] J. Meair and P. Jacquod, Scattering theory of nonlinear
thermoelectricity in quantum coherent conductors, J. Phys.:
Condens. Matter 25, 082201 (2013).

[115] D. Sánchez and R. López, Scattering Theory of Nonlin-
ear Thermoelectric Transport, Phys. Rev. Lett. 110, 026804
(2013).

[116] H. B. G. Casimir, On Onsager’s Principle of Microscopic
Reversibility, Rev. Mod. Phys. 17, 343 (1945).

[117] J. B. Pendry, Quantum limits to the flow of information and
entropy, J. Phys. A: Math. Gen. 16, 2161 (1983).

[118] Ph. A. Jacquet and C.-A. Pillet, Temperature and voltage
probes far from equilibrium, Phys. Rev. B 85, 125120 (2012).

[119] J. Meair, J. P. Bergfield, C. A. Stafford, and Ph. Jacquod, Local
temperature of out-of-equilibrium quantum electron systems,
Phys. Rev. B 90, 035407 (2014).

[120] J. Argüello-Luengo, D. Sánchez, and R. López, Heat asym-
metries in nanoscale conductors: The role of decoherence and
inelasticity, Phys. Rev. B 91, 165431 (2015).

[121] C. A. Stafford, Local temperature of an interacting quantum
system far from equilibrium, Phys. Rev. B 93, 245403 (2016).

[122] E. S. Tikhonov, A. O. Denisov, S. U. Piatrusha, I. N.
Khrapach, J. P. Pekola, B. Karimi, R. N. Jabdaraghi, and V. S.

115430-16

https://doi.org/10.1147/rd.321.0107
https://doi.org/10.1063/5.0059220
https://doi.org/10.1021/nl401473j
https://doi.org/10.1038/ncomms10874
https://doi.org/10.1103/PhysRevB.98.075426
https://doi.org/10.1038/s41586-019-1704-3
https://doi.org/10.1088/0268-1242/26/6/064008
https://doi.org/10.1103/PhysRevB.88.035406
https://doi.org/10.1103/PhysRevApplied.11.034069
https://doi.org/10.1103/PhysRevLett.81.437
https://doi.org/10.1103/PhysRevB.67.140502
https://doi.org/10.1209/0295-5075/91/67009
https://doi.org/10.1103/PhysRevB.95.024518
https://doi.org/10.1103/PhysRevB.24.1151
https://doi.org/10.1103/PhysRevB.33.3020
https://doi.org/10.1147/rd.321.0063
https://doi.org/10.1016/0378-4371(96)00068-4
https://doi.org/10.1103/PhysRevLett.97.066801
https://doi.org/10.1103/PhysRevB.75.035340
https://doi.org/10.1103/PhysRevB.60.916
https://doi.org/10.1103/PhysRevB.65.155326
https://doi.org/10.1103/PhysRevB.75.081301
https://doi.org/10.1103/PhysRevB.33.551
https://doi.org/10.1088/0953-8984/1/5/021
https://doi.org/10.1088/0953-8984/2/22/008
https://doi.org/10.1088/0268-1242/7/3B/052
https://doi.org/10.1103/PhysRevA.30.1982
https://doi.org/10.1103/PhysRevB.56.13026
https://doi.org/10.1016/S1287-4620(99)80150-1
https://doi.org/10.1103/PhysRevB.88.064302
https://doi.org/10.1088/0953-8984/25/8/082201
https://doi.org/10.1103/PhysRevLett.110.026804
https://doi.org/10.1103/RevModPhys.17.343
https://doi.org/10.1088/0305-4470/16/10/012
https://doi.org/10.1103/PhysRevB.85.125120
https://doi.org/10.1103/PhysRevB.90.035407
https://doi.org/10.1103/PhysRevB.91.165431
https://doi.org/10.1103/PhysRevB.93.245403


EXTRINSIC THERMOELECTRIC RESPONSE OF … PHYSICAL REVIEW B 104, 115430 (2021)

Khrapai, Spatial and energy resolution of electronic states by
shot noise, Phys. Rev. B 102, 085417 (2020).

[123] D. Halbertal, J. Cuppens, M. B. Shalom, L. Embon, N.
Shadmi, Y. Anahory, H. R. Naren, J. Sarkar, A. Uri, Y. Ronen,
Y. Myasoedov, L. S. Levitov, E. Joselevich, A. K. Geim,
and E. Zeldov, Nanoscale thermal imaging of dissipation in
quantum systems, Nature (London) 539, 407 (2016).

[124] D. Halbertal, M. Ben Shalom, A. Uri, K. Bagani, A. Y.
Meltzer, I. Marcus, Y. Myasoedov, J. Birkbeck, L. S. Levitov,
A. K. Geim, and E. Zeldov, Imaging resonant dissipation
from individual atomic defects in graphene, Science 358, 1303
(2017).

[125] D. Zhang, X. Zheng, and M. Di Ventra, Local temperatures out
of equilibrium, Phys. Rep. 830, 1 (2019).

[126] We have already discussed how a spatially resolved measure-
ment (the one made by the tip) introduces privileged phases
resulting in thermoelectric contributions. The thermometer
does not yield any such contributions, precisely since it lacks
resolution.

[127] T. E. Humphrey, R. Newbury, R. P. Taylor, and H. Linke,
Reversible Quantum Brownian Heat Engines for Electrons,
Phys. Rev. Lett. 89, 116801 (2002).

[128] M. Paulsson and S. Datta, Thermoelectric effect in molecular
electronics, Phys. Rev. B 67, 241403(R) (2003).

[129] N. Nakpathomkun, H. Q. Xu, and H. Linke, Thermoelectric
efficiency at maximum power in low-dimensional systems,
Phys. Rev. B 82, 235428 (2010).

[130] L. Cui, R. Miao, K. Wang, D. Thompson, L. A. Zotti, J. C.
Cuevas, E. Meyhofer, and P. Reddy, Peltier cooling in molec-
ular junctions, Nat. Nanotechnol. 13, 122 (2017).

[131] Ya. M. Blanter, F. W. J. Hekking, and M. Büttiker, Interaction
Constants and Dynamic Conductance of a Gated Wire, Phys.
Rev. Lett. 81, 1925 (1998).

[132] K.-I. Imura, K.-V. Pham, P. Lederer, and F. Piéchon, Conduc-
tance of one-dimensional quantum wires, Phys. Rev. B 66,
035313 (2002).

[133] A. Crépieux, R. Guyon, P. Devillard, and T. Martin, Electron
injection in a nanotube: Noise correlations and entanglement,
Phys. Rev. B 67, 205408 (2003).

[134] M. Guigou, T. Martin, and A. Crépieux, Screening of a Lut-
tinger liquid wire by a scanning tunneling microscope tip. I.
Spectral properties, Phys. Rev. B 80, 045420 (2009).

[135] M. Guigou, T. Martin, and A. Crépieux, Screening of a Lut-
tinger liquid wire by a scanning tunneling microscope tip. II.
Transport properties, Phys. Rev. B 80, 045421 (2009).

[136] G. Marchegiani, A. Braggio, and F. Giazotto, Nonlinear Ther-
moelectricity with Electron-Hole Symmetric Systems, Phys.
Rev. Lett. 124, 106801 (2020).

115430-17

https://doi.org/10.1103/PhysRevB.102.085417
https://doi.org/10.1038/nature19843
https://doi.org/10.1126/science.aan0877
https://doi.org/10.1016/j.physrep.2019.10.003
https://doi.org/10.1103/PhysRevLett.89.116801
https://doi.org/10.1103/PhysRevB.67.241403
https://doi.org/10.1103/PhysRevB.82.235428
https://doi.org/10.1038/s41565-017-0020-z
https://doi.org/10.1103/PhysRevLett.81.1925
https://doi.org/10.1103/PhysRevB.66.035313
https://doi.org/10.1103/PhysRevB.67.205408
https://doi.org/10.1103/PhysRevB.80.045420
https://doi.org/10.1103/PhysRevB.80.045421
https://doi.org/10.1103/PhysRevLett.124.106801

